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1 Introduction

Let A denote the class of all functionsf (z) which are
analytic in the open unit diskE = {z : |z| < 1} and are of
the form

f (z) = z+
∞

∑
n=2

anzn
. (1)

Let S ⊂ A be the class of univalent functions inE. A
functionsf ∈ S is said to be starlike of orderα if and only
if

ℜ
z f ′(z)
f (z)

> α, 0≤ α < 1, z ∈ E.

The class consisting of such functions is denoted by
S∗(α). For α = 0, we have the well-known classS∗ of
starlike functions, see [3].

Let fi ∈ A, i = 1,2. Then we say thatf1(z) is
subordinate tof2(z), and write f1(z) ≺ f2(z), if there
exists a Schwartz functionw, analytic inE with w(0) = 0
and|w(z)|< 1, (z ∈ E), such that

f1(z) = f2(w(z)).

If f2 ∈ S, it is known that the above subordination is
equivalent tof1(0) = f2(0) and f1(E)⊂ f2(E).

The q-difference Calculus or quantum Calculus was
initiated at the beginning of 19th century and was
developed by Jackson [6,7]. Recently the area of

q-Calculus has attracted the serious attention of
researchers due to its applications in various branches of
mathematics and physics. See also [8,11,12,15,16].
The q-difference operatorDq acting on functionsf ∈ A,
given by (1) and 0< q < 1, is defined as

Dq f (z) =
f (z)− f (q(z))
(1− q) f (z)

, (z 6= 0), (2)

Dq f (0) = f ′(0) and D2
q f (z) = Dq(Dq f (z)).

From (2), we deduce that

Dq f (z) = 1+
∞

∑
n=2

[n]qzn−1
, (3)

where

[n]q =
1− qn

1− q
(4)

As q → 1−, [n]q → n.
As a right inverse, theq-integral is defined in [7] as
∫ z

0
f (t)dq(t) = z(1− q)

∞

∑
n=0

qn f (zqn). (5)

In [5], the class S∗ is generalized by replacing the
derivative withq-difference operatorDq and the right half
plane by a suitable domain. This generalized class is
denoted byS∗q. An analytic functionf ∈ S∗q ⊂ A is called
q-starlike and is defined as follows, see [5].
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Let f ∈ A. Then, f ∈ S∗q, if
∣

∣

∣

∣

z
f (z)

(Dq f )(z)−
1

1− q

∣

∣

∣

∣

<
1

1− q
, 0< q < 1, z ∈ E.

We note that, asq ↔ 1−, the closed dick|w− 1
1−q | ≤

1
1−q

becomes the right half plane and the classS∗q reduces to
S∗.

It has been proved in [5] thatS∗ =∩0<q<1S∗q. The class
S∗q(α) of q-starlike functions of orderα is defined in [1] as
follows.

Definition 1.Let f ∈ A. Then f ∈ S∗q(α), if

∣

∣

∣

∣

z(Dq f )(z)
f (z) −α
1−α

−
1

1− q

∣

∣

∣

∣

<
1

1− q
,

where 0< q < 1, 0≤ α < 1 and z ∈ E.

Whenα = 0, the classS∗q(α) coincides with the class
S∗q.

Following the similar method used in [10], we note that
z(Dq f )(z)

f (z) −α
1−α

≺
1+ z
1− qz

.

That is, f ∈ S∗q(α), if and only if

z(Dq f )(z)
f (z)

≺
1+ {1−α(1+ q)}z

1− qz
. (6)

Definition 2. Let p(z) be analytic in E with p(0)= 1. Then
p ∈ Pq(m,α), if and only if

p(z) =

(

m
4
+

1
2

)

p1(z)−

(

m
4
−

1
2

)

p2(z), (7)

where

pi(z) ≺
1+ {1−α(1+ q)z}

1− qz
,

i = 1,2, m ≥ 2, q ∈ (0,1), α ∈ [0,1),z ∈ E.

Form = 2, Pq(2,α) = Pq(α), andPq(2,0) = Pq consists of
analytic functions subordinate to1+z

1−qz and limq→1− Pq =

P is the well known class of functions with positive real
part. Also limq→1− Pq(m,0) = Pm is the class introduced
and studied in [17].

Definition 3. Let f ∈ A. Then f ∈ R∗
q(m,α), if and only if

z(Dq f )

f
∈ Pq(m,α), z ∈ E.

We note that, forq → 1−, R∗
q(m,0) = R∗

q(m) reduces
to the classRm which consists of functions of bounded
radius rotation, see [3,14].

We now introduce the concept ofq-close-to-convexity
in generalized form as follows.

