
Appl. Math. Inf. Sci.11, No. 5, 1369-1381 (2017) 1369

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/110514

Step-Stress Partially Accelerated Life Tests Model
in Estimation of Inverse Weibull Parameters under
Progressive Type-II Censoring

Ahmed A. Soliman1,∗, Essam A. Ahmed 2, N. A. Abou-Elheggag 2 and Samah. M. Ahmed 2

1 Faculty of Science, Islamic University, Madinah, KSA
2 Mathematics Department, Sohag University, Sohag 82524, Egypt.

Received: 2 Jul. 2017, Revised: 2 Aug. 2017, Accepted: 8 Aug.2017
Published online: 1 Sep. 2017

Abstract: In this paper, inverse Weibull (IW) distribution with the step-stress model and progressive type-II censoring data are
considered. The maximum likelihood and Bayesian estimation are discussed for the distribution parameters and the acceleration factor.
The outline criteria in Bayesian approach are settled underutilized non-informative and gamma informative priors under balanced-
squared error and balanced linear-exponential loss functions with the help of MCMC method. Finally, the numerical example and
simulation study are constructed to assess the obtaining results.
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1 Introduction

In the accelerated life tests (ALT), items are tested under
stress that are higher than usual stress so that more failure
information can be collected within a shorter time. This
suggests the failure time is a function of the alleged
”stress factor” and higher stress bring speedier failure.
For example, some component have a long life at lower
temperatures but it fails speedier at a higher temperature .
In most ALT experiments, all test units are run at least at
one of the stress conditions unless the units fail or are
edited some time recently later stress conditions begin. A
partially ALT is one type of the ALT schemes, and it
allows part of the test units to be run at a normal
condition throughout the entire testing period of time. The
partially ALT can be led utilizing different stress schemes
such as constant stress partially ALT (CS-PALT) and step
stress partially ALT (SS-PALT). Different types of ALT
are presented in Nelson [1], the commonly used are
SS-PALT and CS-PALT. In the SS-PALT model, a test
item is first run at normal condition and, if it does not file
for a predefined time, then it is kept running at
accelerated condition until failure happens or the
observation is censored. More details about the partially

ALT are considered by different author, Goel [2] talked
about the estimation issue of the acceleration factor
utilizing maximum likelihood and Bayesian methods for
items having the exponential distribution and uniform
distribution in the case of complete sampling, DeGroot
and Goel [3] utilized the Bayesian approach, with various
loss functions, to estimate the parameters of the
exponential distribution and the acceleration factor in
case of complete sampling. Additionally, Bhattacharyya
and Soejoeti [4] estimated the parameters of the Weibull
distribution and the acceleration factor using the
maximum likelihood method in the case of the complete
data. Bai and Chung [5] utilized the maximum likelihood
method to estimate the scale parameter and the
acceleration factor for exponentially distributed lifetime
utilizing type-I censoring data. Bai et al. [6] examined the
estimation issue of parameters for items having lognormal
distribution.

Censoring is common in life tests because of time
limits and other restrictions on data collection. It is noted
that one can use type-II censoring scheme to save time
and money. However, this sampling scheme does not
allow the removal of test items from the test at any time
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point other than the final termination point. The most
common censoring schemes which has several
applications in reliability experiments is progressive
type-II censoring, see Balakrishnan and Kundu [7]. The
progressive type-II censoring has the flexibility of
permitting evacuation of units at focuses other than the
terminal purpose of the investigation. Another preferred
standpoint of progressive censoring is that the
degeneration data of the test units is acquired from those
expelled units. Although the scheme is more flexible in
terms of the expulsion of units see Balakrishnan and
Aggarwala [8] . In this paper, we concentrate on SS-PALT
under progressive type-II censoring which can be
described as follows.

Suppose thatn units are put on a life testing
experiment and letX1,X2, ...,Xn be their relating lifetimes.
We assume thatXi, i = 1,2, ...,n are independent and
identically distributed with probability density function
(PDF) f (x) and cumulative distribution function (CDF)
F(x). Prior to the experiment, an integerm < n is
resolved and the progressive type-II censoring scheme

(R1,R2, ...,Rm) with Ri > 0 and n = m +
m
∑

i=1
Ri is

specified. During the experiment, thei-th failure is
observed and quickly after the failure,Ri functioning
items are randomly removed from the test. We mean the

m totally observed lifetimes by X (R1,R2,...,Rm)
i:m:n ,

i = 1,2, ...,m, which are the observed progressively
type-II right censored sample. For comfort, we will
smother the censoring scheme in the notation of the
Xi:m:n’s. We also denote the observed values of such a
progressively type-II right censored sample by
x1:m:n < x2:m:n <...< xm:m:n.

In spite of the fact that censoring can help abbreviate
the time and lessen the cost, with an ever increasing
number of items having high caliber and long life,
censoring can’t meet the requests of gathering enough
data about the items’ lifetimes as quickly as time permits,
so the ALTs are broadly utilized in reliability analysis. As
of late, the mix of accelerated life test with the
progressive censoring scheme has drawing in
consideration of few researchers. Ismail [9,10] studied
the SS-PALT model respectively, with adaptive type-II
progressively hybrid censored data and type-I
progressively hybrid censored data from Weibull
distribution. Recently Lui et al. [11] studied reliability
analysis of masked data in adaptive SS-PALT with
progressive removal.

The step-stress models is examined widely in the
writing. Miller and Nelson [12] discussed the optimal
simple SS- ALT plans for the exponential distribution in
the case of complete data. Gouno et al. [13] explored The
ideal step-stress test for the exponential distribution with
progressive type-I censoring. The simple SS- ALT under
type-II censoring, assuming a cumulative exposure model
for exponential distribution is considered by Balakrishnan
et al. [14]. Srivastava and Shukla [15] derived the optimal

plan for simple SS-ALT under the log-logistic distribution
by minimizing the asymptotic variance of the MLE of the
median life at the design stress. Srivastava and Shukla
[16] cosidered the optimal test plan for simple step-stress
under the log-logistic model in the case of censored data.
Srivastava and Mittal [17] introduced The optimal simple
SS-ALT for truncated logistic distribution with censoring.
Ismail [18] inferred the MLEs of parameters of Weibull
distribution in view of hybrid censored data, assuming a
tampered random variable model. Ismail [19] got the
MLEs of parameters of Weibull distribution and the
acceleration factor under progressive hybrid censoring
schemes. the simple SS-ALT under progressive
first-failure censoring, assuming a tampered random
variable model for Weibull distribution is considered by
Mohie El-Din et al. [20]. Mohie El-Din et al. [21]
discussed Bayes estimation for SS-ALT to power
generalized Weibull distribution under progressive
censoring, using a tampered random variable model.

