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Abstract: In this paper, inverse Weibull (IW) distribution with theeptstress model and progressive type-Il censoring data are
considered. The maximum likelihood and Bayesian estimatie discussed for the distribution parameters and théematien factor.

The outline criteria in Bayesian approach are settled untézed non-informative and gamma informative priors entbalanced-
squared error and balanced linear-exponential loss fumetwith the help of MCMC method. Finally, the numerical exdégnand
simulation study are constructed to assess the obtainguitse
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1 Introduction ALT are considered by different author, Goé] falked
about the estimation issue of the acceleration factor
In the accelerated life tests (ALT), items are tested undeutilizing maximum likelihood and Bayesian methods for
stress that are higher than usual stress so that more failuitems having the exponential distribution and uniform
information can be collected within a shorter time. This distribution in the case of complete sampling, DeGroot
suggests the failure time is a function of the allegedand Goel B] utilized the Bayesian approach, with various
"stress factor” and higher stress bring speedier failureloss functions, to estimate the parameters of the
For example, some component have a long life at lowerexponential distribution and the acceleration factor in
temperatures but it fails speedier at a higher temperaturecase of complete sampling. Additionally, Bhattacharyya
In most ALT experiments, all test units are run at least atand Soejoeti4] estimated the parameters of the Weibull
one of the stress conditions unless the units fail or areistribution and the acceleration factor using the
edited some time recently later stress conditions begin. Anaximum likelihood method in the case of the complete
partially ALT is one type of the ALT schemes, and it data. Bai and Chundd] utilized the maximum likelihood
allows part of the test units to be run at a normal method to estimate the scale parameter and the
condition throughout the entire testing period of time. Theacceleration factor for exponentially distributed lifag@
partially ALT can be led utilizing different stress schemes utilizing type-1 censoring data. Bai et ab][examined the
such as constant stress partially ALT (CS-PALT) and stepestimation issue of parameters for items having lognormal
stress partially ALT (SS-PALT). Different types of ALT distribution.
are presented in Nelsorl][ the commonly used are
SS-PALT and CS-PALT. In the SS-PALT model, a test  Censoring is common in life tests because of time
item is first run at normal condition and, if it does not file limits and other restrictions on data collection. It is ribte
for a predefined time, then it is kept running at that one can use type-ll censoring scheme to save time
accelerated condition until failure happens or theand money. However, this sampling scheme does not
observation is censored. More details about the partiallyallow the removal of test items from the test at any time
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point other than the final termination point. The most plan for simple SS-ALT under the log-logistic distribution
common censoring schemes which has severaby minimizing the asymptotic variance of the MLE of the
applications in reliability experiments is progressive median life at the design stress. Srivastava and Shukla
type-1l censoring, see Balakrishnan and Kundl [The [16] cosidered the optimal test plan for simple step-stress
progressive type-ll censoring has the flexibility of under the log-logistic model in the case of censored data.
permitting evacuation of units at focuses other than theSrivastava and Mittall[7] introduced The optimal simple
terminal purpose of the investigation. Another preferredSS-ALT for truncated logistic distribution with censoring
standpoint of progressive censoring is that thelsmail [18] inferred the MLEs of parameters of Weibull
degeneration data of the test units is acquired from thosélistribution in view of hybrid censored data, assuming a
expelled units. Although the scheme is more flexible intampered random variable model. Ismall9] got the
terms of the expulsion of units see Balakrishnan andMLEs of parameters of Weibull distribution and the
Aggarwala B] . In this paper, we concentrate on SS-PALT acceleration factor under progressive hybrid censoring
under progressive type-ll censoring which can beschemes. the simple SS-ALT under progressive
described as follows. first-failure censoring, assuming a tampered random
Suppose thatn units are put on a life testing Variable model for Weibull distribution is considered by
experiment and leXy, Xo, ..., X, be their relating lifetimes.  Mohie EI-Din et al. P0J. Mohie EI-Din et al. 1]
We assume thak,i = 1,2,...,n are independent and discussed Bayes estimation for SS-ALT to power
identically distributed with probability density functio ~generalized Weibull distribution under progressive
(PDF) f(x) and cumulative distribution function (CDF) censoring, using a tampered random variable model.
F(x). Prior to the experiment, an integen < n is A two-parameter IW distribution is presented in

resolved and the progressive type-Il censoring scheméterature by Killer and Kamath22 as a reasonable
m model to depict debasement marvels of mechanical parts

(Ri,Re,....Rm) with R > 0 and n = m+ ,ZlRi IS of diesel motors. It is found widespread applications in

1= . ™ . . . . .
specified. During the experiment, thieth failure is  reliability engineering, bioengineering and numerous
observed and quickly after the failur® functioning  different territories of biological disciplines. Also, to

items are randomly removed from the test. We mean the?nalyze lifetime  data ind.icr?ting unimodal hazard
m totally observed lifeimes by Xi(E%Rz,...,Rm)’ unction, IW distribution might be considered as a

"~ 12..m uh are e obseried pogressiely Sutabe 7oKl The umerical proper and e uee of
type-1l right censored sample. For comfort, we will grapns, '

smother the censoring scheme in the notation of the>S® Reiss and Thomas2y. Many creators have

Xi-mn's. We also denote the observed values of such ag%?;gﬂgai?] dth%uﬁ:ri?]?ezr{tx]as ?\]:ert]hearllw m?sérrgij\fg)n.
progressively type-ll right censored sample by 9 P

