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Abstract: In this Paper, the mathematical model for the study of the distribution of mechanical stresses by the cells within the soft
tissues and tumor tissue is discussed. To describe the impact of isotropic growth on the mechanical stresses based on thelinear elasticity
theory and to study the process of continuous growth. Constitutive law to describe a linearly elastic tumor with continuous volume
growth is combined in the model. Two examples is discussed, First case, in one dimensional model of tumor growth in rectangular tube,
The model is solved in terms of radial displacement and stresses. In the second case, the effect of isotropic growth during a compressible
material is solved in terms of radial displacement and stresses. The implications of two examples and possible model developments
are investigated. Comparisons are made with the results in the two cases and numerical results are given and illustratedgraphically for
each case considered.
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1 Introduction

A number of mathematical models of residual stress
development in tumors have been proposed over recent
years, using both single phase and multiphase
frameworks. Progress in the field of experimental
techniques (such as gene sequencing, fluorescent staining
techniques) are enabling experimentalists to identify
many physical mechanisms whose normal function is
impaired in solid tumor growth. For example, with a
population of tumor cells that contain mutated versions of
the p53 gene can survive in low pressure abnormally
oxygen (such as hypoxia) [1, 2]. The above description
highlights the importance of genetic mutations in the
growth of solid tumors. This is an area of active research
in the field of oncology. Other factors that have been
known for a long time affects the growth of the tumor is
to provide vital nutrients, such as oxygen and glucose and
chemotherapy drugs [7,9,20,21], they studied model of a
hybrid agent-based model of the developing mammary
terminal end bud , and model of theory and Experimental

Validation of a Spatio-temporal Model of Chemotherapy
Transport to Enhance Tumor Cell Kill. . According to
more recent experimental results show that the
mechanical effects, such as stress, plays an important role
in the growth of solid tumors [5]. Similarly, you can get
the stress field of cell growth or remodeling during
cytokinesis [6]. In fact, the main purpose of the new
aspect of this work is to develop a mathematical model,
which describes the way in which growth is generating
pressure regularly in solid tumors. Such phenomena have
not been studied extensively in sports literature. Instead,
most of the existing models either spherical multicellular
response to changing food and chemotherapy
focused [7–11] can be set externally or the blood vessels
of cancer [12–14] the process that tumors acquire flow the
blood to the tissues of the host [15–17]. The notable
exception is the material Chaplain and Sleeman [18],
which is used to describe the elasticity of tumor invasion
theory.
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Other models include mechanical influences include
work by Drozdov et al. [19]. For example, it discussed
in [19] a simple example is the cut growth from the main
square and going on the corresponding field of
growth-induced stress. Landman, Byrne developed an
alternative model for the structure, which is dealing with
a multi-tumor relatively stages as with cell growth,
proliferation and death of the interview phase transitions
between the cell and the water phase of which [9,20,21].

Since the development of a mathematical model,
which couples with stress and growth, will be very
difficult. Our approach is based directly on the current
models of the growth of solid tumors [3, 6] and that the
growth and death of cells to determine the levels of vital
nutrients and does not rely on mechanical effects, such as
stress. This model is limited growth spread to simulate the
growth of multi-spherical homogeneous distinct cells, the
cells near the perimeter of proliferating cells nutrient-rich
quickly, while the tumor center, deprived of food, and
thus less rapidly multiply [22, 25]. They study the
mechanics of a continuous medium of tumor-induced
capillary growth, Necrosis and apoptosis: distinct cell loss
mechanisms in a mathematical model of avascular tumor
growth and also they discussed Analysis of a
mathematical model for the growth of tumors.