A two-parameter IW distribution is presented in
literature by Killer and Kamath [22] as a reasonable
model to depict debasement marvels of mechanical parts
of diesel motors. It is found widespread applications in
reliability engineering, bioengineering and numerous
different territories of biological disciplines. Also, to
analyze lifetime data indicating unimodal hazard
function, IW distribution might be considered as a
suitable model. The numerical property and the use of IW
distribution are talked about in monographs, for instance,
see Reiss and Thomas [23]. Many creators have
concentrated the properties of the IW distribution.
Calabria and Pulcini [24] given an imperative
interpretation of this distribution in the context of
load-strength relationship for a mechanical component.
Keller et al. [25] are called attention to that the
debasement wonders of element parts of diesel motors
can be all around portrayed by the IW model. Bayesian
appraisals in view of record values from the IW lifetime
model is talked about by Sultan [25]. Kundu and
Howlader [26] depicted the Bayesian inference and
prediction of future observation for censored data under
the suspicion that both obscure parameters have
independent gamma priors. Musleh and Helu [27] viewed
as the statistical inferences about the obscure parameters
of the IW distribution based on progressively type-II
censoring utilizing traditional and Bayesian methods.
Bayesian and maximum likelihood estimations of the IW
parameters under progressive type-II censoring are
portrayed by Sultan et al. [28]. All the more as of late,
Xiuyun and Zaizai [29] concentrated the Bayesian
estimation and prediction for the IW distribution under
general progressive censoring.

This article can be described as follows. In Section 2
the proposed model is portrayed. The maximum likelihood
estimators and the asymptotic variances of the parameters
are gotten for SS-PALT under progressive type-II censored
data in Section 3. In Section 4, Bayesian estimation for this
model is portrayed. Applications are given in Section 5 to
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show the theoretical results. The conclusion of the study is
talked about in Section 6.

2 Description of the model

Let the random variableY representing the lifetime of a
product has the IW distribution with the shape and scale
parametersβ andλ , respectively. The PDF ofY is

fY (y) = λ β y−β−1e−λ y−β
, y > 0, β ,λ > 0, (1)

and CDF

FY (y) = e−λ y−β
. (2)

The survival and hazard rate functions of the IW(β , λ )
distribution are

SY (y) = 1− e−λ y−β
, (3)

and

hY (y) = λ β y−β−1e−λ y−β
(

1− e−λ y−β
)−1

. (4)

The PDF ofY under SS-PALT model can be given by

f (y) =





0, y ≤ 0
f1 (y) = fY (y) , 0< y ≤ τ
f2 (y) , y > τ

(5)

Where

f2 (y) = λ β (τ +α (y− τ))−β−1e−λ (τ+α(y−τ))−β
,

y > 0,β > 0,λ > 0, (6)

that is obtained by the transformation-variable technique
using the density in (1) and the model proposed by
DeGroot and Goel[3] which is given by

Y =

{
T i f T ≤ τ

τ +(T − τ)/ α i f T > τ , (7)

whereT is the lifetime of the unit under normal utilize
condition, τ is the stress change time andα is the
acceleration factor,α > 1.

3 Maximum likelihood estimation

This segment examines the way toward getting the
maximum likelihood estimates (MLEs) of the parameters
β , λ andα based on progressively type-II censored data
under the SS-PALT model. Both point and interval
estimations of the parameters are discussed. Letn
independent units are placed on a life test with
corresponding lifetimesY1,Y2, ...,Yn being independent
and identically distributed as IW distribution with PDF
given in Eq. (1). We denote them completely ordered
lifetimes by

y1:m:n < y2:m:n < ... < yJ :m:n < τ < yJ+1:m:n ... < ym:m:n, (8)

whereJ is the number of failed units at use condition.

3.1 Point estimation

In this subsection, the MLEs of the unknown parameters
based on the observed progressive type-II censoring data
from IW distribution are given. We provide the likelihood
function under SS-PALT as follows:

L
(
α,β ,λ |y

)
∝

J

∏
i=1

f1(yi)[1−F1(yi)]
Ri

×
m

∏
i=J+1

f2(yi)[1−F2(yi)]
Ri

∝ (λ β )m
J

∏
i=1

yi
−β−1e−λ y−β

i [1− e−λ y−β
i ]Ri

×
m

∏
i=J+1

α (Φi (α))−β−1e−λ (Φi(α))−β

×[1− e−λ (Φi(α))−β
]Ri (9)

where

y1:m:n < y2:m:n < ... < yJ :m:n < τ < yJ+1:m:n ... < ym:m:n,

and

F2(y) = e−λ (τ+α(yi−τ))−β
,Φi (α) = τ +α (yi − τ) .

The natural logarithm of the likelihood function
ℓ
(
α,β ,λ |y

)
= logL

(
α,β ,λ |y

)
is given by

ℓ
(
α,β ,λ |y

)
= m log(λ β )+ (m− J) logα

−λ (
J

∑
i=1

y−β
i +

m

∑
i=J+1

(Φi (α))−β )

−(β +1)(
J

∑
i=1

log(yi)+
m

∑
i=J+1

log(Φi (α)))

+
J

∑
i=1

Ri log

(
1− e−λ y−β

i

)

+
m

∑
i=J+1

Ri log
(

1− e−λ (Φi(α))−β)
. (10)

Therefore the likelihood equations forβ , λ , and α
respectively, given by

∂ℓ
∂β

=
m
β
+λ (

J

∑
i=1

y−β
i log(yi)+

m

∑
i=J+1

Φi (α)−β log(Φi(α)))

−(
J

∑
i=1

log(yi)+
m

∑
i=J+1

log(Φi (α)) )

+λ (
J

∑
i=1

Ri log(yi)W (yi,β ,λ )

+
m

∑
i=J+1

Ri log(Φi (α))W (Φi (α) ,β ,λ )) = 0. (11)
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∂ℓ
∂λ

=
m
λ
−

J

∑
i=1

y−β
i −

m

∑
i=J+1

(Φi (α))−β

+
J

∑
i=1

Ri ×W (yi,β ,λ )

+
m

∑
i=J+1

RiW (Φi (α) ,β ,λ ) = 0.

