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Abstract: The main goal of the present article is to derive some newsetasf differential equations including partial and integr
differential equations for the 3-variable Hermite-FrolosnEuler and Frobenius-Genocchi polynomials by use offélegorization
method. We also perform a further investigation for aforetiemed polynomials and derive corresponding homogen&blierra
integral equations. The differential equations for thesrifies of polynomials contain, as their special casesdliffierential equations
for some known special polynomials. Moreover, the inclnsibintegral equations is a new and recent investigatiorckvhdds some
extra attention to these polynomials.
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1 Introduction of pure and applied mathematics.

i o i The results including explicit relations, summation
Several investigations have done to introduce and studyyrmulae and symmetric identities related to the
classical and generalized forms of Apostol type 3ariable Hermite-Apostol type Frobenius-Euler
polynomials systematically via various analytic meanspolynomials y(a)(x y.ZU,A) are derived in 3. Here

i 1 H n y Yy e My . ’
and generating functions methotl§[10,1,2,14,8]. Very we focus on establishing differential and associated

recently, Araci et. al. 3] introduced and studied a intearal tions related to th vnomials. W
generalized class of 3-variable Hermite-Apostol type egral equations related to ) ese polynomials. vve
consider the following definitions:

Frobenius-Euler polynomials systematically by use of
generating method. The following class of polynomialsis . .
introduced by convoluting the 3-variable Hermite Definition 1.1. For A € C, A # 1, the 3-variable

polynomials Hn(x,y,z) [5] with the Apostol type Hélr:mite-F.r)\obenius(-jE?Ierd by th p?l3|/|n0mials(3VHFEP)
Frobenius-Euler polynomialgzrga)(x;u;)\) [19,17]. The Funr}:Ei)éz’:Z' ) are defined by the following generating

convoluted special polynomials are important as they
possess important properties such as recurrence and 1-2 28 & tn
(5=5) &= = S weltxyzn. @

explicit relations, summation formulae, symmetric and Y i
B n=0 :

convolution identities, algebraic properties etc. These
polynomials are useful and possess potential for
applications in certain problems of number theory, Definition 1.2. For A € C, A # 1, the 3-variable

combinatorics, classical and numerical analysis,Hermite-Frobenius-Genocchi polynomials (3VHFGP)
theoretical physics, approximation theory and other fieldsyGf (x,y,zA) are defined by the following generating
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function: these polynomials provided new means of analysis for the
solutions of large classes of differential equations often

1-A)t 2 hd th i i
(( ) ) 2z _ ZJHGE ¥z (@) encountered in physical problems.
pa !

eg—A
The study of differential equations is a wide field in
Next, we consider some special cases of thepure and applied mathematics, physics and engineering.
3-variable Hermite-Frobenius-Euler and GenocchiPure mathematics focuses on the existence and
polynomials HEf (x,y,zA) and wGf(x,y,zA). We  uniqueness of solutions, while applied mathematics

differential equations first developed together with the
el sciences where the equations had originated and where
z the results found applications. Recurrence relations have
their origins in the attempt to model population dynamics.

A=—1x=2x Hermite-Euler polynomials

present these special cases in Table 1. emphasizes the rigorous justification of the methods for
approximating solutions. Differential equations play an

Table 1. Special cases of 3VHFEP and 3VHFGP important role in modelling virtually every physical,
technical, or biological process, from celestial motion to
S.No. Cases Name of polynomial Generating function bl’ldge design, tO interaCtiOI’lS betWeen neurons. Many
. - el Hernite-Eulrpolynomias§ 12 ( g2 ) P2 fundamental laws of physics and chemistry can be
S eyt formulated as differential equations. In biology and
. . . "0 2 economics, differential equations are used to model the

A=-12=0 2-variable Hermite-Euler polynomials ( 1 ) Xyt . .
S e behavior of complex systems. The mathematical theory of
(

