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Abstract: The s-parametrized characteristic functionC(λ ,s) for a superposition of two squeezed displaced Fock states (SDFSs ) is
presented. The s-parametrized distribution functions forthe superposition ofSDFSs is investigated for different coherent parameters.
The moments are obtained by using this characteristic function. The Gluaber second-order correlation function is calculated.The
squeezing properties of this superposition are studied. Analytical and numerical results for the quadrature component distributions
are presented. A generation scheme is discussed. The behavior of the above statistical aspectes differ on changing of the coherence
parameters.
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1 Introduction

The number (Fock) state| n〉 is the main block in builting
the electromagnetic field state .It is the eigen state of the
photon number operator ˆn = a†a where a(a†) is the
annihilation (creation) operator. There is an alernative
important state that is the coherent state| α〉 which is
defined by applying a displacement operatorD(α) on the
vacuum state. It is the eigen state of the annihilation
operator (a), and also it is defined to be linear
superposition of all| n〉 states with coefficients selected
such that the photon number distribution is Poissonian
([1]-[4]) .On the other hand the squeezed state is one of
the non-classical states of the electromagnetic field ,such
that certain observables reveal fluctuations less than for
the vaccum state ([5]-[8]). It is known as the impact of the
squeezed operator S(z) on the coherent state[5].Squeezed
Displsed Fock states (SDFSs) have been studied and
various aspects of these states such as squezzing and
photon statistics have been investigated ([9]-[16]).
Two-photon coherent states (squeezed coherent states),
squeezed number states [17] and displaced Fock states
([18],[19]) are generated as special cases of squeezed
displaced Fock states. Lately the creation of no-classical
states of motion of a trapped ion as Fock states, coherent
states, squeezed states and Schrodinger cat states have

been reported experimentally ([20]-[23]).In the above
experiments an ion with laser cooled in a Paul trap to the
ground harmonic state .Then the ion is set into different
quantum states of motion by applications of optical and
electric fields. This moved the study of these states from
the academic field to the world of experimentation, that
encouraged researchers to study the superposition of
these states.
Superposition of the quantum mechanical states of
electromagnetic field have lately recevied more care in
quantum optics([24]-[29]),because these states can reveal
non-classical properties of light such as quadrature
squeezing and sub Poissonian statistics [5].
The studies of some types of superposition of
Glauber(ordinary) coherent states have shown quadrature
squueezing and sub-Poissonian statistics([24]-[29].
Methods for production of superposition of coherent
states in experiments have been made by many
workers([25]-[29]). Superposition of two binomial states
and two negative binomial states have been studied in
[30]. Properties of the superposition of displaced Fock
states and generation scheme have been discussed [31].
Let the class of quantum state| ψ〉 have the form

| ψ〉= A−1/2
N

N

∑
j=1

k j | α j ,z j,m j〉 (1)
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withAN as the normalization constant, and the SDFSs
| α,z,m〉 defined by

| α,z,m〉= D(α)S(z) | m〉 (2)

D(α) = exp(αa†−α∗a) S(z) = exp(
1
2

z∗a2−
1
2

za†2
)

(3)
The operator D(α) is the displacement operator,
α =| α | exp(iθ ), and S(z) is squeeze operator,
z = r exp(iφ) [5]. Where a(a†) is the annihilation
(creation) operator of the boson field.
In section 2 we discuss the construction and properties of
superposition of two SDFSs for different coherent
parameter and calculate the photon number distributions.
In section 3 we study the s-parametrized quasiprobability
distribution function. In section 4 we discusse some
applications of the charactristic function and the
quadrature component distribution for these states. In
section 5 finally we present a generation scheme.

2 Superposition of Two SDFSs With
Different Coherent Parameters

We use the quantum state (1) for the superposition of a
pair of SDFSs with different coherent parameters but the
squeezing parameters and number of photon are the same.
The superposition state| ψ〉 is defined as

| ψ〉= N−1/2[k1 | α1,z,m〉+ k2 | α2,z,m〉] (4)

with the normalization constant N given by

N =| k1 |
2 + | k2 |

2 +[k1k∗2+ k∗1k2]

exp(−
| ᾱ1− ᾱ2 |

2

2
)Lm(| ᾱ1− ᾱ2 |

2)
(5)

where ᾱ = µα + να∗ withµ = coshr ,
ν = exp(iφ)sinhr and r =| z |,while Lσ

m(x) is the
associated Laguerre polynomial which is given by

Lσ
m(x) =

m

∑
s=0

(

m+σ
m− s

)

(−x)s

s!
(6)

Now we try to obtain the photon statistics for the state of
equation(4). First we set

| α j,z j ,m j〉=
∞

∑
n=0

〈n | α j ,z j,m j〉 | n〉

=
∞

∑
n=0

C j
n(α j,z j ,m j) | n〉, j = 1,2

(7)

whereCn(α j ,z j,m j) defined [32] as

Cn(α j,z j ,m j) = 〈n | α j ,z j,m j〉

= (
n!