∂ℓ
∂α

=
(m− J)

α
+Z (ti,β ,λ ) = 0, (12)

where

W (t,β ,λ ) =
t−β e−λ t−β

(
1− e−λ t−β

) , t = y orΦ (α) ,

Z (t,β ,λ ) = −(β +1)
m

∑
i=J+1

(yi − τ)(
1− e−λ x−β

2i

)

+β λ
m

∑
i=J+1

Ri
(yi − τ)W (Φi (α) ,β ,λ )

Φi (α)
. (13)

From (12) the MLE ofα for givenβ andλ , given by

α̂ (β ,λ ) =
−(m− J)
Z (ti,β ,λ )

. (14)

The MLEs β̂ and λ̂ can be obtained by solve the system
of equations∂ℓ

∂β = ∂ℓ
∂λ = 0 numerically with any iteration

method such as Newton Rapheson metod.

3.2 Interval estimation

Here, the approximate confidence intervals of the
parameters are inferred in light of the asymptotic
distribution of the ML estimators of the elements of the
vector of unknown parametersβ , λ andα.
The observed Fisher information matrix is described as
takes after:

∆ =




− ∂ 2ℓ
∂β 2 − ∂ 2ℓ

∂β ∂λ − ∂ 2ℓ
∂β ∂α

− ∂ 2ℓ
∂λ ∂β − ∂ 2ℓ

∂λ 2 − ∂ 2ℓ
∂λ ∂α

− ∂ 2ℓ
∂α∂β − ∂ 2ℓ

∂α∂λ − ∂ 2ℓ
∂α2




(β̂ ,λ̂ ,α̂)

, (15)

whose components are given as:

∂ 2ℓ

∂β 2 = −
m
β 2 −λ

J

∑
i=1

y−β
i (log(yi))

2

+λ
m

∑
i=J+1

(Φi (α))−β (log(yi))
2

+λ
J

∑
i=1

Ri log(yi)W
(β ) (yi,β ,λ )

+λ
m

∑
i=J+1

Ri log(Φi (α))W (β ) (Φi (α) ,β ,λ ) . (16)

∂ 2ℓ

∂λ 2 = −
m
λ 2 +

J

∑
i=1

RiW
(λ ) (yi,β ,λ )

+
m

∑
i=J+1

RiW
(λ ) (Φi (α) ,β ,λ ) . (17)

∂ 2ℓ

∂α2 = −
(m− J)

α2

+β λ
m

∑
i=J+1

Ri
(yi − τ)W (α) (Φi (α) ,β ,λ )

Φi (α)

+β λ
m

∑
i=J+1

Ri
(yi − τ)2W (Φi (α) ,β ,λ )

Φ2
i (α)

, (18)

∂ 2ℓ

∂β ∂λ
=

∂ 2ℓ

∂λ ∂β
=

J

∑
i=1

y−β
i log(yi)

+
m

∑
i=J+1

(Φi (α))−β log(yi)

+∑J
i=1Ri log(yi)W (yi,β ,λ )

+ ∑m
i=J+1 Ri log(Φi (α))W (Φi (α) ,β ,λ ) .(19)

∂ 2ℓ

∂β ∂α
=

∂ 2ℓ

∂α∂β

= −β λ
m

∑
i=J+1

(yi − τ)(Φi (α))−β−1 log(yi)

−
m

∑
i=J+1

(yi − τ)
Φi (α)

+λ
m

∑
i=J+1

Ri
(yi − τ)
(Φi (α)

+λ
m

∑
i=J+1

Ri
W (α) (Φi (α) ,β ,λ )

W (Φi (α) ,β ,λ )
. (20)

∂ 2ℓ

∂λ ∂α
=

∂ 2ℓ

∂α∂λ
= β

m

∑
i=J+1

(yi − τ)(Φi (α))−β−1

+
m

∑
i=J+1

RiW
(α) (Φi (α) ,β ,λ ) . (21)

where

W (α) (Φi (α) ,β ,λ ) =
∂W (Φi (α) ,β ,λ )

∂q
,q = β ,λ or α.

The two-sided 100(1- γ)% normal approximation
confidence interval ofβ , λ andα can be gotten as:
(

β̂ ± zγ/2ŝe(β̂ )
)
,
(

λ̂ ± zγ/2ŝe(λ̂ )
)

and
(
α̂ ± zγ/2ŝe(α̂)

)
, (22)

whereŝe(·) is the square root of the diagonal element of
∆−1 comparing to every parameter, andzγ/2 is the quantile
100(1− γ/2)% of the standard normal distribution.
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4 Bayes estimation

In the parameters estimated by the Bayesian approach, the
prior ought to mirror our prior information about the
parameters. The selection of prior distribution is often
based on the type of prior information available to us.
When we have little or no data about the parameter, a
non-informative prior ought to be utilized. In numerous
practical situations, the data about the parameters are
accessible in an a free way, see Basu et al. [30]. In this
section, we take an informative prior distribution for the
parameterλ as the gamma with the scale parametera and
shape parameterb, the hyperparametersa and b can be
easily evaluated if we consider any two independent
information forλ . When no any prior informations or less
informations are available then non-informative prior may
be suited. The above considered prior may be regarded as
a non-informative prior by setting the values of
hyper-parameters are to be zero. Also, we consider, the
following non informative priors forβ andα.

π∗
2(β )∝

1
β
, π∗

3(α) ∝
1
α
, β > 0 andα > 1

Therefore, the joint prior of the three parametersβ , λ
andα can be communicated by

π∗(β ,λ ,α)∝ λ a−1β−1α−1e−λ b, β > 0,λ > 0,α > 1(23)

The joint posterior distribution, based on SS-PALT
progressively type-II censored data and the set of all
parameters are obtained from Equations (8) and (23), and
given by

π
(
α ,λ ,β |y

)
∝ λ m+a−1β m−1αm−J

×exp[−λ (b+
J

∑
i=1

y−β
i +

m

∑
i=J+1

(Φi(α))−β )]

×
J

∏
i=1

y−β−1
i

m

∏
i=J+1

(Φi (α))−β−1

×
J

∏
i=1

[1− e−λ y
−β
i ]Ri ×

m

∏
i=J+1

[1− e−λ(Φi(α))−β
]Ri . (24)

Therefor, the joint posterior distribution function of
parametersβ , λ andα, can be written as

π
(
α ,λ ,β |y

)
=

L
(
α ,λ ,β |y

)
π∗(β ,λ ,α)

∫ ∞
0

∫ ∞
0

∫ ∞
0 L
(
α ,λ ,β |y

)
π∗(β ,λ ,α)dβdλdα

. (25)

By and large the Bayes estimates cannot be
communicated in express structures. So, approximate
Bayes estimates are gotten under noninformative prior
and informative prior using Markov chain Monte Carlo
(MCMC) method. We propose the accompanying MCMC
method to draw samples from the posterior density
function and after that to compute the Bayes estimates
and the HPD credible intervals. We use the Gibbs
sampling procedure to compute HPD credible, the
MCMC method, Gibbs with MH algorithm (see Hastings
[31]) are used to compute Bayes estimates and HPD
credible intervals of the parameters, for more insight
about MCMC perusers may see for example, Ahmed
[32], Al-Sobhi and Soliman [33].