L 3-variable Hermite- Genocchi polynomials (%)@‘*y‘z*‘f For example, the Fibonacci numbers were once used as a
:nEOHG”(*’V':“"’! model for the growth of a rabbit population. In digital
A=-12=0  2variable Hermite-Genocchi polynomia[ () & . signal processing, recurrence relations can model
“ZoH G0 i feedback in a system, where outputs at one time become
A=—fx=2c  Hermite Genocchi polynomials (&1 92“"2” inputs for future time. Thus, they arise in infinite impulse
= LW response (IIR) digital filters. The linear recurrence

y=-1,z=0

relations are used extensively in both theoretical and

. ) . ) empirical economics.
We find that the 3-variable Hermite-Frobenius-Euler

polynomlaIsHEF(x Y,z A) are defined by the following pefinition 1.3. Let {pn(¥)}*_, be a sequence of
series representation: polynomials such that
" /n degpn(x)) =n, (n€ No:={0,1,2,...} . The differential
HEF (X, y,ZA) = z <k> EF ((A) Hx.y.2), (3) operatorsp; and®; satisfying the properties

k=0
@y {pn(X)} = pn-1(X), (6)
which forz= 0 becomes

. | 3] EF ((A) Xy @y {pn(¥)} = Pn+1(X) )
HEn (x,0:4) = n! z rZ) ' r' (k—2r) " “) are called derivative and multiplicative operators,
respectively and the polynomial sequer{g®(x)};_g is
Similarly, we find that the 3-variable called quasi-monomial, if and only if equations (1.6) and
Hermite-Frobenius-Genocchi polynomial§Sh (x,y,z ) (1.7) are satisfied. Obtaining the derivative and

are defined by the following series representation: multiplicative operators of a given family of polynomials
give rise to differential equation such as

2r
G0 < 3 zo O ® (9@ [P} = Pl ®

The method is known as the factorization meth8d [
Particularly, the aforementioned forms of 18 11]. The main idea of the factorization method is to
Hermite-Euler and Genocchi polynomials might be of find the derivative operator®, and multiplicative
great importance in several branches of pure and appliedperator @;. The factorization method can be
mathematics and physics, i.e. in various problems ofequivalently treated as monomiality principig.[
guantum mechanics and of probability theory.
Integral equations arise in many scientific and
The generalized and multi-variable forms of special engineering problems. Mathematical physics models,
polynomials of mathematical physics have withessed asuch as diffraction problems scattering in quantum
significant evolution during the recent years. In particula mechanics, conformal mapping and water waves also
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contributed to the creation of integral equations. By usingwhich on simplifying and applying Cauchy-productrule in
various methods, the differential and integral equationsthe r.h.s. gives

for some families of special polynomials are introduced,

see P0,21,137,22.. The differential and integral < EF (xvzA — < XHEF (x,y,Z A g

equations satisfied by these special polynomials may be nZ HER (G Y.ZA) g (%ZA)q

used to solve new emerging problems in different 2nyHEF L(X.V.Z A 3n(n—1)z
branches of science. Motivated by the usefulness and + Z YHEn-a(xY. ) rt 2 ( )z (12)
applications of multi-variable special families and their xuEF L(xy.z A8 4

differential and integral equations, in this article, we HER (XY, )“' 1: Zo kzo()

derive some new classes of differential equations for the xHEF (%Y, ZA)ef_ (AL

3-variable Hermite-Frobenius-Euler and '

Frobenius-Genocchi polynomials. The integral equations  Equating the coefficients of same powerg oh both
for these polynomials are established. The correspondingides of above equation yields
differential and integral equations for certain specisesa

of these polynomials are also considered. H En+l(x V,ZA) = XHEF (x, y, zZA

)+
+3n(n—1)z4EF ,(x,y,Z7) +

xHEE (XY, ZzA)e (7).
2 Recurrence relations and shift operators _ _ _ _ (13)
Solving the summation fdt = n in equation (13) and
then usingel, = —1 in the resultant equation, we are led

In this section, we derive the recurrence relations and© assertion (9).

shift operators for the 3VHFEH4E,'f(x,y,z;)\) and ] )

3VHFGP 1 Gf (x.y.z,A). First, we derive the recurrence _ 10 find the shift operators for the 3VHFEP
relation for the 3VHFERLEF (x,y,zA) by proving the HER (X.¥,zA), we prove the following resuit:

following result: Theorem 2.2. The shift operators for the 3-variable

Hermite-Frobenius-Euler polynomialsE’ (x,y,zA) are
Theorem 2.1. The 3-variable Hermite-Frobenius-Euler given by