Definition 4. Let f ∈ A. Then f ∈ K∗
q (m,α), if and only if

there exists g ∈ R∗
q(m,α) such that

z f ′(z)
g(z)

≺
1+ qz
1− qz

, z ∈ E

For α = 0, m = 2, we have the classK∗
q of q-close-to-

convex functions and

lim
q→1−

K∗
q (m,0) = Tm,

where Tm is the class of generalized close-to-convex
functions introduced and discussed in [1].
Also, for m = 2, α = 0 andq → 1−, we obtain the classk
of close-to-convex univalent functions, see [9].

Definition 5.Let f ∈ A. Then, for a≥ 0, 0< rγ ≤ 1, f (z) is
said to belong to the class T a

q (m,α,γ), if and only if there
exists g ∈ K∗

q (m,α) such that

z f ′(z)+ a f (z) = (a+1)z(g′(z))γ
. (8)

We note that

T 0
q (m,α,1) = K∗

q (m,α)

Also

f ∈ T ∞
q (m,α,1) = Qq(m,α) =⇒ f (z) = zg′(z),

g ∈ K∗
q (m,α).

Let

G(a,b;c,z)

=
Γ (c)

Γ (a)Γ (c− a)

∫ 1

0
ua−1(1− u)c−a−1(1− zu)−bdu, (9)

whereℜ(a) > 0, ℜ(c − a) > 0, Γ denotes the Gamma
function andG(a,b;c,z) represents the hypergeometric
function.

Unless otherwise stated, throughout this paper we take
0≤ α < 1, 0< r ≤ 1, m ≥ 2, a ≥ 0 andz ∈ E.

2 Preliminary Results

Lemma 1.[1] Let g ∈ A. Then g ∈ S∗q(α), if and only if,
there exists a probability measure µ supported on the unit
circle such that

zg′(z)
g(z)

= 1+ ∑
|σ |=1

σzF ′
q,α(σz)dµ(σ),

where

Fq,α(z) =
∞

∑
n=1

(1−α)
2lnq
qn −1

zn
, z ∈ E.

Lemma 2. Let g ∈ S∗q(α). Then there exists g1 ∈ S∗q such
that

g(z) = z

(

g1(z)
z

)1−α
. (10)
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The proof follows easily from the definition and
simple computations.

Using a result proved in [10] for R∗
q(m) and Lemma

2.2, we have

Lemma 3. Let g ∈ R∗
q(m,α). Then there exist si ∈ S∗q(α),

i = 1,2 such that

g(z)
z

=

[

( S1(z)
z

)m
4 +

1
2

( S2(z)
z

)
m
4 −

1
2

]

.

Whenα = 0 andq → 1−, we obtain a well known result
for functions of bounded radius rotation, see [3].

Using (3) and a result proved in [10] for the class
R∗

q(m), we have the following result.

Lemma 4.Let f ∈ R∗
q(m,α). Then, for |z|= r < 1,

(1− qr)q3(1−α)(m
4 −

1
2 )

(1+ qr)q3(1−α)(m
4 +

1
2 )

≤

∣

∣

∣

∣

f (z)
z

∣

∣

∣

∣

≤
(1+ qr)q3(1−α)(m

4 −
1
2 )

(1+ qr)q3(1−α)(m
4 +

1
2 )
, (11)

where

q3 = q1q2, q1 =
q+1

q
, q2 =

1− q
logq−1 , q ∈ (0,1). (12)

Lemma 5.[4] Let h(z) be analytic in E, h(0) = 1 and
ℜh(z)> 0, z = reiθ . Then

∫ 2π

0
|h(reiθ )|λ dθ < c1(λ )

1

(1−λ )λ−1
,

where c1(λ ) is a constant and λ > 1.

3 Main Results

Theorem 1.Let f ∈ T 0
q (m,α,γ) = Tq(m,α,γ). Then

21−Q

q(M+2)
{G(a,b;c,−1)− rQ+1

1 G(a,b;c,−r1)}

≤

∣

∣

∣

∣

f (z)
z

∣

∣

∣

∣

≤
21−Q

q(M+2)
{G(a,b;c,−1)− r−(Q+1)

1 G(a,b;c,−r−1
1 )},

where

M = γ(1−α)q3

(

m
4
−

1
2

)

, Q = γ(1−α)q3,

a = M+1, b = 2−Q, c = M+2, r1 =
1− r
1+ r

,

|z|= r, q3 = q1q2. (13)

Proof. Since f ∈ Tq(m,α,γ), there existsg ∈ K∗
q (m,α)

such that

f ′(z) = (g′(z))γ

=

(

g1(z)
z

· p(z)

)γ
,

g1 ∈ R∗
q(m,α), p(z)≺

1+ qz
1− qz

. (14)