X e Yor e interpretation of this distribution in the context of
Limen = F2imn = Ammn- _ ~load-strength relationship for a mechanical component.
In spite of the fact that censoring can help abbreviatekg|ier et al. p5 are called attention to that the
the time and lessen the cost, with an ever increasingjepasement wonders of element parts of diesel motors
number of items having high caliber and long life, can be all around portrayed by the IW model. Bayesian

censoring can’'t meet the requests of gathering enougBppraisals in view of record values from the IW lifetime
data about the items’ lifetimes as quickly as time permits,model is talked about by Sultan23. Kundu and
of late, the mix of accelerated life test with the pregiction of future observation for censored data under
progressive  censoring scheme has drawing inthe suspicion that both obscure parameters have
consideration of few researchers. Ismd|10] studied independent gamma priors. Musleh and H&ld viewed
the SS-RALT model_ respectively, with adaptive type-ll a5 the statistical inferences about the obscure parameters
progressively hybrid censored data and type-lof the |W distribution based on progressively type-ll
progressively hybrid censored data from Weibull censoring utilizing traditional and Bayesian methods.
distribution. Recently Lui et al.1[l] studied reliability  payesian and maximum likelihood estimations of the IW
progressive removal. portrayed by Sultan et al2f]. All the more as of late,
The step-stress models is examined widely in theXiuyun and Zaizai 29 concentrated the Bayesian
writing. Miller and Nelson 12] discussed the optimal estimation and prediction for the IW distribution under
simple SS- ALT plans for the exponential distribution in general progressive censoring.
the case of complete data. Gouno et 48] [explored The This article can be described as follows. In Section 2
ideal step-stress test for the exponential distributiothwi the proposed model is portrayed. The maximum likelihood
progressive type-l censoring. The simple SS- ALT underestimators and the asymptotic variances of the parameters
type-Il censoring, assuming a cumulative exposure modeére gotten for SS-PALT under progressive type-Il censored
for exponential distribution is considered by Balakrishna data in Section 3. In Section 4, Bayesian estimation for this
et al. [14]. Srivastava and Shukld ] derived the optimal model is portrayed. Applications are given in Section 5 to
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show the theoretical results. The conclusion of the study is3.1 Point estimation

talked about in Section 6.
In this subsection, the MLEs of the unknown parameters
based on the observed progressive type-Il censoring data

2 Description of the model from IW distribution are given. We provide the likelihood
function under SS-PALT as follows:

Let the random variabl¥ representing the lifetime of a

product has the IW distribution with the shape and scale

arameter$ andA, respectively. The PDF of is J -
P $ pectively (@Bl o [] 00~ Fa()f
1=

fv(y)=ABy Ple ™" y>0 BA>0, (1) .
and CDF x 1 f200 L= Fa)]®
. i=J+1
Fey)=e™". ®) ;
i i My B-te A P11 _ g M PR
The survival and hazard rate functions of the BV@) o (AB) 'l_lyl e [l1-e ]
distribution are . i=
B-1 _A(D(a)P
Si(y)=1-eM", 3) x ] a(@ (a)) P e @)
i=J+1
and X[1— e @@ R ©
() = ABy Pt (1 e ?) (4)
' where
The PDF ofY under SS-PALT model can be given by
Yimn < Y2mn < oo <Yyemn < T <Yy - < Ymmn,
0, <0
fy)=1¢ fily)=f(y), O<y<rt (5)  and
f2(y)., y>T Aesatn)?
Where Fay) = e A0 @ (a) = Tra(y—1).

B Bl A(tta(y-1) P The natural logarithm of the likelihood function
faly) =AB(t+aly—1) " "e ! ¢(a,B.Aly) = logL (a.B,Aly) is given by
y>0,8>0,A>0, (6)

that is obtained by the transformation-variable techniqueﬁ (G’B’)‘ |¥) = mlog(AB)+(m—J)loga

using the density in (1) and the model proposed by J B m 5
DeGroot and GoeB| which is given by —)\(Zl Yi T+ (@i (a)) ")
= =T
T ifT<r J m
Y= - 7
{hrnsa T @ ~(B+ (3 loaly) + 3 10g(® (@)
i= i=J+1

whereT is the lifetime of the unit under normal utilize 5
condition, T is the stress change time araw is the _ Ay B

: + Y Rlog(1—e"Y
acceleration factog > 1. £

m

+ Y Rlog (1—e”\<¢’i(")) B). (10)
3 Maximum likelihood estimation =31
This segment examines the way toward getting the'rl'ehserg(f:%:/eeltheivIéI:]elLlhood equations fg8, A, and a
maximum likelihood estimates (MLESs) of the parameters P ¥:9 y
B, A anda based on progressively type-ll censored data gy
under the SS-PALT model. Both point and interval ﬁ = E+
estimations of the parameters are discussed. het
independent units are placed on a life test with J m
corresponding lifetimesyy, Yz, ...,Y being independent —(_Zl|09(Yi)+_Z log(®i (a)) )
and identically distributed as IW distribution with PDF = =+l

J m
—B : -B
A (i;y. log(y) +i:;1¢>| (a) Plog(®i(a)))

given in Eg. (1). We denote thm completely ordered J

lifetimes by +A (_EiRa log(yi)W (i, 8,A)
1=

Yimn <Y2mn < ... <Yymn < T <Y 00 < Ymmn, (8) m

+ Rilog(@®; (a))W (@i (a),B,A))=0. (11)

whereJ is the number of failed units at use condition. e ]
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o m L 5 @I ~ 0% m 2 A
=y oy (@) 2= 32+ 2 RWY (B4
7 izi ' i=JF1 | oA? Az izi I
J m
+ZlexW(yi,B,)\) + Y RWA (@1 (a),B,A). (17)
i= i=J+1
m
+ RW(®i(a),B,A) =
2. (@i (a),B,A) 2 (m-)
oaz a2
ol m—J
o = z0.80)=0 12) g D RO DWE) (@ (@), 8.
where i=T71 , @ (a)
B At m i —T)"W(®(a),B,A)
t Be At B +B)\ R|(y| T) | bl ) (18)
W(t,BA)= ———  t= (o] . 2 ’
( 7B7 ) (1_e—)\t’ﬁ)’ yor (a) =J+1 qJI (a)
= i—1) 2 2 J
Z(tBA) =—(B+1) § 2L 2 L g o
'*;rl (1—67)‘X2i ) 0[30)\ - 0/\03 _i;yl loQ(yl)
m — T)W (B A i -
1pr y RUZDWIAW@.BA) o5 + Y (@ (@) Flogiy)
i=J+1 CDI (a) i=J+1
From (12) the MLE ofar for given andA, given by + Zfr:ana log(yi)W (i, 8,A) (19)
J + Zi=J+1 R‘ Iog(¢I (U))W(q (a)aBa)\)
a(g,)\)zﬁ' (14)
Z(tiaBa)\)
The MLEs andf\ can be obtained by solve the system 32/ 920
of equatlonsa—é = [,A = 0 numerically with any iteration m = W