+2ny (x,y,z;)\)
Nty 3 o

HM:I

polynomials HEF(x,y,zA) satisfy the following 1
recurrence relation: xEn = _Dx, (14)
1 F .
HEL (X Y,ZA) = (x = A)HE X%,z A)+2ny JEr = :—LDngy, (15)
x HEF 1(X,¥,ZA)+3n(n—1)z4EF ,(x,y,ZA) n
n-1
X = A 2 (dﬂEF XY,ZA) € (A), £ = %DX’ZDZ, (16)
here th ical coefficient (1) ates |
where the numerical coefficien are related to
. 1 keﬁ
Frobenius-Euler polynomialsEf (x;A) by following — **n = (X_ )+2yDX+3ZD2+ % Zko DX Tir k)‘ ;
expansion: . 17)
o ) JED = (x—ﬁ) +2yD, 1Dy + 320, 2D?
éz(A) - V4 2| <I>Ek—| <2’A> 9 eO 17 n—1 eF )\
I= + 1 D*(”*k)ank n—k( ) (18)
1-)\% * Y (n—k)!
1
o1 (10) and

1 . .
£ = (x- ﬁ) +2yD, 2D, + 3zD;D?2

Proof. Differentiating both sides of generating relation (1)

with respect td and on simplification, we have (/\)
—2(n—k) nn—k n Kk
ZOD D Ik (19)
5 XV.ZA)E = (x+ 2yt + 3zt2 S LEF X,y,zZA) 0 .
nEOH n+l( ) Ys ) I ( yt )nZOH n( Y, )n! where
® @ ) n+k
trh 3 3 HEROnENE () . 5 ;

_ 90 _ 9 9 1 ["
(1) De=gp Dy=g. D=7 and D ._/0 F(£)de
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Proof. Differentiating both sides of generating relation (1)
with respect toc and then equating the coefficients of like
powers oft on both sides of the resultant equation yields

0
&{HEE(vavZ;)‘)}:nHEr':fl(XayaZ;)‘)a (20)

Consequently, we have

xEn {HER (x.¥,Z2)} = 2Dx{HEf (x,¥,ZA)} = vEF_1(x%,ZA),
(21)
which proves assertion (14).

Differentiating both sides of generating relation (1)
with respect toy and then equating the coefficients of like
powers oft on both sides of the resultant equation, it
follows that

0

a_y{HErf(Xayaz;)\)} :n(n_l)HEr':fZ(XayaZ;)\)' (22)
The above equation can also be written as
o, oo J, ¢ .

W{HEn (X,y,Z,)\)}:n E({HEn—l(Xayazv)\)}a (23)

which finally gives

_ 1 -
y£n {H EE(vavz;)‘)} = HDX 1Dy{HErI1: (Xaya Z;)‘)}

=HE_1(XY.ZA). (24)

Thus assertion (15) is proved.

Again, differentiating both sides of generating relation
(1) with respect t@ and then equating the coefficients of
like powers oft on both sides of the resultant equation, it
follows that

—{HEF<x Y.ZA)} =n(n—1)(n-2) uEF 5(xy.ZA).
(25)
The above equation can also be written as
9 (LEF ) o° EF ) 2
0_Z{H n(va’Z' )}:nW{H nfl(xayazl )}a ( 6)

which finally gives

1
Z£E{H Er"I: (vav Z,/\ )} = HD;ZDZ{HEE (vav Zu/\ )}
=HEn 16 Y. ZA). (27)
Thus yields assertion (16).

In order to derive the expression for raising operator
(17), the following relation is used:

£n—ZI. xErT){HEE (vav Z;)‘ )}7
(28)

HEE (%Y, ZA) = (x £ xEiin---

which in view of equation (21) can be simplified as:

K o
HEC(0%ZA) = D {HEr (3, zA)) (29)

Making use of equation (29) in recurrence relation (9),
we find

H Er'1:+1(xvy7 Z,/\) = ((

nkeﬁ—

* (n=K)!

1
X— —

- ) + 2yDy + 3z2D2

n—-1

k;

which yields expression (17) of raising operatfy .

+1—A

) HEF (X Y.zA)  (30)

Now in order to derive the expression for raising
operator (18), the following relation is used:

ErTfl VEE){HEE (X7y7 Z;A )}7
(31)
which in view of equation (24) can be simplified as:

HEF (XY, ZA) = (yE 1 yEip- -y

DS HER (%Y. ZA)}.

(32)
Making use of equation (32) in recurrence relation (9),
we find

K' e
HEE(vavz;)\) = HDX "

HER (X V.ZA) = ( —ﬁ) +2yD; 1Dy
n-1__ K B
+3zDy 2D2 LAk:ODX (n )Dg k (33)
i (A) .
X e(ﬁn_k)! ) HER (X,Y,ZA)

which yields expression (18) of raising operaffy .