4.1 Bayesian estimation using MCMC method

from Equations (24) the full conditional probability
posterior distribution ofβ , λ andα are given by

πα(α|λ ,β ,y) ∝ αm−J
m

∏
i=J+1

(Φi (α))−β−1

×
m

∏
i=J+1

[1− e−λ (Φi(α))−β
]Ri , (26)

πλ (λ |α,β ,y) ∝ λ m+a−1

×exp[−λ (b+
J

∑
i=1

y−β
i +

m

∑
i=J+1

(Φi (α))−β )]

×
J

∏
i=1

[1− e−λ y−β
i ]Ri

×
m

∏
i=J+1

[1− e−λ (Φi(α))−β
]Ri . (27)

and

πβ (β |α,λ ,x) ∝ exp

[
−λ

(
J

∑
i=1

y−β
i +

m

∑
i=J+1

(Φi (α))−β

)]

×β m−1
J

∏
i=1

y−β−1
i

m

∏
i=J+1

(Φi (α))−β−1

×
J

∏
i=1

[1− e−λ y−β
i ]Ri

×
m

∏
i=J+1

[1− e−λ (Φi(α))−β
]Ri . (28)

Therefore, the posterior distribution ofα, β andλ cannot
be diminished scientifically to an outstanding distribution,
and in this manner it is unrealistic to test specifically by
standard techniques. Therefore, we use the
Metropolis-Hasting (MH) algorithm with the normal
proposal distribution to generate a random sample from
the posterior densities ofα, β and α. We utilize the
accompanying calculation to register the Bayes estimate
of β , λ andα

Step 1: Start with an (β (0),λ (0),α(0)).
Step 2: Setj = 1.
Step 3: Using MH algorithm, with the proposal distribution

q(λ ) = N(λ ( j−1), ŝe(λ̂ )), generate λ ( j) from
πλ (λ ( j−1)|α( j),β ( j−1),y).

Step 4: Using MH, generate β ( j) from
πβ (β ( j−1)|α( j),λ ( j),y), with the N(β ( j−1), ŝe(β̂ ))
proposal distribution.

Step 5: Using MH, generate α( j) from
πα(α( j−1)|β ( j),λ ( j),y), with the N(α( j−1), ŝe(α̂))
proposal distribution.

Step 6: Setj = j+1.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1374 A. A. Soliman et al.: Step-Stress partially accelerated...

Step 7: Repeat Steps 2 to 6,N times, and obtain the posterior
samplesβ ( j), λ ( j), andα( j), j = 1,2,3, ...,N.

Control after MCMC sampling is generally performed to
dispose the burn-in, i.e., the early samples, on account of
the fact that the initial iteration value is dependably
arbitrarily chosen and just the steady iteration values are
required. The initial iteration value in this study is MLEs
rather than arbitrary estimation. Hence,we do not dispose
the burn-in. The major advantage of this technique is that
the Markov chain would converge fast. These samples are
utilized to compute the Bayes estimates, and to construct
the HPD credible intervals forβ , λ andα.

4.2 Bayes estimation based on balanced loss
function

In Bayesian approach, choosing a solitary esteem that
speaks to the best estimate of an unknown parameter, one
must indicate a loss function. The balanced loss function
makes a harmony amongst classical and Bayesian
methodologies, and provides an estimate that is a linear
combination of ML and Bayes estimates. Ahmadi et al.
[34] recommended the utilization of alleged balanced loss
function, to be in the form

Lρ ,ω,δ0
(θ ,δ ) = ωq(θ )ρ (δ0,δ )+ (1−ω)q(θ )ρ (θ ,δ ) (29)

whereω ∈ [0,1), q(θ ) is an appropriate positive weight
function andρ (θ ,δ ) is a subjective loss function when
estimatingθ by δ . The parameterδ0 is a chosen prior
estimator ofθ , obtained for example from the criterion of
ML, least squares or moment among others. A general
development with regard to Bayes estimators under
Lρ ,ω,δ0

(θ ,δ ) is given, namely by relating such estimators
to Bayes solutions to the unbalanced case, i.e.,
Lρ ,ω,δ0

(θ ,δ ), with ω = 0. Lρ ,ω,δ0
(θ ,δ ) can be

specialized to various choices of loss function, such as for
squared error loss (SEL) and LINEX loss (LINEX) loss
functions. By choosingρ (θ ,δ ) = (δ −θ )2 andq(θ ) = 1,
the Eq (26) decreased to the balanced SEL (BSEL)
function, used by Ahmadi et al.[35] furthermore, starting
late by Soliman et al.[36] and Ahmed[37], in the form

δω,δ0
(θ ,δ ) = ω (δ − δ0)

2+(1−ω)(δ −θ )2, (30)

and the corresponding Bayes estimate of the functionθ is
given by

θ̂BS = ωδ0+(1−ω)E (θ |x) . (31)

By choosingq(θ )=1 andρ (θ ,δ ) =ec(δ−θ)-c(δ −θ )−1,
in Eq. (29) reduced to the balanced LINEX loss
(BLINEXL) function, in the form:

θ̂BL =−
1
c

log
[
ωe−cδ0 +(1−ω)E

(
e−cθ |x

)]
, (32)

where c 6= 0 is the shape parameter of BLINEXL
function. The balanced loss functionis gotten extensive
consideration in the writing. Rodrigues and Zellner [37]

connected the balanced loss function in the estimation of
mean time to failure. Gruber [38] considered the
observational Bayes and approximate minimum mean SE
estimator under a general balanced loss function. Okasha
[39] constructed the Bayesian and the E-Bayesian
techniques for estimating the scale parameter, reliability
and hazard functions of the Lomax distribution in view of
type-II censored and by considering the BSE loss
function. Under both the balanced loss function Soliman
et al. [35] considered the Bayesian inference of the
modified Weibull lifetime parameters when the data are
progressively censored. Likewise, Ahmed [32] considered
Bayesian estimation based balanced loss function under
progressive type-II censoring from two-parameter
bathtub-shaped lifetime model. The Bayes estimators for
the entropy of the Weibull distribution in light of the
symmetric and asymmetric loss functions, for instance,
the squared error, LINEX and general entropy loss
functions, are given by Cho et al. [40]. Using Equations
(25)− (27), the approximate Bayes estimates under the
BSE and BLINEX loss functions forθ =(β ,λ ,α) are
provided, respectively, by:

θ̂BS = ω θ̂ML +(1−ω)
∑N

i=M+1 θ (i)

N
, (33)

and

θ̂BL =−
1
c

log

[
ωe−aθ̂ML +(1−ω)

∑N
i=M+1 e−aθ (i)

N

]
. (34)

The Bayesian credible interval for the parameter is
obtained by using the generated MCMC samples. By
arranging the posterior sampleθ ( j), j = 1,2,3, ...,N
asθ(1) < θ(2) < ... < θθ(N)

, using the algorithm proposed
by Chen and Shao[42], the 100(1− γ/2)% HPD credible
intervals forθ = (β ,λ ,α) is given by

(θ( j),θ( j+[N(1−γ/2)])), (35)

where j is chosen such that

θ( j+[N(1−γ/2)])−θ( j)

= min
1≤i≤γ/2N

(
θ(i+[N(1−γ/2)])−θ(i)

)
; j = 1,2, ...,N.

5 Application

In this section we lead a simulation study and dissect an
illustrative example are directed to investigate the
performances of the MLEs and Bayes estimates .

5.1 Simulation study

In this section, simulation studies are directed to evaluate
the performances of the MLEs and Bayes estimates in
terms of mean square errors (MSEs). For a givenn, m, τ,
β , λ , α and censoring schemes (CSs)Ri, i = 1,2, ..., m,
th estimation procedure is performed according to the
following algorithm.
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Step 1: Set the values ofn, m, τ, β , λ , α and
Ri, i = 1,2, ..., m.

Step 2: For given values of the prior parameters a and b
generateλ from Gamma(a,b)

Step 3: Use the model given by Eq (5) to generate
progressively censored data for givenn,m the set of
data can be considered as

yR
1:m:n < yR

2:m:n < ... < yR
J :m:n < τ < yR

J+1:m:n
... < yR

m:m:n.

WhereR = (R1,R2, ...,Rm), ∑m
i=1 Ri = n−m

Step 4: Use the progressive censored data to compute the
MLEs of the parameters. Th Newton Raphson method
is applied for solving the nonlinear system in Eqs. (9),
(10), and (11) to compute the MLEs of the
parameters.

Step 5: Calculate the Bayes estimates of the model
parameters relative to BSEL and BLINEXL function
based on MCMC approximation withN = 11000.

Step 6: Calculate the approximate confience bounds and CIs
with confience levels 95% for the three parameters of
the model

Step 7: Replicate the Steps 3−6,1000 times.
Step 8: Compute the average values of the MSEs associated

with the MLEs, BSE and BLINEX loss function of the
parameters.

Step 9: Repeat steps 1− 8 with diffrent values ofn,m and
Ri, i = 1,2, ..., m.

5.2 Simulation procedure

In this subsection results are presented to compute the
MLEs of the unknown parametersβ andλ as well as the
acceleration factorα. The Newton–Raphson technique is
connected for solving the nonlinear system to acquire the
MLEs of the parameters and register the approximate
intervals. We likewise compute the Bayes estimates of the
unknown parameters in light of the MCMC sampling
strategy. For diffrent values ofn, m andRi , i = 1,2, ...,m,
and different censoring schemes; details of the schemes
are given in Table 1. Different progressive censoring
schemes are considered with notation that (5,03) means
(5,0,0,0). we have usedβ = 1,λ = 1, α = 1.5 and
τ = 1.0. For Bayesian estimation, we are used
informative prior for the parameterλ , we used the
hyperparameters value asa = 1 andb = 1. We compute
the average estimates (AE) and the average MSE of the
estimates based on 1000 replications. Results are reported
in Tables 2− 4. In all cases BSE and BLINEX loss
functions, withω = 0.2,0.8, are utilized for registering
the Bayes estimates. Table 5 reports the average length
(AL) of confidence intervals and Bayesian credible
intervals with coverage percentages (CP) forβ , λ andα.
The CIs are computed in view of 10000 MCMC tests.
The initial values for the parameters for running the
MCMC sampler algorithm are taken to be their MLEs.
According to the results from the Tables 2−4. As sample

size n increases, the MSEs of estimators of all the
unknown parameters decrease. For settledn, the MSEs of
estimators decrease asm increases. From Table 5 we find
that the CPs of the approximate confidence intervals and
Bayesian CIs are very near ostensible level. Also, in most
cases, the Bayesian CIs are marginally shorter length than
that of the approximate confidence intervals.Henceforth,
we prescribe to utilize Bayesian CIs over approximate
confidence intervals. Whenω = 0.8 all results of Bayes
estimates under both BSE and BLINEX loss functions for
the parameters are very like corresponding MLEs.

Table 1: Several CSs for the simulation study.
CS n m R CS n m R
[1] 50 40 (10,039) [8] 70 50 (20,049)

[2] (015,110,015) [9] (015,120,015)

[3] (039,10) [10] (049,20)
[4] 50 45 (5,044) [11] 70 60 (10,059)

[5] (020,15,020) [12] (025,110,025)

[6] (044,5) [13] (059,10)
[7] 50 50 (050) [14] 70 70 (070)

5.3 Numerical example

We simulate a set of lifetime data following IW
distribution under progressive Type-II censoring in
SS-ALT. The data are presented as: 0.120162, 0.285467,
0.294413, 0.310609, 0.417991, 0.454602, 0.519122,
0.525779, 0.554423, 0.613962, 0.63692, 0.754227,
0.754288, 0.77136, 0.83592, 0.874847, 0.881625,
0.916359, 0.93054, 0.951793, 0.952627, 0.963777. this
simulated observations based onn = 60, m = 55, β = 1,
λ = 1, α = 1.4, and R = (15,050). The MLEs of model
parameters and acceleration factorβ , λ andα are

β̂ = 0.9778, λ̂ = 1.0162, α̂ = 1.30554.

The inverse of Fisher information matrix∆−1 is given as
follows:

∆̂−1=




0.0140 −0.0099−0.0325
−0.0099 0.0252 0.0341
−0.0325 0.0341 0.2065


 ,

The estimated variances of estimates ofβ̂ ; λ̂ andα̂ are

v̂ar(β̂ ) = 0.0140, v̂ar(λ̂ )= 0.0252, v̂ar(α̂) = 0.2065.