µ jm j!
)1/2 (

ν j

2µ j
)n/2exp(−

| ᾱ j |
2

2
+

ν∗
j

2µ j
ᾱ j

2)

min(n,m j)

∑
i=0

(

m j

i

)

(2/µ jν j)
i/2

(n− i)!
(
−ν∗

j

2µ j
)(m j−i)/2

×Hn−i(
ᾱ j

(2µ jν j)1/2
)Hm j−i(

−α∗
j

(−2µ jν∗
j )

1/2
) j = 1,2

(8)

while Hn(x) is the Hermite polynomial given by

Hn(x) =
[n/2]

∑
m=0

n!(−1)m(2x)n−2m

m!(n−2m)!
(9)

Then we can cast the state (4) as

| ψ〉= N−1/2
∞

∑
n=0

[k1Cn(α1,z,m)+ k2Cn(α2,z,m)] | n〉

(10)
and the photon number distribution P(n) is given by

P(n)=| 〈n |ψ〉 |2=N−1 | k1Cn(α1,z,m)+k2Cn(α2,z,m) |2

(11)
Where Cn(α j,z,m) are defined in equation(8). With
probability distribution function is obtained therefore
some statistical aspects can be calculated and discussed.

3 S-Parametrized Quasiprobability Function

Quasiprobability distribution function such as Glaubers
P(β ) function [2] , the WignerW (β ) [[33],[34]] function
and HusimiQ(β ) C[[35],[36]] function have proved to be
very useful theoreticaly tools in performing quantum
optical calculations [32]. The s-parametrized
characteristic functionC(λ ,s) plays an important role in
the fundamental exposition of the quasiprobability
functions. It is defined as the trace of the product of the
density operator with the displacement operator as
follows:

C(λ ,s) = Tr[ρD(λ )]exp(
s
2
| λ |2) (12)

with D(λ ) defined in equation(3). The s-parametrized
quasiprobability distribution function can be defined as a
Fourier transformation of the s-parametrized
characteristic function,and it is given by

F(β ,s) =
1

π2

∫

C(λ ,s)exp(λ ∗β −λ β ∗)d2λ (13)

It can be cast into the form[37] as

F(β ,s) =
2
π ∑

k=0

(−1)k (1+ s)k

(1− s)k+1〈β ,k | ρ | β ,k〉 (14)
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The density operator corresponding to the state (4) is given
by

ρ = N−1[(k1 | α1,z,m〉+ k2 | α2,z,m〉)

(k∗1〈α1,z,m |+k∗2〈α2,z,m |)]
(15)

Then the characteristic function can be written in the
following form

C(λ ,s) = (
exp( s

2 | λ |2)

N
)[exp(−

| λ̄ |2

2
)Lm(| λ̄ |)2

[| k1 |
2 exp(α∗

1λ −α1λ ∗)+ | k2 |
2 exp(α∗

2λ −α2λ ∗)]

+ k∗1k2exp(−
1
2
| λ̄ + ᾱ2− ᾱ1 |

2)Lm(| λ̄ + ᾱ2− ᾱ1 |
2)

+ k1k∗2 exp(−
1
2
| λ̄ + ᾱ1− ᾱ2 |

2)Lm(| λ̄ + ᾱ1− ᾱ2 |
2)],

(16)
Whereλ̄ = µλ + νλ ∗, by using equations (14),(15) and
(8) we can obtain the s-parametrized distribution function
as follows

F(β ,s) =
2
π ∑

k

−1k(
(1+ s)k

(1− s)k+1 )

[| k1 |
2| C1

k (γ,z,m) |2 + | k2 |
2| C2

k (δ ,z,m) |2

+ k1k∗2C1
k (γ,z,m)C2∗

k (δ ,z,m)

+ k∗1k2C2
k (δ ,z,m)C1∗

k (γ,z,m)]
(17)

and alsoF(β ,s) in a mathematics form is:

F(β ,s) =
2
π ∑

k

AK

min(n,k)

∑
i= j=0

(

n
i

)(

n
j

)

(2/µν)i/2(2/µν∗) j/2

(k− i)!(k− j)!

