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Abstract: The main goal of the present article is to derive some new classes of differential equations including partial and integro-
differential equations for the 3-variable Hermite-Frobenius-Euler and Frobenius-Genocchi polynomials by use of thefactorization
method. We also perform a further investigation for aforementioned polynomials and derive corresponding homogeneousVolterra
integral equations. The differential equations for these families of polynomials contain, as their special cases, thedifferential equations
for some known special polynomials. Moreover, the inclusion of integral equations is a new and recent investigation which adds some
extra attention to these polynomials.
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1 Introduction

Several investigations have done to introduce and study
classical and generalized forms of Apostol type
polynomials systematically via various analytic means
and generating functions method [16,10,1,2,14,8]. Very
recently, Araci et. al. [3] introduced and studied a
generalized class of 3-variable Hermite-Apostol type
Frobenius-Euler polynomials systematically by use of
generating method. The following class of polynomials is
introduced by convoluting the 3-variable Hermite
polynomials Hn(x,y,z) [5] with the Apostol type

Frobenius-Euler polynomialsF (α)
n (x;u;λ ) [19,17]. The

convoluted special polynomials are important as they
possess important properties such as recurrence and
explicit relations, summation formulae, symmetric and
convolution identities, algebraic properties etc. These
polynomials are useful and possess potential for
applications in certain problems of number theory,
combinatorics, classical and numerical analysis,
theoretical physics, approximation theory and other fields

of pure and applied mathematics.

The results including explicit relations, summation
formulae and symmetric identities related to the
3-variable Hermite-Apostol type Frobenius-Euler

polynomialsHF
(α)
n (x,y,z;u,λ ) are derived in [3]. Here,

we focus on establishing differential and associated
integral equations related to these polynomials. We
consider the following definitions:

Definition 1.1. For λ ∈ C, λ 6= 1, the 3-variable
Hermite-Frobenius-Euler polynomials(3VHFEP)
HEF

n (x,y,z;λ ) are defined by the following generating
function:

(

1−λ
et −λ

)

ext+yt2+zt3 =
∞

∑
n=0

HEF
n (x,y,z;λ )

tn

n!
. (1)

Definition 1.2. For λ ∈ C, λ 6= 1, the 3-variable
Hermite-Frobenius-Genocchi polynomials (3VHFGP)
HGF

n (x,y,z;λ ) are defined by the following generating
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function:
(

(1−λ )t
et −λ

)

ext+yt2+zt3 =
∞

∑
n=0

HGF
n (x,y,z;λ )

tn

n!
. (2)

Next, we consider some special cases of the
3-variable Hermite-Frobenius-Euler and Genocchi
polynomials HEF

n (x,y,z;λ ) and HGF
n (x,y,z;λ ). We

present these special cases in Table 1.

Table 1. Special cases of 3VHFEP and 3VHFGP

S.No. Cases Name of polynomial Generating function

I. λ = −1 3-variable Hermite-Euler polynomials [15,12]
(

2
et+1

)

ext+yt2+zt3

=
∞
∑

n=0
H En(x,y,z) tn

n!

λ = −1, z= 0 2-variable Hermite-Euler polynomials
(

2
et+1

)

ext+yt2

=
∞
∑

n=0
H En(x,y) tn

n!

λ = −1, x= 2x, Hermite-Euler polynomials
(

2
et+1

)

e2xt−t2

=
∞
∑

n=0
H En(x)

tn
n!

y=−1; z= 0

II. λ = −1 3-variable Hermite-Genocchi polynomials
(

2t
et+1

)

ext+yt2+zt3

=
∞
∑

n=0
H Gn(x,y,z)

tn
n!

λ = −1, z= 0 2-variable Hermite-Genocchi polynomials [6]
(

2t
et+1

)

ext+yt2

=
∞
∑

n=0
H Gn(x,y) tn

n!

λ = −1, x= 2x, Hermite-Genocchi polynomials
(

2t
et+1

)

e2xt−t2

=
∞
∑

n=0
H Gn(x) tn

n!

y=−1; z= 0

We find that the 3-variable Hermite-Frobenius-Euler
polynomialsHEF

n (x,y,z;λ ) are defined by the following
series representation:

HEF
n (x,y,z;λ ) =

n

∑
k=0

(

n
k

)

EF
n−k(λ ) Hk(x,y,z), (3)

which forz= 0 becomes

HEF
n (x,y,0;λ ) = n!

n

∑
k=0

[ k
2 ]

∑
r=0

EF
n−k(λ ) xr yk−2r

(n− k)! r! (k−2r)
. (4)

Similarly, we find that the 3-variable
Hermite-Frobenius-Genocchi polynomialsHGF

n (x,y,z;λ )
are defined by the following series representation:

HGF
n (x,y,0;λ ) = n!

n

∑
k=0

[ k
2 ]

∑
r=0

GF
n−k(λ ) xr yk−2r

(n− k)! r! (k−2r)
. (5)

Particularly, the aforementioned forms of
Hermite-Euler and Genocchi polynomials might be of
great importance in several branches of pure and applied
mathematics and physics, i.e. in various problems of
quantum mechanics and of probability theory.

The generalized and multi-variable forms of special
polynomials of mathematical physics have witnessed a
significant evolution during the recent years. In particular,

these polynomials provided new means of analysis for the
solutions of large classes of differential equations often
encountered in physical problems.

The study of differential equations is a wide field in
pure and applied mathematics, physics and engineering.
Pure mathematics focuses on the existence and
uniqueness of solutions, while applied mathematics
emphasizes the rigorous justification of the methods for
approximating solutions. Differential equations play an
important role in modelling virtually every physical,
technical, or biological process, from celestial motion to
bridge design, to interactions between neurons. Many
fundamental laws of physics and chemistry can be
formulated as differential equations. In biology and
economics, differential equations are used to model the
behavior of complex systems. The mathematical theory of
differential equations first developed together with the
sciences where the equations had originated and where
the results found applications. Recurrence relations have
their origins in the attempt to model population dynamics.
For example, the Fibonacci numbers were once used as a
model for the growth of a rabbit population. In digital
signal processing, recurrence relations can model
feedback in a system, where outputs at one time become
inputs for future time. Thus, they arise in infinite impulse
response (IIR) digital filters. The linear recurrence
relations are used extensively in both theoretical and
empirical economics.