To find the standard errors of̂β , λ̂ and α̂, we take the
square root of the diagonal elements of∆̂−1, 95%
confidence intervals for the parametersβ , λ and the
acceleration factor α are0.7455 ≤ β ≤ 1.2101,
0.7050≤ λ ≤ 1.3275 and 0.4147≤ α ≤ 2.1964. Now we
compute the Bayes estimates ofβ , λ andα, we assume
a = b = 0. Fig. (1), (3) and (5) shows the trace plots of
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Table 2: AE and MSEs of ML and Bayes estimates ofα.
CS MLE MCMC

BSEL BLINEX
ω = 0 ω = 0.2 ω = 0.8 ω = 0 ω = 0.2 ω = 0.8

c = 1 c = 5 c = 1 c = 5 c = 1 c = 5
[1] 1.4100 1.2420 1.2756 1.3764 1.1766 1.2613 1.2164 1.2973 1.3551 1.1892

(0.1232) (0.0937) (0.0886) (0.1062) (0.1317) (0.3112) (0.1165) (0.2755) (0.1072) (0.1384)
[2] 1.3188 1.2002 1.2239 1.2951 1.4906 1.2347 1.4820 1.2679 1.3993 1.1395

(0.1661) (0.1259) (0.1255) (0.1496) (0.0201) (0.3468) (0.0288) (0.3133) (0.0876) (0.1872)
[3] 1.3132 1.1911 1.2155 1.2887 1.4864 1.2140 1.4788 1.2474 1.3959 1.2215

(0.1745) (0.1334) (0.1321) (0.1568) (0.0278) (0.3700) (0.0369) (0.3348) (0.0960) (0.1993)
[4] 1.3933 1.2460 1.2754 1.3638 1.1837 1.2774 1.2196 1.2123 1.3442 1.2950

(0.1308) (0.0930) (0.0908) (0.113435) (0.1289) (0.2962) (0.1173) (0.2633) (0.1148) (0.1407)
[5] 1.2357 1.1391 1.1584 1.2164 1.2727 1.2013 1.2003 1.2405 1.1971 1.2650

(0.2135) (0.1711) (0.1713) (0.1968) (0.2226) (0.3913) (0.2114) (0.3503) (0.2029) (0.2496)
[6] 1.3936 1.2774 1.3007 1.3704 1.2217 1.2314 1.2516 1.0643 1.3540 1.2324

(0.1288) (0.0832) (0.0850) (0.1124) (0.1113) (0.2470) (0.1056) (0.2202) (0.1138) (0.1277)
[7] 1.2999 1.2067 1.2253 1.2812 1.1467 1.2844 1.1731 1.2232 1.2643 1.1451

(0.1639) (0.1232) (0.1245) (0.1489) (0.16131) (0.2965) (0.1536) (0.2624) (0.1529) (0.1829)
[8] 1.5003 1.3074 1.3460 1.4617 1.2496 1.2483 1.2928 1.2851 1.4419 1.2820

(0.0996) (0.0601) (0.0567) (0.0804) (0.0863) (0.2239) (0.0747) (0.1938) (0.0786) (0.0870)
[9] 1.1390 1.0785 1.0906 1.1269 1.0140 1.2209 1.0350 1.2848 1.1093 1.2947

(0.2851) (0.2306) (0.2349) (0.2676) (0.2863) (0.4613) (0.2790) (0.4230) (0.2760) (0.3279)
[10] 1.0878 1.0350 1.0455 1.0772 1.0698 1.1806 1.0893 1.1084 1.0592 1.1465

(0.3327) (0.2738) (0.2784) (0.3138) (0.3351) (0.5547) (0.3274) (0.5196) (0.3233) (0.3812)
[11] 1.4660 1.3192 1.3486 1.4367 1.2651 1.0751 1.3002 1.1099 1.4199 1.2896

(0.0920) (0.0544) (0.0538) (0.0763) (0.0775) (0.1993) (0.0699) (0.1728) (0.0758) (0.0829)
[12] 1.2218 1.1463 1.1614 1.2067 1.0863 1.0288 1.1096 1.0654 1.1902 1.0791

(0.2173) (0.1730) (0.1756) (0.2021) (0.2173) (0.3633) (0.2100) (0.3282) (0.2078) (0.2447)
[13] 1.1427 1.1148 1.1204 1.1372 1.0620 1.0961 1.0760 1.0222 1.1241 1.0453

(0.2720) (0.2171) (0.2244) (0.2573) (0.2574) (0.4126) (0.2562) (0.3866) (0.2640) (0.2944)
[14] 1.3831 1.2861 1.3055 1.3637 1.235 1.0593 1.2609 1.0904 1.3491 1.2450

(0.1302) (0.0810) (0.0846) (0.1141) (0.1055) (0.2232) (0.1025) (0.2001) (0.1155) (0.1247)
With each scheme the first row represents the average relative estimate and the second row MSE is reported with in bracket
immediately below.

10000 MCMC samples for posterior distribution ofβ , λ
andα. It show that the MCMC procedure converges very
well. Fig. (2), (4) and (6) provide the histogram plots of
generatedβ , λ andα. It is observed that the histograms
of the generated posteriors match quite well with the
theoretical posterior density functions. Therefore, MCMC
samples can be used for estimate the unknown parameters
and constructing the approximate CIs, under squared
error loss function (ω = 0), we compute the approximate
Bayes estimates ofβ , λ andα using MCMC method and
they are

β̂BS = 0.9490, λ̂BS = 1.0546, α̂BS = 1.4976,

and the associated 95% symmetric Cls are given by

0.7256≤ β ≤ 1.1873, 0.7613≤ λ ≤ 1.3899 and

0.7085≤ α ≤ 2.7042,

Under LINEX loss function (ω = 0), we compute the
approximate Bayes estimates ofβ , λ andα, and they are

β̂BL = 0.9548, λ̂BL = 1.0469, α̂BL = 1.4592,

Fig. 1 Simulation number ofβ obtained by MCMC method.