Next, to find the raising operatg£;
relation is used:
(i1 Eriae - 2En 1 20 H{HER (X Y,2A)},
(34)
which in view of equation (27) can be simplified as:

ki
HEE(x,y,z;/\)——

, the following

Ef (XY,ZA) =

DM DI MES (xy.z )
(35)
Making use of equation (35) in recurrence relation (9),
we find

’ EnF+1(x V.Z )\) - ((x — 27 ) + 2D, 2D, + 32D, *D?

e

n—

()
X (nf

k!

>HE§(x7y,z;A)

(36)
which yields expression (19) of raising operatfy .
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Next, we derive the recurrence relation for the to assertion (37).

3VHFGPK{ G, (x,y,Z A) by proving the following result:

Theorem 2.3. The 3-variable Hermite-Frobenius- 1o  find  the  shift  operators for the

Genocchi  polynomials 4G} (x,y,zA) satisfy the
following recurrence relation:
HOM (XY ZA) = (X (T%\)) Gh(xY.ZA)

+2nyGE (%, Y,ZA) +3n(n—1)Z4G_,(x,y,ZA)
1 " .
_ﬁkzz( k )HGH k+l(xvyvzu/\) gk( )7

) (37)
where the numerical coefficientgf (A) related to
Frobenius-Genocchi polynomial&h (x;A) given by
following expansion:

K 1 /k 1
F _ - F (=
=3 7 ({)eki(54).
1
g6 =0 of = 3. (38)

Proof. Differentiating both sides of generating relation (2)
with respect td and on simplification, we have

Z Gh (X Y. ZA) S = (x+2yt+3z8) ZOHGE(va,Z;)\)%
-5 Y I HGR(XY.Z )\)gE()\)‘”+k
n=0 k=0
(39)
which  on further simplifying and applying

Cauchy-product rule in the r.h.s. yields

2 HGL (XY, Z )\)n—n Z X HGF (X, y,Z')\)ﬂ

+ Z 2nyuGh (%Y, ZA) 8 + Z 3n(n—1)z
S 0

()

HGn_Z(Xaya Z, )\)
n=0k=0

><HGn KX Y2 )\)gk ()‘)t—|
(40)
Equating the coefficients of same powerd ah both
sides of above equation yields

HGnH(xy,z)\)_xHGF(xy,z)\)+2nyHG 1(XY,ZA)
+3n(n—1)Z4Gf,_,(X,Y.ZA) — 135 kz )]
xHGE_ (X, Y,ZA)gf ().
(41)

Now, replacingn by n+ 1 in the summation of above
equation, we find

HGE. (%, Y,ZA) = xHGﬁ(x,y,z;)\)+2nyHG 1% %.ZA)
+3n(N— 124G, (%, Y,2A) — 135 Z (n+1)
XHGH 1 (X Y.ZA)gE (M),

(42)

which on solving the summation fde= 0, 1 and then
usinggh = 0 andg} = % in resultant equation, we are led

Hermite-Frobenius-Genocchi polynomial&h (x,y,z A ),
we prove the following result:

Theorem 2.4. The shift operators for the 3-variable
Hermite-Frobenius-Genocchi polynomial§Sh (x,y,z A )
are given by

1
XEr: = HDX7 (43)
N
N !
z£n — HDX DZ7 (45)
n+1
Eb = (x— 2(1_/\)) + 2yDy + 3zD2
n+1° ¢ gk(A)
— DS 4
n+1
vET = (x— ﬁ) +2yDy 'Dy + 3zD; °D]
n+1M gy weq 9F(A)
1 %DX D " (47)
and
n+1 _ -
£ = (x— 2(1_/\)) +2yD; °D, + 3zD; D2
n+1n+1 g A
where
7] 0 0 X
Dy=2 D=2 D=2 D*l::/f
X dxa Yy 0y7 z (92 and X 0 (E)df

Proof. Differentiating both sides of generating relation
(2) with respect toc and then equating the coefficients of
like powers oft on both sides of the resultant equation, it
follows that

d
S (HOR (Y. ZA)} =nnGLa(x . ZA),  (49)

Consequently, we have
X£E{HGE(X7V7Z;)\)} = %DX{HGE(X7y72;)\)} = HGE—l(X3y7Z;)\)7
(50)
which proves assertion (43).