2 Formulation of the problem

Case I: Effect of isotropic growth in soft tissues.
Mathematical approach discussed here represents the

effect of a given fixed growth–strain distribution is
considered rather than an evolution of stresses over a
period of growth. Moreover, spherical symmetry is
assumed, which has particular relevance to solid tumor
growth. Hence, the constitutive equation of linear
elasticity [3,6] is given as:

εr − γrg =
1
E
(σr −2vσθ) (1)

εθ − γθ g =
1
E
(σθ − v(σr −σθ )) (2)

Where r and θ denote the actual radial and
circumferential strains respectively, andg = g(r)denotes
the relative volume change due to growth. The anisotropic
multipliers, γr andγθ , represent the proportion of the
volumetric growth directed into the radial and
circumferential directions respectively. Thus,

γr +2γθ = 1, (3)

The constants E andν denote Young’s modulus and
Poisson’s ratio respectively. Eqs. (1) and (2) may be
arranged to give

σr =
E

(1+v)(1−2v) ((1− v)εr +2vεθ − ((1− v)γr +2vγθ )g)

= E
(1+v)(1−2v)

(

(1− v) ∂u
∂ r +2v u

r − ((1− v)γr +2vγθ )g
)

(4)

σθ = E
(1+v)(1−2v) (εθ + vεr − (vγr + γθ )g)

= E
(1+v)(1−2v)

(

u
r + v ∂u

∂ r −
((

v− 1
2

)

γr +
1
2

)

g
)

,
(5)

where radial and circumferential stresses, u is the radial
displacement respectively. Now, neglecting inertial effects
and external body forces, the conservation of momentum
requires.

∂σr

∂ r
+

2β
r

= 0. (6)

β = σr −σθ (7)

Substituting Eqs. (4) and (5) into Eq. (6) yields.

∂
∂ r

(

1
r2

∂
∂ r

(

r2u
)

)

= 1
1−v

[

(v− (2v−1)γr)
∂g
∂ r

−

(

3(2v−1) γr
r +(2v−1) ∂γr

∂ r −
(2v−1)

r

)

g
]

,
(8)

This is the general equation for the displacement in a
growing linear elastic material, considering both
anisotropy and compressibility.

Case II: Effect of growth on stresses during avascular
tumor.

In this section, One present a mathematical model that
describes the evolution of an avascular tumor whose
growth regulates nutrient provided from abroad, such as
oxygen or glucose, one follow [3–6]. Then the scalar
equations for the concentration of nutrientsc(r, t). are:

Dc

(

2
r

∂
∂ r

c(r, t)+
∂ 2

∂ r2 c(r, t)

)

−mc(r, t) = 0, (9)

2v(r, t)
r

+
∂v(r, t)

∂ r
= αc(r, t)− k. (10)

Wherec(r, t), the concentration of nutrients andn(r, t) is
mass density of tumor cells,v(r, t) is the velocity of tumor
cells, Here is no body forces except gravity, hich is
supposed to be slim, so the balance of our crops,

∂τr

∂ r
+

2
r

τr = 0, (11)

Finally, One formulate the constitutive law, which
connects the strain inside the tumor to the stress upon it,
One assume that the material is compressed. A
combination of the above assumptions results in the
following equation:

1
2

(

∇u+∇uT) =
1
3

gδ +
1

2E
(3τ −Tr(τ)δ ) (12)

where u is the change in strain, g the volume per unit
volume produced at a given point by growth,δ is the
Kronecker-delta ,Tr represents the trace of the tensor and
the Young modulusE, the value of which is different for
different tumors. The equation (11) may reduces to
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another form subject to continues growth volume, is as
follows:

1
2

(

∇v+∇vT
)

= 1
3 (∇ · v)δ + 1

2E

{

D
Dt (3τ −Tr(τ)δ )+3(ω · τ − τ ·ω)

}

,

(13)
where ω is the second order vorticity tensor and
ω = − 1

2(∇v − ∇vT ). The remainder of this work, One
look only to the status quo forω = 0. Set quantities
dimensionless, One write

L =
√

Dc/m, T = 1/αC0 , r̃ = r/L, t̃ = t/T, (14a)

c̃ = c/C0, ṽ = vT/L, τ̃ = τ/E, ω̃ = ωT. (14b)

where the concentration of nutrients with external feed
value C0 (which is assumed constant). Under this
transformation the model equations become (dropping the
tildes for clarity)