m

= —BA g (i — 1) (@ () Flog(y)
i=J+1

3.2 Interval estimation g Wm0y gUioD
| o 2 a@ 12, e
Here, the approximate confidence intervals of the " (@)
parameters are inferred in light of the asymptotic A RW (@ (a),B,7) (20)
distribution of the ML estimators of the elements of the i, W(@(a),B,A)
vector of unknown parametefis A anda.
The observed Fisher information matrix is described as ) ) "
takes after: o0t ot -1
= = _ ¢
0% 0% 0% oAda  dadA B.: +1(y. (@ (@)
_a_gz _a/zZa/\ —apzaa m
_ 3 02¢ 02¢
A= d)\deﬁ ~5¢ —ga , (15) + RW@ (@ (a),B,A). (21)
%0 0%t % 1
T 0adB  dadxk  da? / (BA.a)
. where
whose components are given as:
W@ (@ (a),B,A) = 0W((D'éz)’ﬁ’)\),q= B,Aora.
0
The two-sided 100(1-y)% normal approximation
+A (q;,( NP (log(yi))? confidence interval o8 , A anda can be gotten as:
i=J+1
J B£z,,%(B)), (A +z,,%())and (& £2,,%(a)), (22)
+ _ZIRang(yi)W(E) (i, B,A) ( )0 )
1= where$g(-) is the square root of the diagonal element of
A il Rilog(tb(a))ww(d)(a) B,)). (16) A~ comparing to every parameter, argh is the quantile
41 ' L 100(1 — y/2)% of the standard normal distribution.
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4 Bayes estimation 4.1 Bayesian estimation using MCMC method

In the parameters estimated by the Bayesian approach, thfeom Equations (24) the full conditional probability
prior ought to mirror our prior information about the posterior distribution o, A anda are given by

parameters. The selection of prior distribution is often "

based on the type of prior information available to us. ma(alA,B,y) O I—l (@, (a))fﬁfl

When we have little or no data about the parameter, a” i23t1

non-informative prior ought to be utilized. In numerous m

practical situations, the data about the parameters are X [1— e A®@) PR (26)
accessible in an a free way, see Basu et20].[In this i=J+1

section, we take an informative prior distribution for the

parameted as the gamma with the scale parametend 75, (A |ar, B,y) O A™2 1

shape parametds, the hyperparametems andb can be = "

easily evaluated if we consider any two independent -B
information forA. When no any prior informations or less X exp[—A (b+ zi Vi Z (@ (@) )]
informations are available then non-informative prior may

be suited. The above considered prior may be regarded as % ’ [1-— ef/\yi’B]Re
a non-informative prior by setting the values of i':l
hyper-parameters are to be zero. Also, we consider, the m 5
following non informative priors fop anda. x 1 [1- e @@ R (27)
i=J+1
1 1
@(B)ocﬁ, nj{(a)ocE,B>0anda>1 and
m
Therefore, the joint prior of the three parametgrsA  7(Bla,A,x) O expl <21y. + > (@& (U))_Bﬂ
anda can be communicated by =J+1
m
(B, A,a)xc A% 1 ta e P B>0,A >0,a>1(23) % Bm™ 1 r!y—ﬁ 1 @ (a)) P
The joint posterior distribution, based on SS-PALT i= J+1
progressively type-ll censored data and the set of all J Ay PR
parameters are obtained from Equations (8) and (23), and X r![l— e ]
given by i=
m(@,A,Bly) cc ATIBT G < T [1-er@@) PR, (28)
i=J+1

<ei-A0+ 35+ 5 (@@ P
i Therefore, the posterior distribution af 8 andA cannot

x ﬁy{’“ ﬁ (@ (a)) Pt be diminished scientifically to an outstanding distribatio
s AR L o . >
, i and in this manner it is unrealistic to test specifically by
xrl[lfe’Any]Ri <M 1—er@@) PR, 4)  standard techniques. Therefore, we use the
- = Metropolis-Hasting (MH) algorithm with the normal
Therefor, the joint posterior Qistribution function of proposal distribution to generate a random sample from
parameter$ , A anda, can be written as the posterior densities off, 8 and a. We utilize the
L (a7, Bly) (.. 1) accompanying calculation to register the Bayes estimate
m(a,ABlY) = o= . (25) f A d
Y SIS L@ A ly) (B4 a)dBdAda of B, A anda

By and large the Bayes estimates cannot Beep 1: Start with an[{(0>, )\(0>,a<0>).

communicated in express structures. So, approximgt@pz Sej = 1.

Bayes estimates are gotten under noninformative pr&tep 3: Using MH algorlthm with the proposal dlstrlbuuon
and informative prior using Markov chain Monte Carlo qA) = N()\ i1 &(A)), generate A} from
(MCMC) method. We propose the accompanying MCMC 0 (A (i-1) |a pl- 1) y).

method to draw samples from the posterior densgg ) B = ()
function and after that to compute the Bayes estimatd€P 4 Using ~ MH,  generate ' from
and the HPD credible intervals. We use the Gibbs 7(BU~Y]all), Al y) with the N(BU~Y, se(B))
sampling procedure to compute HPD credible, the Proposal distribution. ,

MCMC method, Gibbs with MH algorithm (see HastingStep 5: Using MH,  generate al))  from
[31]) are used to compute Bayes estimates and HPD 1 (a=D|g() A() y)  with the N(ali-V s(a))
credible intervals of the parameters, for more insight proposal distribution.

about MCMC perusers may see for example, Ahm&tep 6: Sej = j+ 1.

