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Abstract: Humans reason by means of their own language and they can choose and decide alternatives by evaluating semantics of
linguistic terms. The fundamental elements in human reasoning are sentences normally containing vague concepts, and these sentences
have implicitly or explicitly a truth degree, which is oftenexpressed also by linguistic terms such asmore or less false, very false,
false, true, very true, more or less true, approximately true, etc. In this article, we introduce a linguistic-valued predicate logic along
with an inference system based on resolution. The truth domain of the logic is a refined hedge algebra, generated by a set oftruth
generators and a set of hedges. The syntax and semantics properties of the logic make sure that every formula has an equisatisfiable
formula in conjunctive normal form, and a conjunctive normal form transformation algorithm can be devised. The resolution inference
system, parameterized with a threshold of acceptability, is sound and complete. The linguistic-valued predicate logic together with the
resolution inference system provides a framework for describing vague statements and mechanizing human reasoning in the presence
of vagueness.
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1 Introduction

Inference in logical languages is an approach to model
human thinking and reasoning processes relying on
accurate mathematical foundations. With a set of
statements, called premises, one can infer new statements,
called conclusions, so that if the premises are true then
the conclusions must also be true.

The classical logic is suitable to reason with concepts
that are crisp and well-defined in nature. However, in the
real-world applications, uncertainty, which refers to a
form of deficiency or imperfection in the information for
which the truth of such information is not established
definitely, is everywhere. Approximate reasoning
methods, in general, are based on fuzzy sets theory and
fuzzy logics [34]. The fuzzy logics deal with the
vagueness in the knowledge, where a proposition is true
only to some degree in the unit-interval[0,1]. For
example, the statement “John is obese with degree 0.4?”
indicates John is slightly obese. Here, the value 0.4 is the
degree of membership that John is obese.

Furthermore, humans reason by means of their own
language and they can choose and decide alternatives by
evaluating semantics of linguistic terms. The fundamental
elements in human reasoning are sentences normally
containing vague concepts, and these sentences have
implicitly or explicitly a truth degree, which is often
expressed also by linguistic terms such asmore or less
false, very false, false, true, very true, more or less true,
approximately true,etc. For example, one might want to
find out to what degree a person, John, would have heart
disease if the certainty that“It is approximately true that
an obese person would have heart disease”, and “It is
very true that John is obese”. Such knowledge cannot be
expressed nor reasoned with standard logics or fuzzy
logics. Therefore, in this paper, we are concerned with the
two following issues:

1.constructing alogical languagefor vague statements
in natural languages, and

2.designing aninference systemfor human reasoning
with linguistic truth value.
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Linguistic-valued Predicate Logic

In 1965, Zadeh [34] introduced the fuzzy set theory and
fuzzy logic to deal with reasoning under vagueness. And
later Zadeh [28,29,30] used linguistic variables and
linguistic values to formalize the reasoning in natural
languages. Subsequently, Nguyen and Wechler [25]
introduced the concept of hedge algebra which is an
algebraic model for linguistic hedges in Zadeh’s fuzzy
logic.

According to Zadeh [28,29,30] the statements“It is
true that John is very smart”and “It is very true that
John is smart”are approximately equivalent. Therefore,
instead of considering arbitrary linguistic variables, such
as SMART, we can only consider a single linguistic
variableTRUTH. And the logic under consideration can
be viewed as a multiple-valued logic with the truth
domain being the set of the linguistic values of the
linguistic variableTRUTH.

As pointed out in [25] the set of linguistic values of
the linguistic variable TRUTH, e.g., VeryTrue,
MoreOrLessTrue, SlightlyTrue, VeryFalse,
MoreOrLessFalse, SlightlyFalse, . . .} is a partially ordered
set with an ordering meaning that an element describes a
smaller degree of truth than another, and is generated
from a set of generators, e.g.,{True,False, . . .} and a set
of operations also called hedges, e.g.,
{Very,Slightly,MoreOrLess, . . .}. This set can be
represented by an abstract algebra with four components:
the set of elements, the set of generators, the set of
hedges, and the ordering. Furthermore, one can refine this
abstract algebra into a De Morgan lattice by defining
appropriately the join, meet, complementation operators
[24,26,20].

Starting from these observations, we construct the
Linguistic-valued Predicate Logic (LPL) which is
expressive enough to describe vague statements in natural
languages. LPL has the following features:

–The truth domain is a refined hedge algebra generated
by a set of truth generators and a set of hedges, for
example{VeryTrue, SlightlyTrue, MoreOrLessTrue,
VeryFalse, MoreOrLessFalse, SlightlyFalse, . . .}. It
can be further refined to become a De Morgan lattice
equipped with join, meet, complementation operators.