Definition 1.3. Let {pn(x)}∞
n=0 be a sequence of

polynomials such that
deg(pn(x)) = n, (n∈ N0 := {0,1,2, . . .} . The differential
operatorsΦ−

n andΦ+
n satisfying the properties

Φ−
n {pn(x)}= pn−1(x), (6)

Φ+
n {pn(x)} = pn+1(x) (7)

are called derivative and multiplicative operators,
respectively and the polynomial sequence{pn(x)}∞

n=0 is
called quasi-monomial, if and only if equations (1.6) and
(1.7) are satisfied. Obtaining the derivative and
multiplicative operators of a given family of polynomials
give rise to differential equation such as

(Φ−
n+1Φ+

n ){pn(x)}= pn(x). (8)

The method is known as the factorization method [9,
18,11]. The main idea of the factorization method is to
find the derivative operatorΦ−

n and multiplicative
operator Φ+

n . The factorization method can be
equivalently treated as monomiality principle [4].

Integral equations arise in many scientific and
engineering problems. Mathematical physics models,
such as diffraction problems scattering in quantum
mechanics, conformal mapping and water waves also
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contributed to the creation of integral equations. By using
various methods, the differential and integral equations
for some families of special polynomials are introduced,
see [20,21,13,7,22]. The differential and integral
equations satisfied by these special polynomials may be
used to solve new emerging problems in different
branches of science. Motivated by the usefulness and
applications of multi-variable special families and their
differential and integral equations, in this article, we
derive some new classes of differential equations for the
3-variable Hermite-Frobenius-Euler and
Frobenius-Genocchi polynomials. The integral equations
for these polynomials are established. The corresponding
differential and integral equations for certain special cases
of these polynomials are also considered.

2 Recurrence relations and shift operators

In this section, we derive the recurrence relations and
shift operators for the 3VHFEPHEF

n (x,y,z;λ ) and
3VHFGP HGF

n (x,y,z;λ ). First, we derive the recurrence
relation for the 3VHFEPHEF

n (x,y,z;λ ) by proving the
following result:

Theorem 2.1. The 3-variable Hermite-Frobenius-Euler
polynomials HEF

n (x,y,z;λ ) satisfy the following
recurrence relation:

HEF
n+1(x,y,z;λ ) =

(

x− 1
1−λ

)

HEF
n (x,y,z;λ )+2ny

× HEF
n−1(x,y,z;λ )+3n(n−1)zHEF

n−2(x,y,z;λ )

+× 1
1−λ

n−1
∑

k=0

(n
k

)

HEF
k (x,y,z;λ ) eF

n−k(λ ),

(9)
where the numerical coefficientseF

k (λ ) are related to
Frobenius-Euler polynomialsEF

k (x;λ ) by following
expansion:

eF
k (λ ) :=−

k

∑
i=0

1
2i

(

k
i

)

EF
k−i

(

1
2

;λ
)

, eF
0 =−1,

eF
1 =−1−

1
1−λ

. (10)

Proof. Differentiating both sides of generating relation (1)
with respect tot and on simplification, we have

∞
∑

n=0
HEF

n+1(x,y,z;λ ) tn
n! =

(

x+2yt+3zt2
)

∞
∑

n=0
HEF

n (x,y,z;λ ) tn
n!

+ 1
1−λ

∞
∑

n=0

∞
∑

k=0
HEF

k (x,y,z;λ )eF
n (λ ) tn+k

n! k! .

(11)

which on simplifying and applying Cauchy-product rule in
the r.h.s. gives

∞
∑

n=0
HEF

n+1(x,y,z;λ ) tn
n! =

∞
∑

n=0
x HEF

n (x,y,z;λ ) tn
n!

+
∞
∑

n=0
2ny HEF

n−1(x,y,z;λ ) tn
n! +

∞
∑

n=0
3n(n−1)z

×HEF
n−2(x,y,z;λ ) tn

n! +
1

1−λ

∞
∑

n=0

n
∑

k=0

(n
k

)

×HEF
k (x,y,z;λ )eF

n−k(λ )
tn
n! .

(12)

Equating the coefficients of same powers oft on both
sides of above equation yields

HEF
n+1(x,y,z;λ ) = x HEF

n (x,y,z;λ )+2nyHEF
n−1(x,y,z;λ )

+3n(n−1)zHEF
n−2(x,y,z;λ )+ 1

1−λ

n
∑

k=0

(n
k

)

×HEF
k (x,y,z;λ )eF

n−k(λ ).
(13)

Solving the summation fork = n in equation (13) and
then usingeF

0 = −1 in the resultant equation, we are led
to assertion (9).

To find the shift operators for the 3VHFEP
HEF

n (x,y,z;λ ), we prove the following result:

Theorem 2.2. The shift operators for the 3-variable
Hermite-Frobenius-Euler polynomialsHEF

n (x,y,z;λ ) are
given by

x£
−
n :=

1
n

Dx, (14)

y£
−
n :=

1
n

D−1
x Dy, (15)

z£
−
n :=

1
n

D−2
x Dz, (16)

x£+n :=
(

x− 1
1−λ

)

+2yDx+3zD2
x+

1
1−λ ∑n−1

k=0 Dn−k
x

eF
n−k(λ )
(n−k)! ,

(17)

y£
+
n :=

(

x−
1

1−λ

)

+2yD−1
x Dy+3zD−2

x D2
y

+
1

1−λ

n−1

∑
k=0

D−(n−k)
x Dn−k

y
eF

n−k(λ )
(n− k)!