[32], Al-Sobhi and Soliman33].
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Step 7: Repeat Steps 2 todtimes, and obtain the posterior connected the balanced loss function in the estimation of
sampleg3(V, A() anda, j =1,2,3,...,N. mean time to failure. Gruber3f] considered the
observational Bayes and approximate minimum mean SE
stimator under a general balanced loss function. Okasha
39 constructed the Bayesian and the E-Bayesian
echniques for estimating the scale parameter, relighbilit
fnd hazard functions of the Lomax distribution in view of
type-Il censored and by considering the BSE loss
unction. Under both the balanced loss function Soliman

Control after MCMC sampling is generally performed to
dispose the burn-in, i.e., the early samples, on account
the fact that the initial iteration value is dependablyt
arbitrarily chosen and just the steady iteration values ar
required. The initial iteration value in this study is MLEs
rather than arbitrary estimation. Hence,we do not dispos
the burn-in. The major advantage of this technique is tha

the HPD credible intervals f8, A anda. Bayesian estimation based balanced loss function under

progressive type-ll censoring from two-parameter
. . bathtub-shaped lifetime model. The Bayes estimators for

4.2 Bayes estimation based on balanced loss the entropy of the Weibull distribution in light of the
function symmetric and asymmetric loss functions, for instance,

the squared error, LINEX and general entropy loss
In Bayesian approach, choosing a solitary esteem thafunctions, are given by Cho et ak()]. Using Equations
speaks to the best estimate of an unknown parameter, on@5) — (27), the approximate Bayes estimates under the
must indicate a loss function. The balanced loss functiorBSE and BLINEX loss functions fof =(3,A,a) are
makes a harmony amongst classical and Bayesiaprovided, respectively, by:

methodologies, and provides an estimate that is a linear A N o)

combination of ML and Bayes estimates. Ahmadi et al. Gg5 = w Oy + (1- w)%, (33)
[34] recommended the utilization of alleged balanced loss N

function, to be in the form and

R N _a0()

L. (8.8) = 0 (6)p (8,8) + (1-w)a(6)p(6.8) (29) gy — _Ljog | weab 4 (1 o) 2=M:2® 7 | (34

. . . . c N
wherew € [0,1), q(6) is an appropriate positive weight
function andp (8,0) is a subjective loss function when The Bayesian credible interval for the parameter is
estimating@ by 6. The parameteby is a chosen prior obtained by using the generated MCMC samples. By
estimator of6, obtained for example from the criterion of arranging the posterior sample(), j = 1,2,3,...,N
ML, least squares or moment among others. A generajs B1) < B2 < ... < 99<N), using the algorithm proposed

development. wi_th regard to Baygs estimator§ underby Chen and Sha@2), the 10G1— y/2)% HPD credible
Lp.w.s (6,0) is given, namely by relating such estimators

. > intervals for@ = (8,A,a) is given by
to Bayes solutions to the unbalanced case, i.e.,
Lows (8,8), with @ = 0. L,,q(6,8) can be (8 8irna-y2)), (35)
specialized to various choices of loss function, such as fowherej is chosen such that
squared error loss (SEL) and LINEX loss (LINEX) loss 0, _9.
functions. By choosing (8,6) = (5 — 8)? andq(6) =1, (+IN@=v/2)) — (D)
the Eq (26) decreased to the balanced SEL (BSEL)=_min (6 na-y/2)—8i):i=12..,N.

function, used by Ahmadi et al35] furthermore, starting L<i<y/N

late by Soliman et a[36] and Ahmed37], in the form

S, (8,8) = (3 — )%+ (1— w) (53— 6)?, 30) S Application

and the corresponding Bayes estimate of the funddi@ In this section we lead a simulation study and dissect an
given by illustrative example are directed to investigate the

Bs = W& + (1— w)E (6]x) (31) performances of the MLEs and Bayes estimates .
By choosingq(8)=1 andp (8,6) =%~ %) -c(5 - 0) — 1, _ _
in Eq. (29) reduced to the balanced LINEX loss 5.1 Smulation study

(BLINEXL) function, in the form: ) ) . . . .
In this section, simulation studies are directed to evaluat

O = —}Iog [wefcéojL (1- w)E (9709|)_()} , (32) the performances of the MLEs and Bayes estimates in

¢ terms of mean square errors (MSES). For a ginem, T,
where ¢ # 0 is the shape parameter of BLINEXL S, A, a and censoring schemes (C&s)i=1,2,..., m,
function. The balanced loss functionis gotten extensiveth estimation procedure is performed according to the
consideration in the writing. Rodrigues and Zelln87][  following algorithm.
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Step 1: Set the values oh, m, 7, B, A , a and size n increases, the MSEs of estimators of all the

R,i=12...m unknown parameters decrease. For setilgtie MSEs of
Step 2: For given values of the prior parameters a and lestimators decrease asincreases. From Table 5 we find
generatel from Gamma(a,b) that the CPs of the approximate confidence intervals and

Step 3: Use the model given by Eq (5) to generateBayesian Cls are very near ostensible level. Also, in most
progressively censored data for giverm the set of  cases, the Bayesian Cls are marginally shorter length than

data can be considered as that of the approximate confidence intervals.Henceforth,
R R we prescribe to utilize Bayesian Cls over approximate
Yimn < Yomn < - < Y?:m:n <T<Y) mn < YRimn- confidence intervals. Whew = 0.8 all results of Bayes
estimates under both BSE and BLINEX loss functions for
WhereR= (Ri,Ry,...,Rm), 3L Ri=n—-m the parameters are very like corresponding MLEs.