(

2
r

∂
∂ r

c(r, t)+
∂ 2

∂ r2 c(r, t)

)

− c(r, t) = 0, (15)

2v(r, t)
r

+
∂v(r, t)

∂ r
= c(r, t)− ε, (16)

∂Γ (r, t)
∂ t

+

(

2v(r, t)
r

+
∂v(r, t)

∂ r

)

Γ (r, t)= 0 on Γ (r, t)= 0,

(17)







∂τr
∂ r + 1

r (2τr − τθ − τϕ)
∂τθ
∂θ + cot(θ)

r (τθ − τϕ)
1

sin(θ)
∂τϕ
∂ϕ






= 0, (18)

1
2

(

∇v+∇vT
)

= 1
3 (∇ · v)δ + 1

2

{

D
Dt (3τ −Tr(τ)δ )+3(ω · τ − τ ·ω)

}

.

(19)
whereω =− 1

2(∇v−∇vT ), andε satisfiesε = T k = kα
C0
.

3 Solution of the problem

Application for case 1: The effect of isotropic growth
during a compressible material.

One consider the proportion of the volumetric growth
directed into the radialγr = 1

3 and circumferential
directionsγθ = 1

3

so that Equ (8). ∂c
∂x → 0 as x →−∞,

∂
∂ r

(

1
r2

∂
∂ r

(

r2u
)

)

=
1
3

(

1+ v
1− v

)

∂g
∂ r

, (20)

Whose solution is

u =
1
3

(

1+ v
1− v

)

1
r2

∫ r

0
gr̂2dr̂+C1r+

C2

r2 , (21)

WhereC1 andC2 are constants of integration.
Boundary conditions :

The term inC2 = 0 must be zero, however, for the
displacement to be bounded in the center of the tumor,
sinceu = 0 atr = 0by symmetry. Considering a sphere of
radius a with a constant hydrostatic pressure of -p at the
surface,

u = 0, at r = 0, (22a)

τr =−p at r = a, (22b)

The constantC1 is obtained from the substitution of
Eq. (21) into (4).

Therefore, the constitutive equations are given by

σr =−p+
2E

3(1− v)

(

1
a3

∫ a

0
gr̂2dr̂−

1
r3

∫ r

0
gr̂2dr̂

)

(23)

σθ =−p+
2E

3(1− v)

(

1
r3

∫ r

0
gr̂2dr̂+

2
a3

∫ a

0
gr̂2dr̂− g

)

(24)
The quantityβ , being the difference between the radial
and circumferential stress components, will now be used
to study the genesis of tissue stresses since it is
independent of both the external hydrostatic pressure and
the outer radius of the tissue, and determines the
distribution of stresses as reflected in Eq. (6).

Subtracting Eq. (24) from (23) now gives

β =
E

3(1− v)

[

g−
3
r3

∫ r

0
gr̂2dr̂

]

(25)

Note, however, that the volume average of g in a sphere of
tissue of radius r is

gav =
3
r3

∫ r

0
gr̂2dr̂ (26)

β =
E

3(1− v)
(g− gav) (27)

Further, appealing to Eqs. (6) and (7) gives

∂σr

∂ r
=

2E
3r (1− v)

(gav − g) (28)

∂σr

∂ r
=

2E
3r (1− v)

(

1
r
(gav − g)−

∂g
∂ r

)

(29)

The nature of the induced stresses is now considered for
two growth distributions, firstg = a sinhr

r sinha as above

discussed, and similarly in caseg = 1− r2

a2 .
Application for case 2: One dimensional tumor growth

in rectangular tube.
In this case , one consider the rectangular tube is semi-

infinite, therefore the equation given in (16) takes the form.