Let dr denote the radius of the largest Schlicht disk
centered at the origin and contained in the image of
|z| < r under f (z). Then there is a pointz0, |z0| = r such
that| f (z0)|= dr and we have

dr = | f (z0)|=

∫

c
| f ′(z)||dz|

≥

∫

c

(1− q|z|)M

(1+ q|z|)M+Q ·

(

1− q|z|
1+ q|z|

)γ
|dz|

≥
∫ |z|

0

(1− qs)M+r

(1+ qs)M+γ+Q ds,

where we have used (14) and Lemma 2.4. Thus, we have

| f (zo)| ≥

∫ |z|

0

(

1− qs
1+ qs

)M+γ ds
(1+ qs)Q . (15)

Let 1−qs
1+qs = t. Then dt = − 2q

(1+qs)2
ds and we can write

(15) as

| f (zo)| ≥
2(1−Q)

q

∫ 1

1−|z|
1+|z|

tM(1+ t)Q−2dt

=−
2(1−Q)

q

∫ 1−r
1+r

0
tM(1+ t)−(2−Q)dt

+
2(1−Q)

q

∫ 1

0
tM(1+ t)−(2−Q)dt

= I1+ I2. (16)

To calculateI1, let 1−r
1+r = r1 andr1u = t. Then

I1 = −
2(1−Q)

q

∫ r1

0
(r1u)Mr1(1+ r1u)−(2−Q)du

= −
2(1−Q)

q
rQ+1
1

∫ 1

0
uM(1+ r1u)−(2−Q)du

= −
2(1−Q)

q
rQ+1
1

Γ (a)Γ (c− a)
Γ (c)

·G(a,b;c,−r1), (17)

wherea, b, c, r1, M andQ are as given by (13).
We now calculateI2

I2 =
2(1−Q)

q

∫ 1

0
tM(1+ t)−(2−Q)dt

=
2(1−Q)

q
Γ (a)Γ (c− a)

Γ (c)
·G(a,b;c,−1). (18)
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Since

Γ (a)Γ (c− a)
Γ (c)

=
Γ (M+1)
Γ (M+2)

=
1

M+1

=
1

{γ(1−α)q(m
4 − 1

2)}+2
,

it follows from (16), (17) and (18) that

| f (z)|

≥
21−Q

q(M+2)
{G(a,b;c,−1)− rQ+1

1 G(a,b;c,−r1)}. (19)

To calculate the upper bound for| f (z)|, we proceed in the
similar way and note that

| f ′(z)| ≤
(1+ q|z|)M+1

(1− q|z|)M+Q+1 .

That is,

| f ′(z)| ≤
∫ |z|

0

(1+ qs)M+1

(1− qs)M+Q+1ds

With 1+qs
1−qs = ξ and− 2q

(1−qs)2
ds = dξ , we have

| f (z)| ≤ −
1
2q

∫

1−|z|
1+|z|

1
ξ M

(

2
1+ ξ

)2−Q

dξ

=
21−Q

q(M+2)
{G(a,b;c,−1)− r−(Q+1)

1

×G(a,b;c,−r−1
1 )}. (20)

Combining (19) and (20), we obtain the desired result.

By letting r → 1 in Theorem 3.1, we have the following
covering result.

Theorem 2.Let f ∈ Tq(m,α,γ). Then f (E) contains the
Schlicht disk

|z|<
21−Q

q(M+2)
,

where Q,M are given by (13).

Corollary 1.Let f ∈ Tq(m,α,γ) and q → 1−. Then f (E)
contains the Schlicht disk

|z|<
2(1−2γ(1−α))

{γ(1−α)(m
2 −1)}+2

.

Whenα = 0, r = 1, we have|z|< 1
m+2 and form = 2, this

result reduces to a well known covering theorem|z| < 1
4

for close-to-convex functions.

Theorem 3.Let f ∈ T a
q (m,α,γ) be given by (1). Then, for

(M+Q)> 1
2, and M, Q as given by (13), we have

an = O(1)

(

a+1
n+ a

)

n(M+Q)
, (n → ∞),

where O(1) is a constant depending only on q, m, α, γ
and M, Q are as given by (13).

Proof.Since f ∈ T a
q (m,a,γ), we can write

1
(a+1)

{z f ′(z)+a f (z)} = z

[

g1(z)
z

· p(z)

]γ
, g1 ∈ R∗

q(m,α (21)

and

p(z)≺
1+ qz
1− qz

.