(18)

and

z£
+
n :=

(

x−
1

1−λ

)

+2yD−2
x Dz+3zD−4

x D2
z

+
1

1−λ

n−1

∑
k=0

D−2(n−k)
x Dn−k

z
eF

n−k(λ )
(n− k)!

, (19)

where

Dx :=
∂
∂x

, Dy :=
∂
∂y

, Dz :=
∂
∂z

and D−1
x :=

∫ x

0
f (ξ )dξ .
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Proof. Differentiating both sides of generating relation (1)
with respect tox and then equating the coefficients of like
powers oft on both sides of the resultant equation yields

∂
∂x

{HEF
n (x,y,z;λ )} = n HEF

n−1(x,y,z;λ ), (20)

Consequently, we have

x£−n {HEF
n (x,y,z;λ )} = 1

nDx{HEF
n (x,y,z;λ )} = HEF

n−1(x,y,z;λ ),
(21)

which proves assertion (14).

Differentiating both sides of generating relation (1)
with respect toy and then equating the coefficients of like
powers of t on both sides of the resultant equation, it
follows that

∂
∂y

{HEF
n (x,y,z;λ )} = n(n−1) HEF

n−2(x,y,z;λ ). (22)

The above equation can also be written as

∂
∂y

{HEF
n (x,y,z;λ )} = n

∂
∂x

{HEF
n−1(x,y,z;λ )}, (23)

which finally gives

y£
−
n {HEF

n (x,y,z;λ )} =
1
n

D−1
x Dy{HEF

n (x,y,z;λ )}

= HEF
n−1(x,y,z;λ ). (24)

Thus assertion (15) is proved.

Again, differentiating both sides of generating relation
(1) with respect toz and then equating the coefficients of
like powers oft on both sides of the resultant equation, it
follows that

∂
∂z

{HEF
n (x,y,z;λ )} = n(n−1)(n−2) HEF

n−3(x,y,z;λ ).
(25)

The above equation can also be written as

∂
∂z

{HEF
n (x,y,z;λ )} = n

∂ 2

∂x2{HEF
n−1(x,y,z;λ )}, (26)

which finally gives

z£
−
n {HEF

n (x,y,z;λ )} =
1
n

D−2
x Dz{HEF

n (x,y,z;λ )}

= HEF
n−1(x,y,z;λ ). (27)

Thus yields assertion (16).

In order to derive the expression for raising operator
(17), the following relation is used:

HEF
k (x,y,z;λ ) = (x£−k+1 x£−k+2 . . .x£−n−1 x£−n ){HEF

n (x,y,z;λ )},
(28)

which in view of equation (21) can be simplified as:

HEF
k (x,y,z;λ ) =

k!
n!

Dn−k
x {HEF

n (x,y,z;λ )}. (29)

Making use of equation (29) in recurrence relation (9),
we find

HEF
n+1(x,y,z;λ ) =

((

x−
1

1−λ

)

+2yDx+3zD2
x

+
1

1−λ

n−1

∑
k=0

Dn−k
x

eF
n−k(λ )
(n− k)!

)

HEF
n (x,y,z;λ ) (30)

which yields expression (17) of raising operatorx£+n .

Now in order to derive the expression for raising
operator (18), the following relation is used:

HEF
k (x,y,z;λ ) = (y£−k+1 y£−k+2 . . . y£−n−1 y£−n ){HEF

n (x,y,z;λ )},
(31)

which in view of equation (24) can be simplified as:

HEF
k (x,y,z;λ ) =

k!
n!

D−(n−k)
x D(n−k)

y {HEF
n (x,y,z;λ )}.

(32)
Making use of equation (32) in recurrence relation (9),

we find

HEF
n+1(x,y,z;λ ) =

((

x− 1
1−λ

)

+2yD−1
x Dy

+3zD−2
x D2

y +
1

1−λ

n−1
∑

k=0
D−(n−k)

x Dn−k
y

×
eF
n−k(λ )
(n−k)!

)

HEF
n (x,y,z;λ ),

(33)

which yields expression (18) of raising operatory£+n .

Next, to find the raising operatorz£+n , the following
relation is used:

HEF
k (x,y,z;λ ) = (z£

−
k+1 z£

−
k+2 . . . z£

−
n−1 z£−n ){HEF

n (x,y,z;λ )},
(34)

which in view of equation (27) can be simplified as:

HEF
k (x,y,z;λ ) =

k!
n!

D−2(n−k)
x D(n−k)

z {HEF
n (x,y,z;λ )}.

(35)
Making use of equation (35) in recurrence relation (9),

we find

HEF
n+1(x,y,z;λ ) =

((

x− 1
1−λ

)

+2yD−2
x Dz+3zD−4

x D2
z

+ 1
1−λ

n−1
∑

k=0
D−2(n−k)

x Dn−k
z

×
eF
n−k(λ )
(n−k)!

)

HEF
n (x,y,z;λ )

(36)
which yields expression (19) of raising operatorz£+n .
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Next, we derive the recurrence relation for the
3VHFGPHGF

n (x,y,z;λ ) by proving the following result:

Theorem 2.3. The 3-variable Hermite-Frobenius-
Genocchi polynomials HGF

n (x,y,z;λ ) satisfy the
following recurrence relation:

HGF
n+1(x,y,z;λ ) =

(

x− n+1
2(1−λ )

)

HGF
n (x,y,z;λ )

+2nyHGF
n−1(x,y,z;λ )+3n(n−1)zHGF

n−2(x,y,z;λ )

− 1
1−λ

n+1
∑

k=2

(n+1
k

)

HGF
n−k+1(x,y,z;λ ) gF

k (λ ),

(37)
where the numerical coefficientsgF

k (λ ) related to
Frobenius-Genocchi polynomialsGF

n (x;λ ) given by
following expansion:

gF
k (λ ) :=

k

∑
i=0

1
2i

(

k
i

)

GF
k−i

(1
2

;λ
)

,

gF
0 = 0, gF

1 =
1
2
. (38)

Proof. Differentiating both sides of generating relation (2)
with respect tot and on simplification, we have

∞
∑

n=0
HGF

n+1(x,y,z;λ ) tn
n! =

(

x+2yt+3zt2
)

∞
∑

n=0
HGF

n (x,y,z;λ ) tn
n!