[exp(−
| γ |2

2
+

ν∗

2µ
γ2)H(k−i)(

γ̄
(2νµ)1/2

)

H(n−i)(
−γ∗

(−2ν∗µ)1/2
)[| k1 |

2 exp(−
| γ |2

2
+(

ν
2µ

)γ∗
2
)

H(k− j)(
−γ

(−2νµ)1/2
)H(n− j)(

γ̄∗

(2ν∗µ)1/2
)

+ k1k∗2 exp(−
| δ |2

2
+(

ν
2µ

)δ ∗2
)H(k− j)(

δ̄ ∗

(2ν∗µ)1/2
)

H(n− j)(
−δ

(−2νµ)1/2
)]+exp(−

| δ |2

2
+(

ν∗

2µ
)δ 2)

H(k−i)(
δ̄

(2νµ)1/2
)H(n−i)(

−δ ∗

(−2ν∗µ)1/2
)

[| k2 |
2 exp(−

| δ |2

2
+(

ν
2µ

)δ ∗2
)H(k− j)(

−δ
(−2νµ)1/2

)

H(n− j)(
δ̄ ∗

(2ν∗µ)1/2
)+ k∗1k2exp(−

| γ |2

2
+(

ν
2µ

)γ∗
2
)

H(k− j)(
γ̄∗

(2ν∗µ)1/2
)H(n− j)(

−γ
(−2νµ)1/2

)]],

(18)

where

Ak = (−1)k(
(1+ s)k

(1− s)k+1)(
k!

µ n!
)(

ν
2µ

)k/2(
ν∗

2µ
)k/2 (19)

Since we useγ = α1 − β , δ = α2 − β . The general
represtation functionF(β ,s) reduce to the weight
functions Q(β ), W (β ) and P(β ) when the order
parameter take the valuess = −1,zero and +1.
respectively from this characteristic function we can
calculate any expectation value for the field operators.

4 Some Statistical Properties

After the characteristic function is calculated, we bocus
on some statistical quantities namely: correlation function,
squeezing and quadrature distribution.

4.1 The auto-correlation function

We present the moments of the photon operators for the
superposition of twoSDFSs in order to calculate different
statistical quantities. The s-parametrized averge value of a
anda† are presented as

〈[a†k
al ]s〉= Tr[ρ{a†k

al}s] =
∂ k

∂λ k

∂ l

∂ (−λ ∗)l C(λ ,s) |λ=λ ∗=0

(20)
i.e. the average values of power of creation and
annihilation operators are derived by differentiating the
characteristic function with respect toλ and −λ ∗ as
shown above. Also by using equation (8) we can
calculatethe averge values for any differentα j ,m j andz j
as

〈[a†k
al ]s〉= ∑

s=0

√

s!(s+ l− k)!
(s− k)!

C∗
s (α j,z j ,m j)

Cs+l−k(α j ,z j,m j) s ≥ k

(21)

therefor, by equation (20) we clculate;

〈a†〉= N−1[| k1 |
2 α∗

1+ | k2 |
2 α∗

2 + k1k∗2

exp(−
1
2
| ᾱ1− ᾱ2 |

2)(A1−B1)[−
1
2

Lm(| ᾱ1− ᾱ2 |
2)

+L1
m−1(| ᾱ1− ᾱ2 |

2)]+ k∗1k2exp(−
1
2
| ᾱ2− ᾱ1 |

2)

(A2−B2)[−
1
2

Lm(| ᾱ2− ᾱ1 |
2)+L1

m−1(| ᾱ2− ᾱ1 |
2)]]

= 〈a〉∗

(22)
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and

〈a†2
〉= N−1[| k1 |

2 α∗2

1 + | k2 |
2 α∗2

2 − (| k1 |
2 + | k2 |

2)

[µν∗+2µν∗m]+ k1k∗2 exp(−
1
2
| ᾱ1− ᾱ2 |

2)

[[(−µν −
1
4
(A1−B1)

2)]Lm(| ᾱ1− ᾱ2 |
2)

− [(A1−B1))
2−2µν]L1

m−1(| ᾱ1− ᾱ2 |
2)