∂ 2c(x, t)
∂x2 = c(x, t), (30)

One solve equation (22) subject to the boundary
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c (a(t) , t) = 1 and ∂c
∂x → 0 as x →−∞,

the latter condition ensuring that the solutions are
bounded. In this method One find.

c(x, t) = ex−a(t), (31)

With ε = 0 equation (22) reduces to

∂v(x, t)
∂x

= c(x, t), (32)

Again, to ensure bounded solutions, One solve equation
(32) subject to the condition

v(x, t)→ 0 as x → ∞,

and deduce that
(x, t) = ex−a, (33)

Using equation (18) One note that on the tumor surface

da
dt

= v(a(t) , t) = 1, with a(0) = 0, (34)

Thus a = t, that is, the tumor grows linearly with time.
One consider that the non-diagonal elements of the
stresses tensorτxy = τyz = τzx = 0. the component of
equation (18) in the x-direction leads to the equation.

∂σx

∂x
= 0, (35)

Assuming that there is no normal stress at the tumor
boundary and scaling pressure so that the pressure outside
the tumor is zero, One integrate equation (35) subject to
the boundary condition in which case.

τxx = 0 ∀x, t. (36)

Resolution of equation (18) in the y- and z-directions leads
to ordinary differential equations forτyy andτzz which are
similar in form to equation (35) and can be integrated to
show the more limited results.

τyy = τyy(x,z; t) , τzz = τzz(x,y; t).
(37)

From Eq. (20) One can write

1
2

(

∇v+∇vT)−
1
3
(∇ · v)δ =

1
3

∂v(x, t)
∂x





2 0 0
0 −1 0
0 0 −1





Finally, One turn to the constitutive law; equation (??) is
now expressed with more general form in Cartesian
coordinates as:

1
3

∂v(x, t)
∂x





2 0 0
0 −1 0
0 0 −1



=
1
2

(

∂
∂ t

+ v(x, t)
∂
∂x

)





−τyy − τzz 0 0
0 2τyy − τzz 0
0 0 2τzz − τyy



 (38)

Thus, there are only three non-trivial equation, only two
of which are linearly independent, since the trail system is
required to be reduced to zero. Linearly independent
equations can be combined to get a more convenient
form. For example, subtraction of thezz- from theyy all
lead to the equation.

(

∂
∂ t

+ v(x, t)
∂
∂x

)

(τyy − τzz) = 0, (39)

Using the boundary conditions that

τyy → 0 , τzz → 0 when x → ∞

τyy = τzz = 0 at t = 0,

One deduce that, sincev ≥ 0, τ = τzz throughout the
tumor.

τyy = τzz = τ(x, t), (40)

Substituting equation (40) into any of equations (38) leads
to the following expression for

(

∂
∂ t

+ v(x, t)
∂
∂x

)

τ =−
2
3

∂v(x, t)
∂x

(41)

Since v is already known, equation (41) may be solved,
subject to the initial condition thatτ = 0, at t = 0, giving

τ (x, t) =−
2
3

[

x+ ln
(

1+ e−x− e−t)] . (42)

Using equation (42), allowing t → ∞ the equation (42)
become as:

τ ≃−
2
3

[

x+ ln
(

1+ e−x)] , t → ∞ (43)

as x→−∞ and τ ≃−
2
3

x f or 1≪ x< a.

(44)

4 Numerical results

Results mentioned above apply to this situation stable
condition, where the tumor was originally inspired, and
on the sizea = a∗ of their equilibrium. It is clear from the
numerical results of the tumors grow, One fixε = 0.1 and
assumed that the tumor tension in origin, size anda = 10.
Plots of β , τrand τθ with equal amounts of time in the
figure. 6, and during this period the tumor reaches
effectively the size of its equilibriuma∗ = 28.96.