Step 4: Use the progressive censored data to compute the
MLEs of the parameters. Th Newton Raphson method

is applied for solving the nonlinear system in Egs. (9), cs Table 1: Se":ra' Css focrsthe simulation StUdy-R
n m n m
ét?gmgpeorls (11) to compute the MLEs of the i 150 [ 40 005 BT 70150 0.0
: 15 110 oI5 15 120 oI5

Step 5: Calculate the Bayes estimates of the mode E} © (0"319 1’8) ) [[19(1] © (0’419 2’8) )

parameters relative to B.SEL. and _BLINEXL function [4 [ 50 | 45 (57(’)44) [11] | 70 | 60 (107’059)

based on MCMC approximation witd = 11000. 5] (0, 15,09) | [12] (0%5,110,0%5)
Step 6: Calculate the approximate confience bounds and CIsg) 07 5) [13] (0%9,10)

with confience levels 95% for the three parameters of| [7] | 50 | 50 (0°9) [141 [ 70] 70 (070

the model

Step 7: Replicate the Steps-3,1000 times.
Step 8: Compute the average values of the MSEs associated
with the MLEs, BSE and BLINEX loss function of the

parameters. 5.3 Numerical example
Step 9: Repeat steps-18 with diffrent values ofn,m and
R,i=12,..,m We simulate a set of lifetime data following IW

distribution under progressive Type-Il censoring in
SS-ALT. The data are presented astZD162, (285467,
5.2 Smulation procedure 0.294413, (810609, 0417991, 0454602, 0519122,
0.525779, 0554423, 0613962, 063692, 0754227,
In this subsection results are presented to compute th8.754288, (077136, 083592, 0874847, (881625,
MLEs of the unknown parametefsandA as well as the  0.916359, 093054, 0951793, 0952627, 0963777. this
acceleration factoor. The Newton—Raphson technique is simulated observations based we= 60, m= 55, 3 =1,
connected for solving the nonlinear system to acquire the = 1, a = 1.4, and R = (1°,0°°). The MLEs of model
MLEs of the parameters and register the approximateparameters and acceleration fagbod anda are
intervals. We likewise compute the Bayes estimates of the | .
unknown parameters in light of the MCMC sampling B =0.9778 A =1.0162 0 =1.30554
strategy. For diffrent values of mandR; ,i=1,2,....m,
and different censoring schemes: details of the scheme&he inverse of Fisher information matrix* is given as
are given in Table 1. Different progressive censoringfollows:
schemes are considered with notation thad{ means
(5,0,0,0). we have useq3 = 1,A =1, o =15 and
T = 1.0. For Bayesian estimation, we are use
informative prior for the parameteA, we used the
hyperparameters value as= 1 andb = 1. We compute ] . ) A A ~
the average estimates (AE) and the average MSE of thd he estimated variances of estimategofA anda are
estimates based on 1000 replications. Results are reported . . ——
in Tables 2— 4. In all cases BSE and BLINEX loss Var(B)=0.014Q var(A)=0.0252 var(a)=0.2065
functions, withw = 0.2,0.8, are utilized for registering A
the Bayes estimates. Table 5 reports the average lengtFo find the standard errors @, A and &, we take the
(AL) of confidence intervals and Bayesian credible square root of the diagonal elements Afl, 95%
intervals with coverage percentages (CP)ffoA anda. confidence intervals for the parametgds A and the
The Cls are computed in view of 10000 MCMC tests. acceleration factor a areQ7455 < B < 1.2101,
The initial values for the parameters for running the 0.7050< A < 1.3275 and ®147< a < 2.1964. Now we
MCMC sampler algorithm are taken to be their MLEs. compute the Bayes estimates[®fA anda, we assume
According to the results from the Tables-2l. As sample a= b= 0. Fig. (1), (3) and (5) shows the trace plots of

R 0.0140 —0.0099-0.0325
dA‘lz —0.0099 00252 00341 |,
—0.0325 00341 02065
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Table 2: AE and MSEs of ML and Bayes estimatesrof

CS MLE MCMC
BSEL BLINEX
w=0 w=0.2 w=0.8 w=0 w=0.2 w=0.8
c=1 c=5 c=1 c=5 c=1 c=5

[1] 1.4100 1.2420 1.2756 1.3764 1.1766 1.2613 1.2164 1.2973 1.3551 1.1892
(0.1232 | (0.0937) | (0.0886 | (0.1062 | (0.1317 | (0.3112 | (0.1165 | (0.2755 | (0.1072 | (0.1384)
(2] 1.3188 1.2002 1.2239 1.2951 1.4906 1.2347 1.4820 1.2679 1.3993 1.1395
(0.1661) | (0.1259 | (0.1255 (0.1499 (0.0201) | (0.3468 | (0.0288 | (0.3133 | (0.0876 | (0.1872
[3] 1.3132 11911 1.2155 1.2887 1.4864 1.2140 1.4788 1.2474 1.3959 12215
(0.1745 | (0.1334) | (0.1321) | (0.1568 | (0.0278 | (0.3700 | (0.0369 | (0.3348 | (0.0960 | (0.1993
4] 1.3933 1.2460 1.2754 1.3638 1.1837 1.2774 1.2196 1.2123 1.3442 1.2950
(0.1308 | (0.0930 | (0.0908 | (0.113435 | (0.1289 | (0.2962 | (0.1173 | (0.2633 | (0.1148 | (0.1407
[5] 1.2357 1.1391 1.1584 1.2164 1.2727 1.2013 1.2003 1.2405 11971 1.2650
(0.2135 | (0.1711) | (0.1713 | (0.1968 | (0.2226 | (0.3913 | (0.2114 | (0.3503 | (0.2029 | (0.2496
(6] 1.3936 1.2774 1.3007 1.3704 1.2217 1.2314 1.2516 1.0643 1.3540 1.2324
(0.1288 | (0.0832 | (0.0850 (0.1124 (0.1113 | (0.2470 | (0.1056 | (0.2202 | (0.1138 | (0.1277)
[7] 1.2999 1.2067 1.2253 1.2812 1.1467 1.2844 11731 1.2232 1.2643 1.1451
(0.1639 | (0.1232 | (0.1245 | (0.1489 | (0.16131 | (0.2965 | (0.1536 | (0.2624) | (0.1529 | (0.1829
(8] 1.5003 1.3074 1.3460 1.4617 1.2496 1.2483 1.2928 1.2851 1.4419 1.2820
(0.0996 | (0.0601) | (0.0567) (0.0804 (0.0863 | (0.2239 | (0.0747) | (0.1938 | (0.0786 | (0.0870
[9] 1.1390 1.0785 1.0906 1.1269 1.0140 1.2209 1.0350 1.2848 1.1093 1.2947
(0.2851) | (0.2306 | (0.2349 | (0.2676) | (0.2863 | (0.4613 | (0.2790 | (0.4230 | (0.2760 | (0.3279
[10] 1.0878 1.0350 1.0455 1.0772 1.0698 1.1806 1.0893 1.1084 1.0592 1.1465
(0.3327) | (0.2738 | (0.2784 (0.3138 (0.3351) | (0.5547) | (0.3274 | (0.5196) | (0.3233 | (0.3812
11 | 1.4660 1.3192 1.3486 1.4367 1.2651 1.0751 1.3002 1.1099 1.4199 1.2896
(0.0920) | (0.0544) | (0.0538 | (0.0763 | (0.0775 | (0.1993 | (0.0699 | (0.1728 | (0.0758 | (0.0829
[12] 1.2218 1.1463 1.1614 1.2067 1.0863 1.0288 1.1096 1.0654 1.1902 1.0791
(0.2173 | (0.1730 | (0.1756 (0.2021 (0.2173 | (0.3633 | (0.2100 | (0.3282 | (0.2078 | (0.2447)
[13] 1.1427 1.1148 1.1204 11372 1.0620 1.0961 1.0760 1.0222 11241 1.0453
(0.2720 | (0.2171) | (0.2244) | (0.2573 | (0.2574 | (0.4126 | (0.2562 | (0.3866) | (0.2640 | (0.2944)
[14] 1.3831 1.2861 1.3055 1.3637 1.235 1.0593 1.2609 1.0904 1.3491 1.2450
(0.1302 | (0.0810 | (0.0846) (0.1141 (0.1055 | (0.2232 | (0.1025 | (0.2001) | (0.1155 | (0.1247)
With each scheme the first row represents the average eekgtimate and the second row MSE is reported with in bracket
immediately below.