− 1
1−λ

∞
∑

n=0

∞
∑

k=0
HGF

n (x,y,z;λ )gF
k (λ )

tn+k

n! k! ,

(39)
which on further simplifying and applying
Cauchy-product rule in the r.h.s. yields

∞
∑

n=0
HGF

n+1(x,y,z;λ ) tn
n! =

∞
∑

n=0
x HGF

n (x,y,z;λ ) tn
n!

+
∞
∑

n=0
2ny HGF

n−1(x,y,z;λ ) tn
n! +

∞
∑

n=0
3n(n−1)z

HGF
n−2(x,y,z;λ ) tn

n! −
1

1−λ

∞
∑

n=0

n
∑

k=0

(n
k

)

×HGF
n−k(x,y,z;λ )gF

k (λ )
tn
n! .

(40)
Equating the coefficients of same powers oft on both

sides of above equation yields

HGF
n+1(x,y,z;λ ) = x HGF

n (x,y,z;λ )+2nyHGF
n−1(x,y,z;λ )

+3n(n−1)zHGF
n−2(x,y,z;λ )− 1

1−λ

n
∑

k=0

(n
k

)

×HGF
n−k(x,y,z;λ )gF

k (λ ).
(41)

Now, replacingn by n+1 in the summation of above
equation, we find

HGF
n+1(x,y,z;λ ) = x HGF

n (x,y,z;λ )+2nyHGF
n−1(x,y,z;λ )

+3n(n−1)zHGF
n−2(x,y,z;λ )− 1

1−λ

n+1
∑

k=0

(n+1
k

)

×HGF
n+1−k(x,y,z;λ )gF

k (λ ),
(42)

which on solving the summation fork = 0, 1 and then
usinggF

0 = 0 andgF
1 = 1

2 in resultant equation, we are led

to assertion (37).

To find the shift operators for the
Hermite-Frobenius-Genocchi polynomialsHGF

n (x,y,z;λ ),
we prove the following result:

Theorem 2.4. The shift operators for the 3-variable
Hermite-Frobenius-Genocchi polynomialsHGF

n (x,y,z;λ )
are given by

x£
−
n :=

1
n

Dx, (43)

y£
−
n :=

1
n

D−1
x Dy, (44)

z£
−
n :=

1
n

D−2
x Dz, (45)

x£
+
n :=

(

x−
n+1

2(1−λ )

)

+2yDx+3zD2
x

−
n+1
1−λ

n+1

∑
k=2

Dk−1
x

gF
k (λ )
k!

, (46)

y£
+
n :=

(

x−
n+1

2(1−λ )

)

+2yD−1
x Dy+3zD−2

x D2
y

−
n+1
1−λ

n+1

∑
k=2

D−(k−1)
x Dk−1

y
gF

k (λ )
k!

(47)

and

z£
+
n :=

(

x−
n+1

2(1−λ )

)

+2yD−2
x Dz+3zD−4

x D2
z

−
n+1
1−λ

n+1

∑
k=2

D−2(k−1)
x Dk−1

z
gF

k (λ )
k!

, (48)

where

Dx :=
∂
∂x

, Dy :=
∂
∂y

, Dz :=
∂
∂z

and D−1
x :=

∫ x

0
f (ξ )dξ .

Proof. Differentiating both sides of generating relation
(2) with respect tox and then equating the coefficients of
like powers oft on both sides of the resultant equation, it
follows that

∂
∂x

{HGF
n (x,y,z;λ )} = n HGF

n−1(x,y,z;λ ), (49)

Consequently, we have

x£−n {HGF
n (x,y,z;λ )} = 1

nDx{HGF
n (x,y,z;λ )} = HGF

n−1(x,y,z;λ ),
(50)

which proves assertion (43).

Again, differentiating both sides of generating relation
(2) with respect toy and then equating the coefficients of
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like powers oft on both sides of the resultant equation, it
follows that

∂
∂y

{HGF
n (x,y,z;λ )} = n(n−1) HGF

n−2(x,y,z;λ ). (51)

The above equation can also be written as

∂
∂y

{HGF
n (x,y,z;λ )} = n

∂
∂x

{HGF
n−1(x,y,z;λ )}, (52)

which finally gives

y£
−
n {HGF

n (x,y,z;λ )} =
1
n

D−1
x Dy{HGF

n (x,y,z;λ )}

= HGF
n−1(x,y,z;λ ). (53)

Thus assertion (44) is proved.

Again, differentiating both sides of generating relation
(2) with respect toz and then equating the coefficients of
like powers oft on both sides of the resultant equation, it
follows that

∂
∂z

{HGF
n (x,y,z;λ )} = n(n−1)(n−2) HGF

n−3(x,y,z;λ ).
(54)

The above equation can also be written as

∂
∂z

{HGF
n (x,y,z;λ )} = n

∂ 2

∂x2{HGF
n−1(x,y,z;λ )}, (55)

which finally gives

z£
−
n {HGF

n (x,y,z;λ )} =
1
n

D−2
x Dz{HGF

n (x,y,z;λ )}

= HGF
n−1(x,y,z;λ ). (56)

Thus yields assertion (45).

In order to derive the expression for raising operator
(46), the following relation is used:

HGF
n−k+1(x,y,z;λ ) = (x£

−
n+2−k x£

−
n+3−k . . . x£

−
n−1 x£

−
n )

{HGF
n (x,y,z;λ )}, (57)

which in view of equation (50) can be simplified as:

HGF
n−k+1(x,y,z;λ ) =

(n+1− k)!
n!

Dk−1
x {HGF

n (x,y,z;λ )}.
(58)

Making use of equation (58) in recurrence relation
(37), we find

HGF
n+1(x,y,z;λ ) =

((

x−
n+1

2(1−λ )

)

+2yDx+3zD2
x

−
n+1
1−λ

n+1

∑
k=2

Dk−1
x

gF
k (λ )
k!