We also compute the approximate Bayes estimates ofβ ,
λ andα under both BSE and BLINEX loss function with
ω = 0.2,0,8 and they are in Table 6.
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Table 3: AE and MSEs of ML and Bayes estimates ofλ .
CS MLE MCMC

BSEL BLINEX
ω = 0 ω = 0.2 ω = 0.8 ω = 0 ω = 0.2 ω = 0.8

c = 1 c = 5 c = 1 c = 5 c = 1 c = 5
[1] 1.1371 1.1304 1.1317 1.1358 1.1142 1.0548 1.1186 1.0684 1.1324 1.1171

(0.0468) (0.0419) (0.0427) (0.0457) (0.0368) (0.0230) (0.0385) (0.0257) (0.0445) (0.0392)
[2] 1.0463 1.0450 1.0452 1.0460 1.1219 0.9787 1.1099 0.9899 1.0655 1.0298

(0.0322) (0.0290) (0.0294) (0.0312) (0.0496) (0.0225) (0.0458) (0.0230) (0.0351) (0.0283)
[3] 0.9789 0.9802 0.9799 0.9792 1.0560 0.9169 1.0431 0.9274 0.9975 0.9643

(0.0277) (0.0238) (0.0244) (0.0267) (0.0325) (0.0262) (0.0308) (0.0256) (0.0276) (0.0262)
[4] 1.0488 1.0424 1.0437 1.0475 1.0288 0.9787 1.0326 0.9903 1.0446 1.0317

(0.0289) (0.0256) (0.0259) (0.0279) (0.0237) (0.0201) (0.0243) (0.0205) (0.0275) (0.0253)
[5] 1.0343 1.0335 1.0336 1.0342 1.0197 0.9686 1.0224 0.9795 1.0312 1.0184

(0.0283) (0.0257) (0.0260) (0.0275) (0.0241) (0.0212) (0.0246) (0.0214) (0.0271) (0.0252)
[6] 0.8247 0.8267 0.8263 0.8251 0.8178 0.7774 0.8178 0.7855 0.8229 0.8136

(0.0557) (0.0534) (0.0536) (0.0549) (0.0563) (0.0692) (0.0559) (0.0663) (0.0555) (0.0580)
[7] 0.9788 0.9797 0.9795 0.9789 0.9675 0.9222 0.9696 0.9317 0.9764 0.9652

(0.0279) (0.0255) (0.0258) (0.0272) (0.0252) (0.0269) (0.0254) (0.0263) (0.0271) (0.0266)
[8] 1.2377 1.2213 1.2246 1.2344 1.2085 1.1604 1.2141 1.1731 1.2316 1.2187

(0.0799) (0.0690) (0.0709) (0.0773) (0.0628) (0.0426) (0.0657) (0.0475) (0.0759) (0.0689)
[9] 1.0789 1.0808 1.0805 1.0793 1.0695 1.0267 1.0712 1.0355 1.0769 1.0665

(0.0292) (0.0264) (0.0267) (0.0283) (0.0242) (0.0184) (0.0249) (0.0196) (0.0279) (0.0257)
[10] 1.0949 1.1014 1.1001 1.0962 1.0899 1.0470 1.0908 1.0639 1.0938 1.0836

(0.0698) (0.0681) (0.0682) (0.0692) (0.0644) (0.0532) (0.0652) (0.0579) (0.0685) (0.0650)
[11] 1.0971 1.0883 1.0900 1.0953 1.0778 1.0381 1.0815 1.0481 1.0931 1.0831

(0.0310) (0.0270) (0.0277) (0.0300) (0.0247) (0.0181) (0.0257) (0.0195) (0.0295) (0.0269)
[12] 1.0594 1.0554 1.0562 1.0586 1.0452 1.0065 1.0479 1.0156 1.0564 1.0470

(0.0256) (0.0231) (0.0233) (0.0248) (0.0215) (0.0174) (0.0220) (0.0181) (0.0245) (0.0227)
[13] 1.1123 1.1170 1.1161 1.1132 1.1064 1.0663 1.1075 1.0742 1.1110 1.1016

(0.0231) (0.0243) (0.0239) (0.0231) (0.0217) (0.0136) (0.0217) (0.0148) (0.0225) (0.0202)
[14] 0.9802 0.9784 0.9788 0.9798 0.9694 0.9353 0.9715 0.9431 0.9779 0.9697

(0.0201) (0.0180) (0.0182) (0.0195) (0.0179) (0.0194) (0.0182) (0.0190) (0.0195) (0.0193)
With each scheme the first row represents the average relative estimateand the second row MSE is reported with in bracket
immediately below.

Fig. 2 Histogram ofβ obtained by MCMC method.

6 Conclusion

In this paper, we provided SS-PALT models under
progressive type-II censoring when the observed data
come from IW distribution. We determined the MLEs and
asymptotic confidence intervals of the obscure
parameters. We inferred Bayes estimators of the
parameters and the acceleration parameter using
non-informative and gamma informative priors under

Fig. 3 Simulation number ofλ obtained by MCMC method.

both BSE and BLINEX loss functions. We additionally
proposed a few distinct strategies for constructing CIs for
the parameters and the acceleration parameter. We did a
recreation study to think about the execution of every one
of these systems. From the simulation study, we watch
that the Bayes estimates are superior to MLEs as far as
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Table 4: AE and MSEs of ML and Bayes estimates ofβ
CS MLE MCMC

BSEL BLINEXL
ω = 0 ω = 0.2 ω = 0.8 ω = 0 ω = 0.2 ω = 0.8

c = 1 c = 5 c = 1 c = 5 c = 1 c = 5
[1] 1.0274 1.0538 1.0485 1.0327 1.0428 1.0028 1.0396 1.0068 1.0304 1.0214

(0.0245) (0.0230) (0.0230) (0.0239) (0.0209) (0.0158) (0.0214) (0.0169) (0.0235) (0.0218)
[2] 1.0610 1.0779 1.0745 1.0644 1.1452 1.0218 1.1314 1.0280 1.0817 1.0511

(0.0316) (0.0281) (0.0285) (0.0305) (0.0517) (0.0172) (0.0474) (0.0188) (0.0351) (0.0269)
[3] 1.0626 1.0780 1.0749 1.0657 1.1479 1.0204 1.1339 1.0272 1.0835 1.0520

(0.0364) (0.0318) (0.0324) (0.0352) (0.0569) (0.0202) (0.0525) (0.0220) (0.0400) (0.0310)
[4] 1.0455 1.0693 1.0646 1.0503 1.0588 1.0201 1.0560 1.0242 1.0480 1.0393

(0.0230) (0.0224) (0.0222) (0.0226) (0.0202) (0.0144) (0.0205) (0.0154) (0.0221) (0.0204)
[5] 0.9809 1.0001 0.9963 0.9847 0.9893 0.9499 0.9875 0.9550 0.9824 0.9733

(0.0280) (0.0232) (0.0239) (0.0268) (0.0223) (0.0214) (0.0232) (0.0220) (0.0266) (0.0257)
[6] 1.2710 1.2823 1.2801 1.2733 1.2681 1.2158 1.2685 1.2246 1.2702 1.2570

(0.1067) (0.1068) (0.1064) (0.1063) (0.0974) (0.0672) (0.0988) (0.0724) (0.1043) (0.0949)
[7] 1.0921 1.1071 1.1041 1.0951 1.0958 1.0544 1.0949 1.0605 1.0927 1.0828