10000 MCMC samples for posterior distribution Bf A
anda. It show that the MCMC procedure converges very
well. Fig. (2), (4) and (6) provide the histogram plots of
generateq3, A anda. It is observed that the histograms

of the generated posteriors match quite well with the
theoretical posterior density functions. Therefore, MCMC
samples can be used for estimate the unknown parameters
and constructing the approximate Cls, under squared
error loss function@ = 0), we compute the approximate - TS T
Bayes estimates @&, A anda using MCMC method and 5

they are

T

: W.IMLW

~ ~ ~ Fig. 1 Simulati b btained by MCMC method.
fos — 0.9490 Ass — 1.0546 Gios — 1.4976 ig. 1 Simulation number of obtained by metho

and the associated 95% symmetric Cls are given by

0.7256< B < 1.1873 0.7613< A < 1.3899 and
0.7085< g < 2.7042

Under LINEX loss function ¢ = 0), we compute the

approximate Bayes estimates/®fA anda, and they are  We also compute the approximate Bayes estimatg3, of
. . A anda under both BSE and BLINEX loss function with
BeL = 0.9548 AgL = 1.0469 Og. = 1.4592 w=0.2,0,8 and they are in Table 6.
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Table 3: AE and MSEs of ML and Bayes estimate3 of

CS MLE MCMC
BSEL BLINEX
w=0 w=0.2 w=0.8 w=0 w=0.2 w=0.8
c=1 c=5 c=1 c=5 c=1 c=5

1] 11371 1.1304 11317 1.1358 1.1142 1.0548 1.1186 1.0684 11324 11171
(0.0468 | (0.0419 | (0.0427) | (0.0457 | (0.0368 | (0.0230 | (0.0385 | (0.0257) | (0.0445 | (0.0392)
2] 1.0463 1.0450 1.0452 1.0460 1.1219 0.9787 1.1099 0.9899 1.0655 1.0298
(0.0322 | (0.0290 | (0.0294 | (0.0312 | (0.0496) | (0.0225 | (0.0458 | (0.0230 | (0.0351) | (0.0283
3] 0.9789 0.9802 0.9799 0.9792 1.0560 0.9169 1.0431 0.9274 | 09975 | 0.9643
(0.0277) | (0.0238 | (0.0244) | (0.0267) | (0.0325 | (0.0262 | (0.0308 | (0.0256 | (0.0276 | (0.0262)
[4] 1.0488 1.0424 1.0437 1.0475 1.0288 0.9787 1.0326 0.9903 1.0446 1.0317
(0.0289 | (0.0256 | (0.0259 | (0.0279 | (0.0237) | (0.0201) | (0.0243 | (0.0205 | (0.0275 | (0.0253
[5] 1.0343 1.0335 1.0336 1.0342 1.0197 0.9686 1.0224 0.9795 1.0312 1.0184
(0.0283 | (0.0257) | (0.0260 | (0.0275 | (0.0241) | (0.0212 | (0.0246 | (0.0214) | (0.0271) | (0.0252)
6] 0.8247 0.8267 0.8263 0.8251 0.8178 0.7774 0.8178 0.7855 0.8229 0.8136
(0.0557) | (0.0534 | (0.0536) | (0.0549 | (0.0563 | (0.0692 | (0.0559 | (0.0663 | (0.0555 | (0.0580
[7] 0.9788 0.9797 0.9795 0.9789 0.9675 0.9222 0.9696 0.9317 0.9764 | 0.9652
(0.0279 | (0.0255 | (0.0258 | (0.0272 | (0.0252 | (0.0269 | (0.0254 | (0.0263 | (0.0271) | (0.0266)
8] 1.2377 1.2213 1.2246 1.2344 1.2085 1.1604 1.2141 11731 1.2316 1.2187
(0.0799 | (0.0690 | (0.0709 | (0.0773 | (0.0628 | (0.0426) | (0.0657) | (0.0475 | (0.0759 | (0.0689
9] 1.0789 1.0808 1.0805 1.0793 1.0695 1.0267 1.0712 1.0355 1.0769 1.0665
(0.0292 | (0.0264) | (0.0267) | (0.0283 | (0.0242 | (0.0184 | (0.0249 | (0.0196 | (0.0279 | (0.0257)
[10] 1.0949 1.1014 1.1001 1.0962 1.0899 1.0470 1.0908 1.0639 1.0938 1.0836
(0.0698 | (0.0681) | (0.0682 | (0.0692 | (0.0644) | (0.0532 | (0.0652 | (0.0579 | (0.0685 | (0.0650
11 | 1.0971 1.0883 1.0900 1.0953 1.0778 1.0381 1.0815 1.0481 1.0931 1.0831
(0.0310 | (0.0270 | (0.0277) | (0.0300 | (0.0247 | (0.0181) | (0.0257) | (0.0195 | (0.0295 | (0.0269
(12 1.0594 1.0554 1.0562 1.0586 1.0452 1.0065 1.0479 1.0156 1.0564 1.0470
(0.0256 | (0.0231) | (0.0233 | (0.0248 | (0.0215 | (0.0174 | (0.0220 | (0.0181) | (0.0245 | (0.0227
(13 11123 11170 11161 11132 1.1064 1.0663 1.1075 1.0742 11110 1.1016
(0.0231) | (0.0243 | (0.0239 | (0.0231) | (0.0217 | (0.0136 | (0.0217) | (0.0148 | (0.0225 | (0.0202)
[14) 0.9802 0.9784 0.9788 0.9798 0.9694 0.9353 0.9715 0.9431 0.9779 0.9697
(0.0201 | (0.0180 | (0.0182 | (0.0195 | (0.0179 | (0.0194 | (0.0182 | (0.0190 | (0.0195 | (0.0193
With each scheme the first row represents the average eetdtimate and the second row MSE is reported with in bracket
immediately below.