)

HGF
n (x,y,z;λ ), (59)

which yields expression (46) of raising operatorx£+n .

Now in order to derive the expression for raising
operator (47), the following relation is used:

HGF
n+1−k(x,y,z;λ ) = (y£

−
n+2−k y£

−
n+3−k . . . y£

−
n−1 y£

−
n )

× {HEF
n (x,y,z;λ )}, (60)

which in view of equation (53) can be simplified as:

HGF
n−k+1(x,y,z;λ ) = (n−k+1)!

n! D−(k−1)
x Dk−1

y {HGF
n (x,y,z;λ )}.

(61)
Making use of equation (61) in recurrence relation

(37), we find

HGF
n+1(x,y,z;λ ) =

(

(

x− n+1
2(1−λ )

)

+2yD−1
x Dy

3zD−2
x D2

y −
n+1
1−λ

n+1
∑

k=2
D−(k−1)

x Dk−1
y

gF
k (λ )
k!

)

× HGF
n (x,y,z;λ ),

(62)

which yields expression (47) of raising operatory£+n .

Next, to find the raising operatorz£+n , the following
relation is used:

HGF
n−k+1(x,y,z;λ ) = (z£

−
n+2−k z£

−
n+3−k . . . z£

−
n−1 z£

−
n )

{HEF
n (x,y,z;λ )}, (63)

which in view of equation (56) can be simplified as:

HGF
n−k+1(x,y,z;λ ) = (n−k+1)!

n! D−2(k−1)
x Dk−1

z {HGF
n (x,y,z;λ )}.

(64)
Making use of equation (64) in recurrence relation

(37), we find

HGF
n+1(x,y,z;λ ) =

(

(

x− n+1
2(1−λ )

)

+2yD−2
x Dz+3zD−4

x D2
z

− n+1
1−λ

n+1
∑

k=2
D−2(k−1)

x Dk−1
z

gF
k (λ )
k!

)

HGF
n (x,y,z;λ ),

(65)
which yields expression (48) of raising operatorz£+n .

In the next section, we derive some classes of
differential equations for the 3VHFEPHEF

n (x,y,z;λ ) and
3VHFGPHGF

n (x,y,z;λ ).
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3 Differential, integro differential and partial
differential equations

We derive the differential, integro-differential and partial
differential equations for the 3VHFEPHEF

n (x,y,z;λ ) and
3VHFGPHGF

n (x,y,z;λ ). First, we derive the differential
equation for the 3VHFEPHEF

n (x,y,z;λ ) by proving the
following result:

Theorem 3.1. The 3-variable Hermite-Frobenius-Euler
polynomials HEF

n (x,y,z;λ ) satisfy the following
differential equation:

(

(

x−
1

1−λ

)

Dx+2yD2
x+3zD3

x+
1

1−λ

n−1

∑
k=0

Dn−k+1
x

eF
n−k(λ )
(n− k)!

−n

)

HEF
n (x,y,z;λ ) = 0. (66)

Proof. Use of expressions (14) and (17) of the shift
operators in the the following factorization relation:

xL
−
n+1 xL

+
n {HEF

n (x,y,z;λ )} = HEF
n (x,y,z;λ ) (67)

we are led to assertion (66).

Theorem 3.2. The 3-variable Hermite-Frobenius-Euler
polynomials HEF

n (x,y,z;λ ) satisfy the following
integro-differential equations:

(

(

x− 1
1−λ

)

Dy+2D−1
x Dy+2yD−1

x D2
y +3zD−2

x D3
y

+ 1
1−λ

n−1
∑

k=0
D−(n−k)

x Dn−k+1
y

eF
n−k(λ )
(n−k)!

−(n+1)Dx

)

HEF
n (x,y,z;λ ) = 0,

(68)

(

(

x− 1
1−λ

)

Dz+2yD−2
x D2

z +3D−4
x D2

z +3zD−4
x D3

z

+ 1
1−λ

n−1
∑

k=0
D−2(n−k)

x Dn−k+1
z

eF
n−k(λ )
(n−k)!

−(n+1)D2
x

)

HEF
n (x,y,z;λ ) = 0,

(69)

(

(

x− 1
1−λ

)

Dy+2D−2
x Dz(1+ yDy)+3zD−4

x DyD2
z

+ 1
1−λ

n−1
∑

k=0
D−2(n−k)

x Dn−k
z Dy

eF
n−k(λ )
(n−k)!

−(n+1)Dx

)

HEF
n (x,y,z;λ ) = 0

(70)

and
(

(

x− 1
1−λ

)

Dz+2yD−1
x DyDz+3D−2

x D2
y(1+ zDz)

+ 1
1−λ ∑n−1

k=0 D−(n−k)
x Dn−k

y Dz
eF
n−k(λ )
(n−k)!

−(n+1)D2
x

)

HEF
n (x,y,z;λ ) = 0.

(71)
Proof. Use of expressions (15) and (18) of shift operators
in the following factorization relation:

yL
−
n+1 yL

+
n {HEF

n (x,y,z;λ )} = HEF
n (x,y,z;λ ), (72)

yields assertion (68).

Use of expressions (16) and (19) of shift operators in
the following factorization relation:

zL
−
n+1 zL

+
n {HEF

n (x,y,z;λ )} = HEF
n (x,y,z;λ ), (73)

yields assertion (69).

Use of expressions (15) and (19) of shift operators in
the following factorization relation:

yL
−
n+1 zL

+
n {HEF

n (x,y,z;λ )} = HEF
n (x,y,z;λ ), (74)

yields assertion (70).