+ (A1−B1)
2L2

m−2(| ᾱ1− ᾱ2 |
2)]

+ k∗1k2exp(−
1
2
| ᾱ2− ᾱ1 |

2)[[(−µν −
1
4
(A2−B2)

2)]

Lm(| ᾱ2− ᾱ1 |
2)− [(A2−B2)

2−2µν]
L1

m−1(| ᾱ2− ᾱ1 |
2)+ (A2−B2)

2L2
m−2(| ᾱ2− ᾱ1 |

2)]]

= 〈a2〉∗

(23)
While the average number of photons can be calculated
analogously as follows

〈a†a〉= N−1[| k1 |
2| α1 |

2 + | k2 |
2| α2 |

2 +(| k1 |
2 + | k2 |

2)

[m(| µ |2 + | ν |2)−C]+ k1k∗2 exp(−
1
2
| ᾱ1− ᾱ2 |

2)

[
−1
4
(A1−B1)

2)− [((| µ |2 + | ν |2)−C)− (A1−B1)
2]

L1
m−1(| ᾱ1− ᾱ2 |

2)− (A1−B1)B1L2
m−2(| ᾱ1− ᾱ2 |

2)]

+ k∗1k2exp(−
1
2
| ᾱ2− ᾱ1 |

2)[
−1
4
(A2−B2)

2)

− [((| µ |2 + | ν |2)−C)− (A2−B2)
2]

L1
m−1(| ᾱ2− ᾱ1 |

2)− (A2−B2)B2L2
m−2(| ᾱ2− ᾱ1 |

2)],
(24)

where

A1 =−A2 = ν∗(ᾱ1− ᾱ2), B1 =−B2 = µ(ᾱ1
∗− ᾱ2

∗)

C =
1
2
[s− (| µ |2 + | ν |2)]

(25)
The Gluaber second-order correlation function is defined
by

g(2) =
〈a†2

a2〉

〈a†a〉2 (26)

The light withg(2) < 1 has a sub-Possionian distribution,
the light with 1 < g(2) < 2 has a super-Possianion
distribution, and the light with g(2) > 2 has a
super-thermal distribution. Coherent light hasg(1) = 1
while thermal light hasg(2) = 2.
In figure 1 and 2 we plot the correlation functiong(2)

against the squeeze parameter r, and we take the values
m = 0,1,2,3, with different value of the displacement
parametersα1,α2 and the direction of squeezing is zero
φ = 0.
We plot figure 1 forα1 = 1,α2 = 2, andk1 = 1,k2 = 1.
There is thermal distribution form = 0 ,sub-Possionian is
observed form = 1 in the range 0.5 < r < 1, and for
m = 2,3 there is super-Possionian distribution∀r.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
r

0.5

1.0

1.5

2.0

2.5

3.0
g 2

Fig. 1: Correlation functiong(2)against the squeezed parameterr,with α1 =
1,α2 = 2 for k1 = 1,k2 = 1. The squeeze parameter is assumed to be real and runs
from 0 to 3. The photon number has the valuem = 0(line),m = 1(dashed),m =
2(thick)andm = 3(dot dashed).
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2.0
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g 2

Fig. 2: Correlation functiong(2)against the squeezed parameterr, with α1 =
1,α2 = −2 for k1 = k2 = 1. The squeeze parameter is assumed to be real and
runs from 0 to 3. The photon number has the valuem = 0 (line), m = 1(dashed),
m = 2(thick) andm = 3(dot dashed).

In figure 2 we plot the displacement parametersα1 = 1
and α2 = −2 and k1 = 1,k2 = 1. We note that for
m = 0,1,2,3 there is super-Possionian distribution , super
thermal is observed form = 0, r > 2. While a small
amount of sub-possionian is noted form = 3 for a very
short period of r 0.1 < r < 0.3 The results are different
from earlier studies (α1 = 1 , α2 =−1 ) see [32].