g T
A ]ﬂhi.llﬂudlxhil.ﬂ.l_lt.h ih._umllimm i
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o 2000 4000 G000 BOOD 10 000

Fig. 2 Histogram off3 obtained by MCMC method. 5

Fig. 3 Simulation number oA obtained by MCMC method.
6 Conclusion

In this paper, we provided SS-PALT models under

progressive type-ll censoring when the observed datdboth BSE and BLINEX loss functions. We additionally
come from IW distribution. We determined the MLEs and proposed a few distinct strategies for constructing Cls for
asymptotic confidence intervals of the obscurethe parameters and the acceleration parameter. We did a
parameters. We inferred Bayes estimators of therecreation study to think about the execution of every one
parameters and the acceleration parameter usingf these systems. From the simulation study, we watch
non-informative and gamma informative priors under that the Bayes estimates are superior to MLES as far as
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Table 4: AE and MSEs of ML and Bayes estimategof
CSs MLE MCMC
BSEL BLINEXL
w=0 w=02 | w=0.8 w=0 w=02 w=0.8
c=1 c=5 c=1 c=5 c=1 c=5
11 1.0274 1.0538 1.0485 1.0327 1.0428 1.0028 1.0396 1.0068 1.0304 1.0214
(0.0245 | (0.0230 | (0.0230 | (0.0239 | (0.0209 | (0.0158 | (0.0214 | (0.0169 | (0.0235 | (0.0218
2] 1.0610 1.0779 1.0745 1.0644 1.1452 1.0218 1.1314 1.0280 1.0817 1.0511
(0.0316 | (0.0281) | (0.0285 | (0.0305 | (0.0517) | (0.0172 | (0.0474 | (0.0188 | (0.0351) | (0.0269
3] 1.0626 1.0780 1.0749 1.0657 1.1479 1.0204 1.1339 1.0272 1.0835 1.0520
(0.0364 | (0.0318 | (0.0324 | (0.0352 | (0.0569 | (0.0202 | (0.0525 | (0.0220 | (0.0400 | (0.0310
[4] 1.0455 1.0693 1.0646 1.0503 1.0588 1.0201 1.0560 1.0242 1.0480 1.0393
(0.0230 | (0.0224 | (0.0222 | (0.0226 | (0.0202 | (0.0144 | (0.0205 | (0.0154 | (0.0221) | (0.0204
[5] 0.9809 1.0001 0.9963 0.9847 0.9893 0.9499 0.9875 0.9550 0.9824 0.9733
(0.0280 | (0.0232 | (0.0239 | (0.0268 | (0.0223 | (0.0214 | (0.0232 | (0.0220 | (0.0266) | (0.0257
[6] 1.2710 1.2823 1.2801 1.2733 1.2681 1.2158 1.2685 1.2246 1.2702 1.2570
(0.1067) | (0.1068 | (0.1064 | (0.1063 | (0.0974 | (0.0672 | (0.0988 | (0.0724 | (0.1043 | (0.0949
[7] 1.0921 11071 1.1041 1.0951 1.0958 1.0544 1.0949 1.0605 1.0927 1.0828
(0.0364 | (0.0340 | (0.0342 | (0.0356 | (0.0304 | (0.020) | (0.0313 | (0.0221) | (0.0348 | (0.0314
E] 0.9663 0.9951 0.9893 0.9720 0.9877 0.9599 0.9833 0.9608 0.9704 0.9645
(0.0149 | (0.0121) | (0.0124 | (0.0140 | (0.0118 | (0.0118 | (0.0122 | (0.0122 | (0.0140 | (0.0140
19 0.9067 0.9184 0.9161 0.9091 0.9099 0.8784 0.9092 0.8831 0.9073 0.8999
(0.0283 | (0.0218 | (0.0229 | (0.0268 | (0.0227) | (0.0275 | (0.0236 | (0.0273 | (0.0270 | (0.0276
[10 | 0.9260 0.9318 0.9306 0.9272 0.9230 0.8905 0.9235 0.8963 0.9253 0.9174
(0.0741 | (0.0647) | (0.0664 | (0.0720 | (0.0646) | (0.0654 | (0.0662 | (0.0664 | (0.0719 | (0.0713
11 | 1.0149 1.0382 1.0335 1.0195 1.0308 1.0034 1.0276 1.0052 1.0180 1.0121
(0.0148 | (0.0138 | (0.0137 | (0.0144 | (0.0128 | (0.0104 | (0.0130 | (0.0110 | (0.0142 | (0.0136
[12 | 0.9250 0.9407 0.9376 0.9282 0.9330 0.9044 0.9313 0.9077 0.9265 0.9200
(0.0253 | (0.0193 | (0.0203 | (0.0239 | (0.0197) | (0.0223 | (0.0206) | (0.0226 | (0.0240 | (0.0242
[13 | 0.9504 0.9567 0.9554 0.9517 0.9492 0.9212 0.9494 0.9263 0.9501 0.9437
(0.0150 | (0.0129 | (0.0132 | (0.0144 | (0.0131) | (0.0153 | (0.0134 | (0.0149 | (0.0145 | (0.0147
14 | 1.0621 1.0770 1.0740 1.0650 1.0694 1.0408 1.0678 1.0443 1.0634 1.0569
(0.0208 | (0.0188 | (0.0190 | (0.0202 | (0.0173 | (0.0125 | (0.0177) | (0.0136 | (0.0199 | (0.0185