Again, differentiating both sides of generating relation
(2) with respect toy and then equating the coefficients of
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like powers oft on both sides of the resultant equation, it

follows that n+1mt o gb(A)

A F :
—mkzsz T) HGh (X, Y,ZA), (59)

7}
3y (G (0¥,2A)} =n(1=1) Gl o(x.zA). (51)
which yields expression (46) of raising operatfy .
The above equation can also be written as
Now in order to derive the expression for raising
7} 7] operator (47), the following relation is used:
S HCE ) =n L wGEaixyzA)), (62 PN .
. _ HGhy1 k(X %.ZA) = (o i vEnia k- -vEn-1En)
which finally gives

1
vEn {HGR(X.¥,Z2)} = HD;lDy{HGE(XaYaZV\)} x {HER (x%,ZA)}, (60)
which in view of equation (53) can be simplified as:
F .
=HG ,1(X,y,Z,)\). (53) _ —(k—
) HGE 1 (xy.2A) = PO DL Gl (x v zid) ).

Thus assertion (44) is proved. (61)

Making use of equation (61) in recurrence relation
Again, differentiating both sides of generating relation (37), we fi?wl 9 (61)

(2) with respect t@ and then equating the coefficients of

like powers oft on both sides of the resultant equation, it
follows that HGLL (XY, ZA) = < (x— 2("1;}”) +2yD; 1Dy
J . F o F . it . (62)
d_Z{HGn (Xaya Z,)\)} - n(n_ 1)(n_2) HGn—3(X7y7 Zv)\)' 3ZD;2D)2,— % z D;(k_l)D)lj_l gkk(!/\)
(54) k=2
The above equation can also be written as x WG (XY, ZA),

d_z{HGE (xy,ZA)} =n W{Heﬁ—l(xa v.zA)}, (55) which yields expression (47) of raising operatfy .

L . Next, to find the raising operatg£;, the following
which finally gives relation is used: "

_ 1 _ _ _ _
£ {HGh (XY, ZA)} = HDX 2D,{HGh (x,y,zA)} HOh 11 (XY ZA) = (£ ok g k- En1 2En)

=HGL_1(X%.ZA). (56) {HEF (x,Y,Z )}, (63)

Thus yields assertion (45). which in view of equation (56) can be simplified as:

In order to derive the expression for raising operator

F oy (k4 D) ~—2(k=1) k1 ~F i
(46), the following relation is used: HG (X¥,zA) = =—Dx D7 H{HGh(X.%.ZA)}.

n—k+1

(64)
HGE,kH(X,y,Z:)\) = (xEnio k XEnsgk---xEn_1 xEn) Makin_g use of equation (64) in recurrence relation
(37), we find
F .
HGh(X.Y.ZA)}, (57) - .
o GbeEh WOF100yz ) = ( (- iy ) + D5 D+ 3205 D
which in view of equation (50) can be simplified as:
n+1 F
AT _htl D—Z(k—l)Dkfl 9 (A) GF (x zA
Heﬁ_kﬂ(x,y,zm):i(”f. ol ah (xy.z0)). SR LY

(58) . | - (65)
Making use of equation (58) in recurrence relation Which yields expression (48) of raising operafy .
(37), we find
In the next section, we derive some classes of
= o n+1 differential equations for the 3VHFEREF (x,y,zA) and
hatevzn) = (- zxoyy) a0 GG o)
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3 Differential, integro differential and partial and
differential equations

<(x— ﬁ) D, + 2yDy 'DyD, + 3D 2D2(1 + zD;)
We derive the differential, integro-differential and pairt

differential equations for the 3VHFERES (x,y,zA) and e Y Dx( >Dg—sziﬁgjf")\f
3VHFGP G}, (x,y,z A). First, we derive the differential '
equation for the 3VHFER, E,f (X,¥,z A) by proving the —(n+ 1)D)2( HEE (X,¥,ZA) =0.

following result:

Theorem 3.1. The 3-variable Hermite-Frobenius-Euler ) ) (71)
polynomials HEE(X,y,Z;)\) satisfy the following Proof. Use of expressions (15) and (18) of shift operators

differential equation: in the following factorization relation:
1 ) 1 n—-1 1 "?Jrlyg {HEF(X yvz)‘)}:HErf()gyaZ;)\)? (72)
<(X_ 1-2 )DX+ 2yD} +32D; + 1A kzo Dy yields assertion (68).