In Fig. (1-3) the employs the constitutive of linear
elasticity to discuss the nature of growth-due to stresses in
soft tissues. The solution of the simpler case of isotropic
growth obtained insight into the influence of the spatial
non-uniformity of the growth process on case of the
nature and in case of distribution, tissue stresses. The
nature of the induced stresses is considered for two
growth distributions withg = a sinhr

r sinha .
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Fig. 1: Dispersion curves for the effect of the spatial non-
uniformity of the growth process on both the nature and
distribution tissue stresses , versus r with different as growth is
τra = 18,21, 24, 27,30a sinhr

r sinha

Fig. 2: Dispersion curves for the effect of the spatial non-
uniformity of the growth process on both the nature and
distribution tissue stressesτr , versus r with differenta =
18,21, 24, 27,30 as growth isa sinhr

r sinha .

Figs (4-6) shows the case at the nature of the induced
stresses is considered for two growth distributions with
g = 1− r2

a2 .
Anisotropic growth is also examined; demonstrate its

important role in relieving growth-due to stresses. Fig. 7
Here One show how the transverse component of the
stress tensor develops into a tumor growing in a

Fig. 3: Dispersion curves for the effect of the spatial non-
uniformity of the growth process on both the nature and
distribution tissue difference stressesτθ , versus r with different
a = 18,21, 24, 27,30 as growth isa sinhr

r sinha .

Fig. 4: Dispersion curves for the effect of the spatial non-
uniformity of the growth process on both the nature and
distribution tissue stressesτθ , versus r with differenta =

18,21, 24, 27,30 as growth is 1− r2

a2

rectangular tube smooth semi-infinite. As depicted
pressures personal cross that corresponds to the stable
where the tumor and features dynamic evolving situation.
Initially, the tumor without stress. However, since the
border tube prevents lateral movement of cells near the
surface of the spread of the tumor creates pressure and
occasional pressure. In the absence of cell death, and the
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Fig. 5: Dispersion curves for the effect of the spatial non-
uniformity of the growth process on both the nature and
distribution tissue stressesτθ , versus r with differenta =

18,21, 24, 27,30 as growth is 1− r2

a2

Fig. 6: Dispersion curves for the effect of the spatial non-
uniformity of the growth process on both the nature and
distribution tissue difference stressesβ , versus r with different
a = 18,21, 24, 27,30 ,as growth is 1− r2

a2

stress of the surface of the tumor remains constant in
values. That was when the surface passes through these
points. One are drawτy = τz = τ(x, t) at times
t = 0.2, 0.4, 0.6, 0.8, 1analytical results for the cultivation
of the tumor (solid line). Analytical results stationary
state of the tumor (the dotted line). Value of the parameter
ε = 0.

Fig. 7: Dispersion curves for Transverse stressτx versusx with
differentt (. . . t = 0.2,−− t = 0.4,U2015t = 0.6, t = 0.8, t =
1),a = 28.

Fig. 8: Dispersion curves for velocityv versusx with different
t (. . . t = 0,−− t = 0.2, U2015t = 0.4, t = 0.6, t = 0.8), a =
28.

As it is shown in the Fig. 7, tumor cells near the
border came under pressure stress (τ < 0) those increases
linearly with time scale. However, tumor cells near the
center, where there is the death of the spread undergo
transverse tensile strength of the cells (τ > 0), which also
increases linearly with time. One plotσ at times
t = 0.2, 0.4, 0.6, 0.8, 1. Parameter values:ε = 0.1,
a∗ ∼ 1/ε = 10. Fig. 8, Here One show how velocityv
develops within an equilibrium size spherical tumor with
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radial symmetry. The fact that the velocity is increasing
with radius at timest = 0, 0.2, 0.4, 0.6, 0.8.

5 Conclusions

The mathematical model for the study of the distribution
of mechanical stresses by the cells within the soft tissues
and tumor tissue is discussed. Constitutive law to describe
a linearly elastic tumor with continuous volume growth is
combined in the model. Two examples is discussed,
Anisotropic growth is also examined, demonstrate its
important role in relieving growth-due to stresses. The
implications of two examples and possible model
developments are investigated. Comparisons are made
with the results in the two cases and numerical results are
given and illustrated graphically for each case.
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