With each scheme the first row represents the average eetstimate and the second row MSE is reported with in bracket
immediately below.

Table 5:AL and CPs of the 95% Cls far, A andf .

CS MLE MCMC
a A B a A B
1] | 0.9640(1.6153 | 0.9580(0.6593 | 0.9500(0.7742 | 0.9840(1.315 | 0.9740(0.5753 | 0.9700(0.7063
2] | 0.9180(1.3705 | 0.9600(0.6926) | 0.9460(0.7280 | 0.9840(1.3119 | 0.9760(0.6016 | 0.9700(0.6541)
3] | 0.9100(1.4747) | 0.9460(0.7017) | 0.9380(0.7014) | 0.9620(1.3303 | 0.9700(0.6112 | 0.9480(0.6457)
4] | 0.9560(1.4665 | 0.9620(0.6503 | 0.9700(0.7198 | 0.9860(1.2968 | 0.9780(0.5648 | 0.9780(0.6423
5] | 0.9460(1.3934 | 0.9420(0.6601) | 0.9380(0.7142 | 0.9780(1.3550 | 0.9620(0.5716 | 0.9620(0.6450
6] | 0.9380(1.2006 | 0.9420(0.7544 | 0.9380(0.6304 | 0.9700(1.2306 | 0.9480(0.6555 | 0.9480(0.5634
7] | 0.9620(1.2244 | 0.9700(0.6702 | 0.9780(0.6782 | 0.9860(1.2834 | 0.9840(0.5821) | 0.9780(0.6067)
8 | 0.9740(1.4693 | 0.9620(0.7064 | 0.9720(0.5402 | 0.9960(1.243) | 0.9760(0.6260 | 0.9760(0.4736
9 | 0.9760(1.1900 | 0.9480(0.6444 | 0.9700(0.5783 | 0.9780(1.3487 | 0.9620(0.5874 | 0.9760(0.5076)
10 | 0.9620(1.3504 | 0.9380(0.6414 | 0.9620(0.5759 | 0.9700(1.1738 | 0.9480(0.5849 | 0.9620(0.5081)
11 | 0.9820(1.2329 | 0.9340(0.6316 | 0.968(0.5386 | 0.9940(1.2081) | 0.9660(0.5629 | 0.9800(0.4718
12] | 0.9760(1.2952 | 0.9160(0.6168 | 0.9620(0.5476) | 0.9800(1.1136) | 0.9620(0.5566) | 0.9780(0.4820
13] | 0.9620(1.7834) | 0.9100(0.6194 | 0.9560(0.5328 | 0.9780(1.2256) | 0.9460(0.5694) | 0.9760(0.4743
14] | 0.9800(1.2843 | 0.9520(0.5725 | 0.972(0.5451) | 0.9960(1.1864) | 0.9560(0.5243 | 0.9960(0.4804

The number out side the bracket is the coverage probabiiifytae number in the bracket is the length .
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Table 6:Bayes estimates under BSEL and BLINEX for a simdldtga.

w BSEL BLINEX
c=1 c=5
a 0.2 1.4592 1.3638 11305
0.8 1.4208 1.3489 11620
A 0.2 1.0469 1.0367 09996
0.8 1.0393 1.0316 10036
B 0.2 0.9548 0.9494 09276
0.8 0.9605 0.9564 09390

0.0

0.6 0.8 1.0 1.2 1.4 16 1.8

L L L L L
0 2000 4000 000 BD0O

Fig. 5 Simulation number ofr obtained by MCMC method.
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Fig. 6 Histogram ofal pha obtained by MCMC method.

MSEs. Likewise, the HPD credible intervals based on
MH algorithm are are superior to asymptotic confidence
intervals in respect of AL and CP. Besides, the length of
the confidence interval is likewise diminishes as the
sample size increases and CP is close to the nominal
value in all sets of parameters considered here. We
introduced reenacted case to represent every one of the
techniques for derivation examined here and additionally
to bolster the conclusions drawn.

1.For fixed values of the sample size, by increasing the
observed failure times the MSEs decrease.

2.For fixed values of the sample size, the scheme Il in
which the censoring occurs after the first observed
failure gives more accurate results through the MSEs
than the other schemes.

3.Results in the censoring schemes Il and IV are closed
to other.

4.The approximate Cls and bootstria@s give more
accurate results than the bootstrap-p Cls since the
lengths of the former are less than the lengths of latter,
for different sample sizes, and different schemes.

5.For fixed sample sizes and observed failures, the
second scheme Il , in which censoring occurs after the
first observed failure, gives smallest lengths of the Cls
for all methods.
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