Use of expressions (16) and (19) of shift operators in
the following factorization relation:

2 Lnq 2L HER (X Y.ZA)} = HEf (X Y,ZA),  (73)

& «(A)

(n—K)! _”>HE5(X7>’72§)\)=0- (66)

Proof. Use of expressions (14) and (17) of the shift Yields assertion (69).

operators in the the following factorization relation: ) ) .
Use of expressions (15) and (19) of shift operators in

x L1 x L AHER (%Y,ZA)} =nEF (x,y.zA)  (67)  thefollowing factorization relation:

+ L EF _ . EF :
we are led to assertion (66). yZni1 220 {HEy (XY, Z2A)} =By (x¥,ZA),  (74)

Theorem 3.2. The 3-variable Hermite-Frobenius-Euler Yields assertion (70).
polynomials WEF (x,y,zA) satisfy the following

integro-differential equations: Use of expressions (16) and (18) of shift operators in
the following factorization relation:
— + F . _ pF .
((x— ﬁ) Dy + 2D5 1Dy + 2yD; *D2 + 32D, 2D3 +Zni1yvZn {HER (X Y.ZA)} =HEL (X Y,ZA),  (75)
ne1 yields assertion (71).
+ir Z (=K Dn k+1i Al Theorem 3.3. The 3-variable Hermite-Frobenius-Euler
k=0 polynomialsEF (x,y,zA) satisfy the following partial
—(n+ 1)Dx> HEF(xY,ZA) =0 differential equations:
n 2P Sl | )
68)  ((x— i )DiDy+ anHDy +2D0-1D, + ZyD”*lD)Z,

+3zD0 D3 + & z DkD“ k+l‘i o
X— 115 | Dz-+ 2yDy 2DZ + 3D, “D2 + 32D D3
<( £ )P+ DD + 30,0 + 3205 —<n+1>DQ+1)HEﬁ<x,y,z,A>—o,

o Z o 2 “pn- k+1eﬁn a (76)

1 _ 2(n—1)
—(n+ 1)D2> HEF (X.Y,zA) =0 ((Xf ﬁ) D3+ 2nD{" "Dz +2yDi™ D}
X n s Yo & — Y N1
+305" P2+ 320" PD3+ L 5 DHDY kL
k=0

69
©9) & k(A) 2(n+1) = .
X {akr — (N+21)Dx )HEn (%,zA) =0,
<(X_ ﬁ)DY""ZD;ZDz(lﬁ-yDy) +3ZD;4DyD§ (77)
41 nil D;Z(nfk) Dn—kDy g ) ((X — ﬁ) D)%nDy + 2nD)2<n71Dy + 2D>2((n_1>DZ n 2yD>2<(”‘1)
1-A £ z (n—K)! ] v
0,0, + 320E" 70,07 + 25 0703, %l
o 1)DX> vz = —(n+ 1)D§”+1>HEE (X,y,ZA) =0
(70) (78)
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and and
((x- £2r ) D8D;+ nDY 1D, + 2D} *D,D, -+ 3D} 2D

n-1 X — _n+l D +ZYD 1D D +3D 2D2 1—|—ZDZ

+32D)2D3D, + 1y 3 DADYD, ) <( 750 YDz y(1+2D,)
k=0 :
9% ( )
~(n+ DY) wEE (x y.z4) = 0. -3 g Yol p,
(79) 2 F :

Proof. On differentiation of integro-differential equations —(n+1)D5 |HGh(xY,ZA) =0.
(68) and (69)n and 2 times with respect tox yield (@)

assertions (76) and (77), respectively.
Theorem 3.6 The 3-variable Hermite-Frobenius-

Again, on differentiation of integro-differential Genocchi polynomials 4G (x,y,zA) satisfy the
equations (70) and (71)n2andn times with respect t«  following partial differential equations:
yield assertions (78) and (79), respectively.

By making similar approach, we derive the ((X (n+1))DnDy+”Dn Dy + 2D} 1Dy +2yD} t
differential, integro-differential and partial differgal

equations for the 3VHFGRGF, (x,y,z A): D24 37D)-2D3 — 1L 2 DI k+1Dkgk( )
Theorem 3.4. The 3-variable Hermite-Frobenius- n+1 F A
. . . —(h+1)D GF(xy,zZA) =
Genocchi  polynomials 4Gf (x,y,zA) satisfy the (N+ 1D JHGn (xy.24)
following differential equation: (85)
n+1 ) n+1net
X————— |Dx+ D+3ZD3—— Dy _
(( 2(1—)\)) ot 2yt 32D Z <(x— 2%y ) DD + 20D 1D, + 2yDi " DZ
F _ _
gkk—ﬂ)‘) - n) WGE(XY,ZA)=0.  (80) +305"?D2 4 3205 " ?D3 - ML g “DEp2NkD
F
Theorem 3.5. The 3-variable Hermite-Frobenius- %N (n+ 1)D§("+1)>HGﬁ(x,y,z;)\) =0,
Genocchi  polynomials 4G (x,y,zA) satisfy the
following integro-differential equations: (86)
<(x 24 ) Dy + 205Dy + 2yD; D2 ((x 2345 ) DDy + 2nD2" 1Dy + 205" VD, +
_ g (A)
+32D,2D3 — Dl z Dy * Dk (81) 2yD2" D, D, + 3202 2D, D2 — 1L Z 2(n-k+1)
. F
—(n+ 1)Dx> HGE (x,y,ZA) =0, DIZ<71Dy QKTY‘) —(n+ 1)D§n+l> HGF(X,Y,ZA) =0
(87)