–The syntax is similar to the syntax of two-valued
predicate logics but augmented with truth operators.
For example, the statement “John is very smart and
works rather hard” is described by the formula

(Smart(John)VeryTrue∧WorkHard(John)RatherTrue)True

whereSmart(John), WorkHard(John) are atoms, and
True, VeryTrue, RatherTrue are truth operators.

–The semantics is defined so as to capture the meaning
of vague statements. For instance, the meaning of the
formulaSmart(John)SlightlyTrue is that the level of the
vagueness of the claim“John is smart” is
SlightlyTrue. That is, for a threshold of acceptability

of SlightlyTrue the claim “John is smart” can be
endorsed to be used in the reasoning process, but for a
threshold of acceptability ofTrue the claim“John is
smart” is not sufficiently endorsed.

To summarize, our first contribution is the LPL for
describing vague statements in natural languages. That
provides a solution to Issue 1.

Approximate Reasoning

Since LPL is a multiple-valued fuzzy logic whose truth
domain is the set of the linguistic values of the linguistic
variable TRUTH, traditional automated reasoning
methods based on the resolution for multiple-valued and
fuzzy logics can be applied naturally. The resolution
principle, initially designed for two-valued logics by
Robinson [33], is the heart of many kinds of automated
reasoning systems such as theorem proving and logic
programming. The main advantage of resolution is that it
is sound and complete for a wide range of multiple-valued
and fuzzy logics [12,18,13,14,31,11,23,22,15].

Along the line of [31,23,15], we develop a resolution
inference system for LPL. One of the main problems is
that resolution usually works with a particular form of
formulae called conjunctive normal form (CNF), but the
LPL formulae may have nested truth operators, e.g.,

(Smart(John)VeryTrue∧WorkHard(John)RatherTrue)True

and the traditional CNF transformation algorithm does
not apply. We need a new CNF transformation algorithm.
Fortunately, CNF transformation is feasible in LPL since
its syntax and semantics are defined in such a way that
every formula has an equisatisfiable CNF formula, and a
CNF algorithm can be built by extending the traditional
algorithm. The extension consists of driving truth
operators inward the formulae. As an example, the
formula

(Smart(John)VeryTrue∧WorkHard(John)RatherTrue)False

can be converted into the CNF formula

Smart(John)VeryFalse∨WorkHard(John)RatherFalse

by driving the truth operatorFalse inward the formula

Smart(John)VeryTrue∧WorkHard(John)RatherTrue

On the other hand, our resolution procedure is
parameterized with a thresholdτ, calledτ-resolution, so
as to check whether a formula isτ-satisfiable, i.e., has the
truth value greater or equal toτ under some
interpretation. For example, if the thresholdτ isVeryTrue
then we have the followingτ-resolution

WorkHard(John)T∨Smart(John)VT Smart(John)VVF

WorkHard(John)T
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andWorkHard(John)T is notτ-satisfiable.
(where T,VT,VVF are the abbreviations for

True,VeryTrue,VeryVeryFlase).
We prove the soundness and completeness of

τ-resolution. Soundness means that if aτ-resolution
derivation finds aτ-empty clause at some point, then the
input formula isτ-unsatisfiable. Completeness means that
if the input formula isτ-unsatisfiable then aτ-resolution
derivation will find aτ-empty clause after a finite number
of inferences. We show howτ-resolution can be adapted
to other reasoning problems such as entailment checking
and theorem proving.

The τ-resolution inferences are approximate by
nature. Especially in the case where the thresholdτ is
low, the inferences are even more approximate, and we
say that they have low confidence. To cope with this
problem, we propose the so-called∆ -strategy for
selecting inferences with the highest confidence. As the
standard τ-resolution, the ∆ -strategy is sound and
complete.

In a nutshell, our second contribution is a resolution
framework for mechanizing the human reasoning under
vagueness. That constitutes a solution to Issue 2.

Structure of the paper The paper is organized as follows.
Section2 introduces hedge algebras. Section3 defines
LPL. Section4 presentsτ-resolution and proofs of its
soundness and completeness. Section5 shows how to
apply τ-resolution in approximate reasoning. Section6
discusses related work. Section7 concludes and draws
some future work.