Now, from Cauchy Theorem, Lemma 2.2, Lemma 2.3
and (21), we have
(

n+ a
a+1

)

|an|

≤
1

2πrn−1

∫ 2π

0

∣

∣

∣

∣

( s1(z)
z

)γ(1−α)(m
4 +

1
2 )

( s2(z)
z

)γ(1−α)(m
4 −

1
2 )

∣

∣

∣

∣

|p(z)|γ dθ ,

s1,s2 ∈ S∗q. (22)

Using distortion result fors2 ∈ S∗q (see [10]) in (22), and
applying Schwartz inequality together with subordination,
we have
(

n+ a
a+1

)

|an|

≤
(1+ q)M

2πrn−1

∫ 2π

0

∣

∣

∣

∣

s1(z)
z

∣

∣

∣

∣

γ(1−α)(m
4 +

1
2 )

|p(z)|γdθ

≤
(1+ q)M

rn−1

(

1
2π

∫ 2π

0

∣

∣

∣

∣

s1(z)
z

∣

∣

∣

∣

γ(1−α)(m
2 +1)

dθ
) 1

2

×

(

1
2π

∫ 2π

0
|p(z)|2dθ

)
1
2

≤ d1(α,γ,m,q)

(

∫ 2π

0

dθ
|1− qreiθ |2(M+Q)

)
1
2

×

(

∫ 2π

0

dθ
|1− qreiθ |2

) 1
2

≤ d2(α,γ,m,q)
1

(1− r)M+Q ,

whered1, d2 are constants and we have used Lemma 2.5.
The proof is complete by choosingr = 1− 1

n , (n → ∞).

We have the following special case.

Corollary 2.Let a = 0, γ = 1 and α = 0. Then
f ∈ Tq(m,0,1) and we have

an = O(1)n{q3(
m
4 +

1
2 )−1} (n → ∞).

Whenq → 1−, an = O(1) ·n
m
2 , and this is a result proved

in [13]. For m = 2, q → 1−, f is close-to-convex and in
this case we obtain a well known result, see [3].

Denote byL(r, f ), the length of the image of the circle
|z| = r under f . Then, with the similar techniques used in
Theorem 3.3, we can easily prove the following.
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Theorem 4.Let f ∈ Tq(m,0,γ), γ >
1
2. Then

L(r, f ) = O(1)

(

1
1− qr

)Mo+Qo+γ−1

, (r → 1)

where O(1) is a constant, Mo = γq3(
m
4 − 1

2) and Qo = γq3,

q3 is as given by (12).

As a special case, we note thatf ∈ Tm when we takeγ = 1
andq → 1− ⇒ q3 → 2 and in this case we have a result
proved in [13] that

L(r, f ) = O(1)

(

1
1− r

)
m
2 +1

, (r → 1)

Theorem 5.Let G ∈ A and let zG′(z)
g(z) ≺ 1+qz

1−qz = pq(z), g ∈

∩0<q<1R∗
q(m,α). Let

z f ′(z)+ a f (z) = (a+1)zG′(z). (23)

Then f is univalent in |z|< rm, where

rm =
1
2
{m−

√

m2−4}. (24)

Proof.First we note that∩0<q<1S∗q(α) = S∗(α), see [1]
and therefore it follows from Lemma 2.3 that
∩0<q<1R∗

q(m,α) = Rm(α) ⊂ Rm, the class of bounded
radius rotation.
From (23), we can write

f (z) =
a+1

za

∫ z

0
ta−1G′(t)dt, G ∈ T ∞

q (m,α,1) (25)

In (23), we defineG ∈ T ∞
q (m,α,1) as

zG′(z) = g(z)p(z), g ∈ ∩0<q<1R∗
q(m,α) = Rm(α),

With a = c+ id, c > 0, we can write (23) as

f (z) =
(c+1)+ id

zc+id

∫ z

0
tcg(t)p(t)t id−1dt (26)

For g ∈ Rm(α), there existsg1 ∈ Rm such that

g(z)
z

=

(

g1(z)
z

)1−α

we define

G1(z) = z

(

g1(z)
z

)

(1−α)
c+1

, g1 ∈ Rm (27)

It is well known, see [17] that g1 ∈ Rm is starlike in|z| <
rm, whererm is given by (24).
From (27), we have

zG′
1(z)

G1(z)
=

(

1−
1
c1

)

+
1
c1

zg′1(z)
g1(z)

, c1 =
1−α
c+1

.

Sinceg1 ∈Rm,
zg′1(z)
g1(z)

∈Pm andPm is a convex set, it follows
zG′

1(z)
G1(z)

∈Pm which impliesG1 ∈Rm in E. ThereforeG1 ∈ S∗

in |z|< rm.

Now, let f1 ∈ A be defined as

f1(z) = [(c1+1+ id)
∫ z

0
{G1(t)}

c1 p(t)t id−1dt]
1

c+id

We note that f1 is a Bazilevic univalent function in
|z|< rm, whererm is given by (24), see [2].

We observe thatf1(z)z 6= 0, |z|< rm.

f1(z) = z

(

f (z)
z

)
1

a+1

, a = c+ id

This means thatf (z), given by (26), is analytic and, for

( f (z)
z )

1
a+1 , it is possible to select uniform branch which

takes the value one forz = 0 and which is analytic for
|z| < rm and also allows us to compute the derivatives in
|z|< rm.

Thus we conclude thatf (z) is univalent in|z| < rm
whererm is given by (23) and the proof is complete.
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