<(x— 2(”1;_1”) D, -+ 2yD; 2D? + 3Dy *D?
X— 1) DD, 4 nDY D, + 2yD}~'DyD, + 3D} 2
+3zD,“D3 — Z D2k 1Dkgk( ) (82) <( 2(1- >) z z y=z

D2—|—3ZDF|72D2D n+1 Dk an k+lD
—(n+1)D§>HGﬁ(X,y,z;)\)=0, YT Z

F
%N (n+ 1)DQ+2> HGE(XY,Z.A) =O.

<(x— 2("1;}/\)) Dy -+ 2D; 2D,(1+yDy) + 3zD, *DyD? (88)
il ki ) Remark 3.1. TakingA = —1 in Theorems 2.1, 2.2, 3.1,
) z Dx D7 "Dy~¢— 3.2 and 3.3, we get the corresponding recurrence relation,
shift operators and differential equations for the
—(N+1)Dx |HGL(X,Y,ZA) =0 3-variable Hermite-Euler polynomialg En(X,y,z), for
this see 20Q].
(83)
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Remark 3.2. TakingA = —1 in Theorems 2.3, 2.4, 3.4,

3.5 and 3.6, we get the corresponding recurrence relation,

shift operators and differential equations for the

3-variable Hermite-Genocchi polynomialgGn(Xx,Y,2). P

These results are new. For the lack of space, we omit gzHEn (X,¥.0;2) —”(” 1) HEF 5(xY,0:2)

these. EF () %y
=n(n—1)(n—2)! Z Z nnZk—(er)’
. . . . k=0r=0
In the next section, we derive the integral equations for =n(n—1) & 2(% >N,

the 3VHFEPLE (x,y,z A) and 3VHFGR,GE (x,y, ).
3
%’o‘HEE(Xayaov)\): (n 1)(n Z)HEn 3(X yv )

. . n—3[%] EF 3 k X' yk 2r
4 \olterra integral equations =nn-1)(n-2)(n=3t 3 > m
=n(n—1)(n—2) » &7 (X, Y ),
To derive the volterra integral equations for the 3VHFEP (91)

and 3VHFGP, we prove the following results: respectively, where

Theorem 4.1. The 3-variable Hermite-Frobenius-Euler

polynomials HEF(x,y,zA) satisfy the following

homogeneous Volterra integral equation: s (¥ EF (A) X Y2
(A

"”gf(‘%/’g”\):zs'k;rzj(s )l r| k—a) ©2

W(x):—%%(3zr(n—1)(n—2) wEZ( XY N)
+2yn(n—1)(n—2) &7 (2, %, A)x
+2yn(n—1) &7 (X, %, A)

fors=n,n—-1, n-2 n-3.
(x—ﬁ ( (N—1)(N=2) 4 E7 (2 W N5

F
TN =D &7 (2, 7 AN 621(2 )\)) Now, consider
( )(n 2)%’ 3(’% 2@/)‘)23[
—n(n—1) sz(% YNNG N ET (XY )X
— XX N)) +f( g—(3z+2y DIHER (Y. ZA) = W(X). (93)
(x=&)+ (x— ) b ) i) w(e)de.
(89)
Proof. We first consider the fourth order differential Integrating the above equation and by use of initial
equation for the 3VHFERETS (x,y,z A) of the following  conditions (91), we have
form:
D4 4 81-A) (3zD§+2yD2+ (x— L)D € cr x
xTER) X X )=x GeHEn (X %.ZA) :OfW(E)dE+n(n—1)(n—2)
(90) a?fgﬁ%3(%a@7)‘)7
—n) HEF (x,y,ZzA) =0.
EHER(XY,ZA) = fW(E)dEZ+n(n—1)(n—2)
Next, we find the following initial conditions: a2 A)X+“(” U w2 W D),
i 5 e gy gen  SHECOLEA) = [WEEE 0= 1)(n-2)
HER (XY, 0,A) = (Xy)\)—n'kzoz W S(yg)\)>§|+n(n_1)
= wET (X W), ,fé”z(x Y NX+N e EL (XY ,N),
GHEL (%, .0;A) =nHEF 1(x,y,0;1) HEF (% Y,ZA) = fW(E)dE4+n(n— 1)(n—2) &7 3(2. Y A)
n—1 [%] EF )Xy x3 X2
— 1)1 nlk ||+n(n 1)}2” (%OY)‘)
nin—1! 5 3wk e 0T T N B (5T N,
=N 87X YD), (94)
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Use of above equations in differential equation (90),  Using the similar approach as in Theorem 4.1, we get
we find assertion (97). Thus we omit it.