4.2 Squeezing

We discuss the squeezing for the superposition ofSDFSs
(4). The quadrature operators of the one mode field are
defined by

X1 =
1
2
(a+ a†) X2 =

1
2i
(a− a†) [X1,X2] = i/2 (27)

which satisfy the uncertainty relation
,〈(∆X1)

2〉〈(∆X2)
2〉 ≥ 1

16 with the variance

〈(∆X j)
2〉= 〈X2

j 〉− 〈X j〉
2 j = 1,2 (28)

The field is said to be squeezed if(∆X j)
2 ≤ 1

4 for j=1,2.
The average values〈X1〉and 〈X2〉 of the quadrature field
operators are directly computed, the variances〈(∆X1)

2〉
and 〈(∆X2)

2〉 of the quadrature field operators are
presented from equations (22),(23)and(24).
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The squeezing is best parametrized by the q parameter
defined as

q j =
〈(∆X j)

2〉−0.25
0.25

, j = 1,2 (29)

0.5 1.0 1.5 2.0 2.5 3.0
r

-20

-15

-10

-5

5
q1

Fig. 3: Squeezing parameterq1 with the squeeze parameter r fork1 = k2 = 1 and
α1 = 1,α2 = 2 with different values form= 0(line),m= 1(dashed),m= 2(thick)and
m = 3(dot dashed)

In figure 3 we plotq1 with the squeeze parameter r for
k1 = k2 = 1 , andα1 = 1,α2 = 2 with different values for
m = 0,1,2,3. We observe that the squeezing exists−20<
q j < 0 in all r,i.e., the squeezing condition readsq j < 0
and it increases with r. The results are different from the
earlier studies (α1 = 1,α2 =−1 ) see[32].

4.3 Quadrature Distributions

The quadrature component distribution for the
superposition state (4) is defined as

P(x,ϕ) =| 〈x,ϕ | ψm〉 |
2 (30)

We first expand the eigenstate of quadrature component

x(ϕ) =
1

21/2
[exp(−iϕ)a+exp(iϕ)a†] (31)

in the photon number basis as

| x,ϕ〉=
1

π1/4
exp(−

x2

2
)

∞

∑
j=0

exp(iϕ j)

(2j j!)1/2
H j(x) | j〉 (32)

Then by using equations (29) the quadrature component
distribution becomes

P(x,ϕ) =
1

Nπ1/2
exp(−

x2

2
)

∞

∑
j,l=0

exp(iϕ( j− l)

(2j+ll! j!)1/2

[k1Cs
j(α1,z,m)+ k2C

s
j(α2,z,m)]

[k∗1Cs
l (α1,z,m)+ k∗2Cs

l (α2,z,m)]H j(x)Hl(x)

(33)

Fig. 4: Quadrature distributionP(x,ϕ) of the state| ψ〉 consisting of the
superposition ofSDFSs, withm = 0,α1 = 1,α2 = 2,r = 1, andk1 = k2 = 1
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Fig. 5: Quadrature distributionP(x,ϕ) against x (a) atϕ = 0,(b) atϕ = π/2
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Fig. 6: Quadrature distributionP(x,ϕ) of the state| ψ〉 consisting of the
superposition ofSDFSs,withm = 0,α1 = 1,α2 =−2,r = 1,φ = 0 andk1 = k2 = 1
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Fig. 7: Quadrature distributionP(x,ϕ) against x (a)atϕ = 0,(b)atϕ = π/2

Fig. 8: Quadrature distributionP(x,ϕ) of the state| ψ〉 consisting of the
superposition of SDFSs, withm = 0,α1 = 2=−α2,r = 1,φ = 0 andk1 = k2 = 1
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Fig. 9: Quadrature distributionP(x,ϕ) against x (a) atϕ = 0,(b) atϕ = π/2

Fig. 10: Quadrature distributionP(x,ϕ) of the state| ψ〉 consisting of the
superposition of SDFSs, withm = 0,α1 = 3=−α2,r = 1,φ = 0 andk1 = k2 = 1
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Fig. 11: Quadrature distributionP(x,ϕ) against x (a)atϕ = 0,(b)atϕ = π/2

In figures 4, 6, 8 and 10 we plot the
phase-parametrized field strength distribution(quadrature
component)P(x,ϕ) with m = 0,r = 1 , and different value
of α1,α2.
In figure 4 in caseα1 = 1,α2 = 2, k1 = k2 = 1 we note
that two symmetric peaks atϕ = 0,2π , the small peak is
at x ≈ 0.7 and the large peak atx ≈ 3. As ϕ increase they
becomes three peaks with small heights compared to the
original ones. The middle is larger while the side peaks
are small but asϕ reaches toπ ,they combine into 2 peaks
,and then they are swing the small peak is around
x ≈ −0.7 and the large peak is aroundx ≈ −3 see figure
5.The oscillation is repeated with a period 2π and also we
find that it is bounded. Incidentally we have also the same
results if we takek1 =−k2 = 1.