Use of expressions (16) and (18) of shift operators in
the following factorization relation:

zL
−
n+1 yL

+
n {HEF

n (x,y,z;λ )} = HEF
n (x,y,z;λ ), (75)

yields assertion (71).
Theorem 3.3. The 3-variable Hermite-Frobenius-Euler
polynomialsHEF

n (x,y,z;λ ) satisfy the following partial
differential equations:
((

x− 1
1−λ

)

Dn
xDy+nDn−1

x Dy+2Dn−1
x Dy+2yDn−1

x D2
y

+3zDn−2
x D3

y +
1

1−λ

n−1
∑

k=0
Dk

xD
n−k+1
y

eF
n−k(λ )
(n−k)!

−(n+1)Dn+1
x

)

HEF
n (x,y,z;λ ) = 0,

(76)
((

x− 1
1−λ

)

D2n
x Dz+2nD2n−1

x Dz+2yD2(n−1)
x D2

z

+3D2(n−2)
x D2

z +3zD2(n−2)
x D3

z +
1

1−λ

n−1
∑

k=0
D2k

x Dn−k+1
z

×
eF
n−k(λ )
(n−k)! − (n+1)D2(n+1)

x

)

HEF
n (x,y,z;λ ) = 0,

(77)
((

x− 1
1−λ

)

D2n
x Dy+2nD2n−1

x Dy+2D2(n−1)
x Dz+2yD2(n−1)

x

DyDz+3zD2(n−2)
x DyD2

z +
1

1−λ

n−1
∑

k=0
D2k

x Dn−k
z Dy

eF
n−k(λ )
(n−k)!

−(n+1)D2n+1
x

)

HEF
n (x,y,z;λ ) = 0

(78)
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and
((

x− 1
1−λ

)

Dn
xDz+nDn−1

x Dz+2yDn−1
x DyDz+3Dn−2

x D2
y

+3zDn−2
x D2

yDz+
1

1−λ

n−1
∑

k=0
Dk

xD
n−k
y Dz

eF
n−k(λ )
(n−k)!

−(n+1)Dn+2
x

)

HEF
n (x,y,z;λ ) = 0.

(79)
Proof. On differentiation of integro-differential equations
(68) and (69)n and 2n times with respect tox yield
assertions (76) and (77), respectively.

Again, on differentiation of integro-differential
equations (70) and (71) 2n andn times with respect tox
yield assertions (78) and (79), respectively.

By making similar approach, we derive the
differential, integro-differential and partial differential
equations for the 3VHFGPHGF

n (x,y,z;λ ):

Theorem 3.4. The 3-variable Hermite-Frobenius-
Genocchi polynomials HGF

n (x,y,z;λ ) satisfy the
following differential equation:
(

(

x−
n+1

2(1−λ )

)

Dx+2yD2
x+3zD3

x −
n+1
1−λ

n+1

∑
k=2

Dk
x

gF
k (λ )
k!

−n

)

HGF
n (x,y,z;λ ) = 0. (80)

Theorem 3.5. The 3-variable Hermite-Frobenius-
Genocchi polynomials HGF

n (x,y,z;λ ) satisfy the
following integro-differential equations:
(

(

x− n+1
2(1−λ )

)

Dy+2D−1
x Dy+2yD−1

x D2
y

+3zD−2
x D3

y −
n+1
1−λ

n+1
∑

k=2
D−(k−1)

x Dk
y

gF
k (λ )
k!

−(n+1)Dx

)

HGF
n (x,y,z;λ ) = 0,

(81)

(

(

x− n+1
2(1−λ )

)

Dz+2yD−2
x D2

z +3D−4
x D2

z

+3zD−4
x D3

z −
n+1
1−λ

n+1
∑

k=2
D−2(k−1)

x Dk
z

gF
k (λ )
k!

−(n+1)D2
x

)

HGF
n (x,y,z;λ ) = 0,

(82)

(

(

x− n+1
2(1−λ )

)

Dy+2D−2
x Dz(1+ yDy)+3zD−4

x DyD2
z

− n+1
1−λ

n+1
∑

k=2
D−2(k−1)

x Dk−1
z Dy

gF
k (λ )
k!

−(n+1)Dx

)

HGF
n (x,y,z;λ ) = 0

(83)

and
(

(

x− n+1
2(1−λ )

)

Dz+2yD−1
x DyDz+3D−2

x D2
y(1+ zDz)

− n+1
1−λ

n+1
∑

k=2
D−(k−1)

x Dk−1
y Dz

gF
k (λ )
k!

−(n+1)D2
x

)

HGF
n (x,y,z;λ ) = 0.

(84)

Theorem 3.6 The 3-variable Hermite-Frobenius-
Genocchi polynomials HGF

n (x,y,z;λ ) satisfy the
following partial differential equations:

(

(

x− n+1
2(1−λ )

)

Dn
xDy+nDn−1

x Dy+2Dn−1
x Dy+2yDn−1

x

D2
y +3zDn−2

x D3
y −

n+1
1−λ

n+1
∑

k=2
Dn−k+1

x Dk
y

gF
k (λ )
k!

−(n+1)Dn+1
x

)

HGF
n (x,y,z;λ ) = 0,

(85)

(

(

x− n+1
2(1−λ )

)

D2n
x Dz+2nD2n−1

x Dz+2yD2(n−1)
x D2

z

+3D2(n−2)
x D2

z +3zD2(n−2)
x D3

z −
n+1
1−λ

n+1
∑

k=2
Dk

zD
2(n−k+1)
x

gF
k (λ )
k! − (n+1)D2(n+1)

x

)

HGF
n (x,y,z;λ ) = 0,

(86)

(

(

x− n+1
2(1−λ )

)

D2n
x Dy+2nD2n−1

x Dy+2D2(n−1)
x Dz+

2yD2(n−1)
x DyDz+3zD2(n−2)

x DyD2
z −

n+1
1−λ

n+1
∑

k=2
D2(n−k+1)

x

Dk−1
z Dy

gF
k (λ )
k! − (n+1)D2n+1

x

)

HGF
n (x,y,z;λ ) = 0

(87)

(

(

x− n+1
2(1−λ )

)

Dn
xDz+nDn−1

x Dz+2yDn−1
x DyDz+3Dn−2

x

D2
y +3zDn−2

x D2
yDz−

n+1
1−λ

n+1
∑

k=2
Dk−1

y Dn−k+1
x Dz

gF
k (λ )
k! − (n+1)Dn+2

x

)

HGF
n (x,y,z;λ ) = 0.