Y(x) = égw (Sz<ofl#(£)d£ Remark 4.1. Taking A = —1 and using relations

e oy o w8 (XY, 1) = pén(2,%) andes(—A) = e in
+n(n-1)(n-2) ”5”*3(‘%’@’}\)) equr:':ltion (4.1), we the following homogeneous volterra

+2y(fcp E)AE24+n(N—1)(N—2) 4 ET (X, Y, A)x integral equation for the 3-variable Hermite-Euler
polynomialsy En(x,y,2):
(- 1) w6752 2 ) + (x- 25 )

_ 12 _
« (JWEHE tn(n—1)(n—2) &7 (2T N)E V() =~ (32— 1D(n=2) rén-3(22)
0 +2yn(n— )(n 2) wén-3(Z, Y )x
>
0= 1) 72 NXAN e EF((2 P ) 12yn(n—1) rn o2, 2) + (x~3)
+%%(IW( E)dE*+n(n—1)(N—2) & o( 2.9 A) % (n(n=1)(n=2) wéna(2,2)% +n(n-1)
><22! L N(N—1) pE7 (X A) A En (XD NXAN ypna( X @)) (99)
x%+n%Jé"fl(%,@/,)\)x—i—,;fé"n?(%,@,)\)), —n(n—1)(n—2) & 3(35 g)ZI 3|)
(95) (= Lorén-2( 2,25 =N ras( 2, F)X
which on simplifying and then integration of the resultant ( -2 )2' o bna( x
equation using the following formula: —%5n(55,@/)) +(f) (— = (3Z+ 2y(x—¢§)
n1 +(x= 1) 08— nl ) wig)de
/f £)de" /(X( LT @) (=2)52) -ns)
a Remark 4.2 Taking A = —1 and using relations
yields assertion (89). G (XY, 1) = pG(X, %) andgf (—A) = gq in

equation (4.9), we the following homogeneous volterra
Next, we derive the integral equation for the 3VHFGP integral equation for the 3-variable Hermite-Genocchi
HGF (x,y,Z A). For this we prove the following result: polynomialsy Gn(X, Y, 2):
Theorem 4.2. The 3-variable Hermite-Frobenius-
Genocchi  polynomials 4Gf (x,y,zA) satisfy the

following homogeneous Volterra integral equation: YX) = mive (32n(n 1)(n—2) »%n-3(2,Y)
a(1-) . F2yn(n=1)(n-2) Y o2, D)

Y = Feng (32'“(” D(N=2) 0w ¥i=a(2.%,) +2yn(n—1) %n_o( 2. ¥ )+ (x— ”+l)

+2yn(n—1)(n—2) 9.7 (X, Y, A)x

% (n(n=1)(n-2) o% o(2.2)%
(= 1) %22 D)X+ G 1(3{,@))
—n(n—21)(n— 2)%0% 3(Z, @)2, 57— N(n—1)

21-1)
*(nn-1)(-2) #4752, 7 2%
(= 1) 97 (2 Y X410 4T (XY /\))

1)
+2yn(n—1) 97 (2. ¥ )‘)+(X i) )
(

G2 V)G — N # G ( XY )X
—n(N=1)(N—2) 4% 4(2, % A) o —n(n—1) .
— )+ 324 2y(x— &
gjz(% 28 )\)22| g‘/l(% 4 )\) i n( ))E , j n+l?43( ( )
X X—
AT I+ ] M(3z+2y (x-) n w(ga.
) n+1)gh (A) (100
(x=&)+ (X_ 2(”15\)) (XE?Z - ”(Xéf)a)w(f)df- Further, we remark that the corresponding results for

(97) the other special cases of polynomials given in Table 1 can

Proof. We first consider the fourth order differential be obtained by substituting suitable valuesiof, y, z

equation for the 3VHFGR G, (x,y,z A) of the following

form:
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