(0.0364) (0.0340) (0.0342) (0.0356) (0.0304) (0.0201) (0.0313) (0.0221) (0.0348) (0.0314)
[8] 0.9663 0.9951 0.9893 0.9720 0.9877 0.9599 0.9833 0.9608 0.9704 0.9645

(0.0149) (0.0121) (0.0124) (0.0140) (0.0118) (0.0118) (0.0122) (0.0122) (0.0140) (0.0140)
[9] 0.9067 0.9184 0.9161 0.9091 0.9099 0.8784 0.9092 0.8831 0.9073 0.8999

(0.0283) (0.0218) (0.0229) (0.0268) (0.0227) (0.0275) (0.0236) (0.0273) (0.0270) (0.0276)
[10] 0.9260 0.9318 0.9306 0.9272 0.9230 0.8905 0.9235 0.8963 0.9253 0.9174

(0.0741) (0.0647) (0.0664) (0.0720) (0.0646) (0.0654) (0.0662) (0.0664) (0.0719) (0.0713)
[11] 1.0149 1.0382 1.0335 1.0195 1.0308 1.0034 1.0276 1.0052 1.0180 1.0121

(0.0148) (0.0138) (0.0137) (0.0144) (0.0128) (0.0104) (0.0130) (0.0110) (0.0142) (0.0136)
[12] 0.9250 0.9407 0.9376 0.9282 0.9330 0.9044 0.9313 0.9077 0.9265 0.9200

(0.0253) (0.0193) (0.0203) (0.0239) (0.0197) (0.0223) (0.0206) (0.0226) (0.0240) (0.0242)
[13] 0.9504 0.9567 0.9554 0.9517 0.9492 0.9212 0.9494 0.9263 0.9501 0.9437

(0.0150) (0.0129) (0.0132) (0.0144) (0.0131) (0.0153) (0.0134) (0.0149) (0.0145) (0.0147)
[14] 1.0621 1.0770 1.0740 1.0650 1.0694 1.0408 1.0678 1.0443 1.0634 1.0569

(0.0208) (0.0188) (0.0190) (0.0202) (0.0173) (0.0125) (0.0177) (0.0136) (0.0199) (0.0185)
With each scheme the first row represents the average relative estimateand the second row MSE is reported with in bracket
immediately below.

Table 5:AL and CPs of the 95% CIs forα , λ andβ .
CS MLE MCMC

α λ β α λ β
[1] 0.9640(1.6153) 0.9580(0.6593) 0.9500(0.7742) 0.9840(1.315) 0.9740(0.5753) 0.9700(0.7063)
[2] 0.9180(1.3705) 0.9600(0.6926) 0.9460(0.7280) 0.9840(1.3119) 0.9760(0.6016) 0.9700(0.6541)
[3] 0.9100(1.4747) 0.9460(0.7017) 0.9380(0.7014) 0.9620(1.3303) 0.9700(0.6112) 0.9480(0.6457)
[4] 0.9560(1.4665) 0.9620(0.6503) 0.9700(0.7198) 0.9860(1.2968) 0.9780(0.5648) 0.9780(0.6423)
[5] 0.9460(1.3934) 0.9420(0.6601) 0.9380(0.7142) 0.9780(1.3550) 0.9620(0.5716) 0.9620(0.6450)
[6] 0.9380(1.2006) 0.9420(0.7544) 0.9380(0.6304) 0.9700(1.2306) 0.9480(0.6555) 0.9480(0.5634)
[7] 0.9620(1.2244) 0.9700(0.6702) 0.9780(0.6782) 0.9860(1.2834) 0.9840(0.5821) 0.9780(0.6067)
[8] 0.9740(1.4693) 0.9620(0.7064) 0.9720(0.5402) 0.9960(1.243) 0.9760(0.6260) 0.9760(0.4736)
[9] 0.9760(1.1900) 0.9480(0.6444) 0.9700(0.5783) 0.9780(1.3487) 0.9620(0.5874) 0.9760(0.5076)
[10] 0.9620(1.3504) 0.9380(0.6414) 0.9620(0.5759) 0.9700(1.1738) 0.9480(0.5849) 0.9620(0.5081)
[11] 0.9820(1.2329) 0.9340(0.6316) 0.968(0.5386) 0.9940(1.2081) 0.9660(0.5629) 0.9800(0.4718)
[12] 0.9760(1.2952) 0.9160(0.6168) 0.9620(0.5476) 0.9800(1.1136) 0.9620(0.5566) 0.9780(0.4820)
[13] 0.9620(1.7834) 0.9100(0.6194) 0.9560(0.5328) 0.9780(1.2256) 0.9460(0.5694) 0.9760(0.4743)
[14] 0.9800(1.2843) 0.9520(0.5725) 0.972(0.5451) 0.9960(1.1864) 0.9560(0.5243) 0.9960(0.4804)
The number out side the bracket is the coverage probability and the number in the bracket is the length .
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Table 6:Bayes estimates under BSEL and BLINEX for a simulated data.
ω BSEL BLINEX

c = 1 c = 5
α 0.2 1.4592 1.3638 1.1305

0.8 1.4208 1.3489 1.1620
λ 0.2 1.0469 1.0367 0.9996

0.8 1.0393 1.0316 1.0036
β 0.2 0.9548 0.9494 0.9276

0.8 0.9605 0.9564 0.9390

Fig. 4 Histogram ofλ obtained by MCMC method.

Fig. 5 Simulation number ofα obtained by MCMC method.

Fig. 6 Histogram ofal pha obtained by MCMC method.

MSEs. Likewise, the HPD credible intervals based on
MH algorithm are are superior to asymptotic confidence
intervals in respect of AL and CP. Besides, the length of
the confidence interval is likewise diminishes as the
sample size increases and CP is close to the nominal
value in all sets of parameters considered here. We
introduced reenacted case to represent every one of the
techniques for derivation examined here and additionally
to bolster the conclusions drawn.

1.For fixed values of the sample size, by increasing the
observed failure times the MSEs decrease.

2.For fixed values of the sample size, the scheme II in
which the censoring occurs after the first observed
failure gives more accurate results through the MSEs
than the other schemes.

3.Results in the censoring schemes III and IV are closed
to other.

4.The approximate CIs and bootstrap-t CIs give more
accurate results than the bootstrap-p CIs since the
lengths of the former are less than the lengths of latter,
for different sample sizes, and different schemes.

5.For fixed sample sizes and observed failures, the
second scheme II , in which censoring occurs after the
first observed failure, gives smallest lengths of the CIs
for all methods.
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