In figure 6 we takeα1 = 1,α2 = −2, k1 = k2 = 1 we
note that the motion of the peak in the(x,ϕ) plan is the
same as figure 4 but in opposite directions as may be seen
from figure 7.
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In figure 8 we takeα1 = 2,α2 = −2 we found that the
figure is symmetric aroundx = 0 and ϕ = π/2. It is
observed that there are two peaks only forϕ = 0,π and
with height x ≈ 3 . Also we observe that the height of
peak is increasing with increasing the value ofα as
shown in figure 10 whereα1 = 3,α2 = −3 where the
height reche≈ 40 . Thus behavior is different from the
caseα1 = 1=−α2 see[32].
In figure 5,7,9 and 11 we plot Quadrature distribution
P(x,ϕ) against x with different values ofϕ , We find
another structures and oscillation between the peaks and
the number of them increase with increasingα as show in
the caseϕ = π/2 see figures 5(b),7(b),9(b)and 11(b).

5 Generation Scheme

After the discussion of the properties of the
superposition of theSDFSs, we wish to consider the
production of such state. We learn Let a two-level ion of
massM move in a harmonic potential of frequencyωxin
the x-direction. Let a(a†) stand for the annihilation
(creation) operator of the vibrational quanta in the
x-direction. Then the position operator is given by
x = ∆x0(a+ a†) with ∆x0 = (2ωxM)−1/2 the width of the
harmonic ground state. In this scheme, four beams of
laser applied along the x-axis are required to manipulate
the motion of the atom; they are detuned by±ωx and
±2ωx. In the rotating-wave approximation the
Hamiltonian for this system is given by

H = ωxaa† +(
ω0

2
)σz − [µE−(x, t)σ++ hc] (34)

The first two terms describe the external and internal
free motions of the ion and the last term stands for the
atom-field interaction.µ is the dipole matrix element and
ω0 the transition frequency of the two-level ion , and the
operatorsσz = |e〉〈e|− |g〉〈g| , σ+ = |e〉 〈g| ,
σ− = |g〉〈e| where|e〉 and|g〉 are the atomic excited and
ground states respectively.
We follow the same scheme as in [32] ,and we keep the
first and second order term of the Hamiltonian as:

H̄1 =−[2(g1+ g∗2)a
†+ 2(g∗1+ g2)a + 2(g3+ g∗4)a

†2

+2(g∗3+ g4)a
2](σ−+σ+)

(35)
where

g j(t) = iΩ jη2
j exp(iφ j)exp(−

η2
j

2
) , j = 1,2

g j(t) =−Ωlη2
l exp(iφl)exp(−

η2
l

2
) , l = 3,4

(36)

Any atom prepared in the state(1/21/2)(| e〉+ | g〉)
which can be generated from the ground state under this

Hamiltonian by applying aπ/2 carrier pulse will stay in
this state and will be left unchanged ([37]-[40]) .Thus the
dynamics are reduced to those of the motional degrees of
freedom only.Under this Hamiltonian the motional
dynamics evolve towards the SDFSs| α,z,m〉 by intially
preparing the Fock state| m〉, then applying the linear part
first, and after that the quadratic part. The Fock state| m〉
can be prepared with very high efficiency according to
recent experiments ([20]-[23]). In this case
α = 2i(g1 + g∗2) and z = −2(g3+ g∗4). The prepartion of
superposition of these states can be done according to the
scheme described in by applying a further displacement
operator adjusted in a way to effect the| e〉 state alone,
producing(1/21/2)(expiφ | β ,z,m〉 | e〉+ k | α,z,m〉 | g〉),
then after a carrierπ/2 pulse is applied to give finally the
superposition of states. On detecting the ion any one of its
internal states (| e〉 or | g〉) we get the desired
superposition(| α,z,m〉+ k | β ,z,m〉).

6 Conclusion

We have discussed some properties and generation
scheme of superposition of Squeezed Displaced Fock
States with different cohernt parameters (SDFSs). We
have calculated the photon number distribution,
characteristic function and quasiprobability distribution
functions. moments have been presented through
charactristic function. The second-order correlation
function g2 have been calculated numerically.The
squeezeing properties of this state which is presented as
analytical and numerical results are increasing by
changing the coherent parameters. We have found the
basic features of two of superposition of SDFSs, such as
the appearance of increased number of separted peaks in
the quadrature distribution by increasing the coherent
parameters.
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