(88)

Remark 3.1. Taking λ = −1 in Theorems 2.1, 2.2, 3.1,
3.2 and 3.3, we get the corresponding recurrence relation,
shift operators and differential equations for the
3-variable Hermite-Euler polynomialsHEn(x,y,z), for
this see [20].
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Remark 3.2. Taking λ = −1 in Theorems 2.3, 2.4, 3.4,
3.5 and 3.6, we get the corresponding recurrence relation,
shift operators and differential equations for the
3-variable Hermite-Genocchi polynomialsHGn(x,y,z).
These results are new. For the lack of space, we omit
these.

In the next section, we derive the integral equations for
the 3VHFEPHEF

n (x,y,z;λ ) and 3VHFGPHGF
n (x,y,z;λ ).

4 Volterra integral equations

To derive the volterra integral equations for the 3VHFEP
and 3VHFGP, we prove the following results:

Theorem 4.1. The 3-variable Hermite-Frobenius-Euler
polynomials HEF

n (x,y,z;λ ) satisfy the following
homogeneous Volterra integral equation:

Ψ(x) =− 6(1−λ )
eF
3 (λ )

(

3zn(n−1)(n−2) H E F
n−3(X ,Y ,λ )

+2yn(n−1)(n−2)H E F
n−3(X ,Y ,λ )x

+2yn(n−1) H E F
n−2(X ,Y ,λ )

+
(

x− 1
1−λ

)(

n(n−1)(n−2) H E F
n−3(X ,Y ,λ ) x2

2!

+n(n−1)H E F
n−2(X ,Y ,λ )x+n H E F

n−1(X ,Y ,λ )
)

−n(n−1)(n−2) H E F
n−3(X ,Y ,λ ) x3

2! 3!

−n(n−1) H E F
n−2(X ,Y ,λ ) x2

2! −n H E F
n−1(X ,Y ,λ )x

−H E F
n (X ,Y ,λ )

)

+
x
∫

0

(

− 6(1−λ )
eF
3 (λ )

(

3z+2y

(x− ξ )+
(

x− 1
1−λ

)

(x−ξ )2
2!

)

−n(x−ξ )3
3!

)

Ψ(ξ )dξ .
(89)

Proof. We first consider the fourth order differential
equation for the 3VHFEPHEF

n (x,y,z;λ ) of the following
form:

(

D4
x +

6(1−λ )
eF
3 (λ )

(

3zD3
x +2yD2

x+
(

x− 1
1−λ

)

Dx

−n
)

)

HEF
n (x,y,z;λ ) = 0.

(90)

Next, we find the following initial conditions:

HEF
n (x,y,0;λ ) = HEF

n (x,y;λ ) = n!
n
∑

k=0

[ k
2 ]

∑
r=0

EF
n−k(λ ) xr yk−2r

(n−k)! r! (k−2r)

:= H E F
n (X ,Y ,λ ),

d
dxHEF

n (x,y,0;λ ) = n HEF
n−1(x,y,0;λ )

= n(n−1)!
n−1
∑

k=0

[ k
2 ]

∑
r=0

EF
n−1−k(λ ) xr yk−2r

(n−1−k)! r! (k−2r)

:= n H E F
n−1(X ,Y ,λ ),

d2

dx2 HEF
n (x,y,0;λ ) = n(n−1) HEF

n−2(x,y,0;λ )

= n(n−1)(n−2)!
n−2
∑

k=0

[ k
2 ]

∑
r=0

EF
n−2−k(λ ) xr yk−2r

(n−2−k)! r! (k−2r) ,

:= n(n−1) H E F
n−2(X ,Y ,λ ),

d3

dx3 HEF
n (x,y,0;λ ) = n(n−1)(n−2) HEF

n−3(x,y,0;λ )

= n(n−1)(n−2)(n−3)!
n−3
∑

k=0

[ k
2 ]

∑
r=0

EF
n−3−k(λ ) xr yk−2r

(n−3−k)! r! (k−2r)

:= n(n−1)(n−2) H E F
n−3(X ,Y ,λ ),

(91)
respectively, where

H E
F
s (X ,Y ,λ ) := s!

s

∑
k=0

[ k
2 ]

∑
r=0

EF
s−k(λ ) xr yk−2r

(s− k)! r! (k−2r)
(92)

for s= n, n−1, n−2, n−3.

Now, consider

D4
xHEF

n (x,y,z;λ ) =Ψ(x). (93)

Integrating the above equation and by use of initial
conditions (91), we have

d3

dx3 HEF
n (x,y,z;λ ) =

x
∫

0
Ψ(ξ )dξ +n(n−1)(n−2)

H E F
n−3(X ,Y ,λ ),

d2

dx2 HEF
n (x,y,z;λ ) =

x
∫

0
Ψ(ξ )dξ 2+n(n−1)(n−2)

H E F
n−3(X ,Y ,λ )x+n(n−1) H E F

n−2(X ,Y ,λ ),

d
dxHEF

n (x,y,z;λ ) =
x
∫

0
Ψ(ξ )dξ 3+n(n−1)(n−2)

H E F
n−3(X ,Y ,λ ) x2

2! +n(n−1)

H E F
n−2(X ,Y ,λ )x+n H E F

n−1(X ,Y ,λ ),

HEF
n (x,y,z;λ ) =

x
∫

0
Ψ(ξ )dξ 4+n(n−1)(n−2) H E F

n−3(X ,Y ,λ )

x3

2! 3! +n(n−1) H E F
n−2(X ,Y ,λ ) x2

2!
+n H E F

n−1(X ,Y ,λ )x+H E F
n (X ,Y ,λ ),

(94)
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Use of above equations in differential equation (90),
we find

Ψ (x) =− 6(1−λ )
eF
3 (λ )

(

3z
( x
∫

0
Ψ(ξ )dξ

+n(n−1)(n−2) H E F
n−3(X ,Y ,λ )

)

+2y
( x
∫

0
Ψ(ξ )dξ 2+n(n−1)(n−2)H E F

n−3(X ,Y ,λ )x

+n(n−1) H E F
n−2(X ,Y ,λ )

)

+
(

x− 1
1−λ

)

×
( x
∫

0
Ψ(ξ )dξ 3+n(n−1)(n−2)H E F

n−3(X ,Y ,λ ) x2

2!

+n(n−1) H E F
n−2(X ,Y ,λ )x+n H E F

n−1(X ,Y ,λ )
))

+ 6n(1−λ )
eF
3 (λ )

( x
∫

0
Ψ(ξ )dξ 4+n(n−1)(n−2)H E F

n−3(X ,Y ,λ )

× x3

2! 3! +n(n−1) H E F
n−2(X ,Y ,λ )

× x2

2! +n H E F
n−1(X ,Y ,λ )x+H E F

n (X ,Y ,λ )
)

,

(95)
which on simplifying and then integration of the resultant
equation using the following formula:

x
∫

a

f (ξ ) dξ n =

x
∫

a

(x− ξ )n−1

(n−1)!
f (ξ )dξ , (96)

yields assertion (89).

Next, we derive the integral equation for the 3VHFGP
HGF

n (x,y,z;λ ). For this we prove the following result:
Theorem 4.2. The 3-variable Hermite-Frobenius-
Genocchi polynomials HGF

n (x,y,z;λ ) satisfy the
following homogeneous Volterra integral equation:

Ψ(x) = 4!(1−λ )
(n+1)gF

4 (λ )

(

3zn(n−1)(n−2) H G F
n−3(X ,Y ,λ )

+2yn(n−1)(n−2)H G F
n−3(X ,Y ,λ )x

+2yn(n−1) H G F
n−2(X ,Y ,λ )+

(

x− n+1
2(1−λ )

)

×
(

n(n−1)(n−2) H G F
n−3(X ,Y ,λ ) x2

2!

+n(n−1)H G F
n−2(X ,Y ,λ )x+n H G F

n−1(X ,Y ,λ )
)

−n(n−1)(n−2) H G F
n−3(X ,Y ,λ ) x3

2! 3! −n(n−1)

H G F
n−2(X ,Y ,λ ) x2

2! −n H G F
n−1(X ,Y ,λ )x

−H G F
n (X ,Y ,λ )

)

+
x
∫

0

4!(1−λ )
(n+1)gF

4 (λ )

(

3z+2y

(x− ξ )+
(

x− n+1
2(1−λ )

)

(x−ξ )2
2! −n(x−ξ )3

3!

)

Ψ(ξ )dξ .
(97)

Proof. We first consider the fourth order differential
equation for the 3VHFGPHGF

n (x,y,z;λ ) of the following
form:

(

D4
x −

4!(1−λ )
(n+1)gF

4 (λ )

(

3zD3
x +2yD2

x+
(

x− n+1
2(1−λ )

)

Dx

−n
)

)

HGF
n (x,y,z;λ ) = 0.

(98)

Using the similar approach as in Theorem 4.1, we get
assertion (97). Thus we omit it.

Remark 4.1. Taking λ = −1 and using relations
H E F

n (X ,Y ,−1) = H En(X ,Y ) and eF
3 (−λ ) = e3 in

equation (4.1), we the following homogeneous volterra
integral equation for the 3-variable Hermite-Euler
polynomialsHEn(x,y,z):

Ψ (x) =− 12
e3

(

3zn(n−1)(n−2) H En−3(X ,Y )

+2yn(n−1)(n−2) H En−3(X ,Y )x

+2yn(n−1) H En−2(X ,Y )+
(

x− 1
2

)

×
(

n(n−1)(n−2) H En−3(X ,Y ) x2

2! +n(n−1)

H En−2(X ,Y )x+n H En−1(X ,Y )
)

−n(n−1)(n−2) H En−3(X ,Y ) x3

2! 3!)

−n(n−1H En−2(X ,Y ) x2

2! −n H En−1(X ,Y )x

−H En(X ,Y )
)

+
x
∫

0

(

− 12
e3

(

3z+2y(x− ξ )

+
(

x− 1
2

)

(x−ξ )2
2!

)

−n(x−ξ )3
3!

)

Ψ (ξ )dξ .

(99)

Remark 4.2 Taking λ = −1 and using relations
H G F

n (X ,Y ,−1) = H Gn(X ,Y ) andgF
4 (−λ ) = g4 in

equation (4.9), we the following homogeneous volterra
integral equation for the 3-variable Hermite-Genocchi
polynomialsHGn(x,y,z):

Ψ(x) = 48
(n+1)g4

(

3zn(n−1)(n−2) H Gn−3(X ,Y )

+2yn(n−1)(n−2)H Gn−3(X ,Y )x

+2yn(n−1) H Gn−2(X ,Y )+
(

x− n+1
4

)

×
(

n(n−1)(n−2) H Gn−3(X ,Y ) x2

2!

+n(n−1)H Gn−2(X ,Y )x+n H Gn−1(X ,Y )
)

−n(n−1)(n−2) H Gn−3(X ,Y ) x3

2! 3! −n(n−1)

H Gn−2(X ,Y ) x2

2! −n H G F
n−1(X ,Y )x

−H Gn(X ,Y )
)

+
x
∫

0

48
(n+1)g4

(

3z+2y(x− ξ )

+
(

x− n+1
4

)

(x−ξ )2
2! −n(x−ξ )3

3!

)

Ψ(ξ )dξ .
(100)

Further, we remark that the corresponding results for
the other special cases of polynomials given in Table 1 can
be obtained by substituting suitable values ofλ , x, y, z.
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