2 Algebraic Approach to Linguistic Truth

Linguistic hedges were first studied by Lakoff [7].
Subsequently, Zadeh argued that the set of linguistic
values of linguistic variables can be regarded as a formal
language generated by a context-free grammar and
hedges can be viewed as operators on fuzzy sets [28,29,
30]. In [24,20,25] Nguyen et al. considered the sets of
such linguistic values ashedge algebras. The class of
hedge algebras enjoys interesting algebraic properties and
is suitable to be used as truth domains for multiple-valued
and fuzzy logics. Below we recall the concept of hedge
algebras from [24,20,25] and show how it can be used in
defining linguistic truth domains.

A linguistic variable is a variable whose values are
words or sentences in some language, for exampleAGE is
a linguistic variable if its values are linguistic, i.e.,Old,
Young, VeryOld, VeryYoung, etc ... A linguistic hedge is
an operator which acts on the meaning of its operand, for
example in the composite wordVeryYoung the operator
Very acts on the meaning ofYoung. Many linguistic
variables have some primary vague concepts, for instance,
the primary vague concepts of the linguistic variables
AGE areOld andYoung, of TRUTH areTrue andFalse,

of HIGH are Tall and Small and so on... The primary
vague conceptsTrue, Old and Tall have “positive
meaning” and the others have “negative meaning”. We
say that the hedgeVery strengthens the positive or
negative meanings, and the hedgeApproximately
weakens them. In this respect, the first characteristic of
hedges is that:every hedge either strengthens or weakens
the positive or negative meaning of the primary vague
concepts. Besides, the hedgeVery strengthens the
meanings of the hedgeVery, but weakens the meaning of
the hedgeApproximately, the hedgeApproximately
strengthens the meaning of the hedgeApproximately but
weakens the meanings of the hedgesVery. This results in
the second characteristic of hedges:every hedge either
strengthens or weakens the meanings of any other hedges.
On the other hand, observe that the element
VeryVeryLessTrue expresses something aboutTrue but
not about False, and likewise, VeryVeryLessFalse
expresses something aboutFalse but not aboutTrue.
Accordingly, the third characteristic of hedges is that:all
hedges have a local and separated meaning and the
meaning of a term generated from a vague concept stems
from the meaning of this vague concept.

Let us now take a closer look at the linguistic variable
TRUTH with the domain True, False, VeryTrue,
VeryFalse, SlightlyTrue, SlightlyFalse, PossiblyTrue,
PossiblyFalse, ApproximatelyTrue, VeryPossiblyTrue,
ApproximatelyFalse,. . . This domain is a partially ordered
set, and the ordering means that an element describes a
smaller degree of truth than another. From an algebraic
point of view, this set is generated from the basic
elementsTrue, False by using hedgesVery, Possibly,
Approximately, Slightly, . . . and can be described by an
abstract algebra with four components: the set of
elements, the set of generators, the set of hedges, and the
ordering over the set of elements. This abstract algebra is
called ahedge algebra.

In the following, we consider a subclass of hedge
algebras, calledrefined hedge algebras[20]. We first
recall the formal definitions of refined hedge algebras.
Then we show how a refined hedge algebra can be further
refined to become a distributive lattice. This is done in
two steps: first, we construct the distributive lattice of
hedges by defining appropriate join and meet operators
over the set of hedges; second, we construct the
distributive lattice of linguistic truth values by defining
appropriate join and meet operators over the set of
linguistic truth values. Finally, we consider the subclass
of symmetric refined hedge algebraswhere
complementation operator can be defined over the set of
linguistic truth values. In this way, a symmetric refined
hedge algebra becomes a De Morgan lattice and can be
readily used to define the truth domain for LPL. We
assume the usual notions (such as posets, graded posets,
lattice, modular lattice, finite lattice, free lattice,
distributive lattice, etc...) from lattice theory in [5].

We consider a class of abstract algebras of the form
AX= (X,G,H,≤), whereX is the underlying set,G is the
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Fig. 1: A poset of values of the linguistic variableTRUTH

set of generators,H is a set of mappings fromX to X, and
≤ is partial order onX. The setX is interpreted as the term
set,G as a set of primary terms and special constants,H
as a set of hedges, and≤ as a semantic ordering relation.
For convenience the image ofx ∈ X underh ∈ H will be
denoted byhx instead ofh(x).

Example 1.[20] Let X be a poset of values of the linguistic
variableTRUTH as represented in Figure1. ThenX can be
considered as an abstract algebraAX = (X,G,H,≤) such
that

–G = {F,T}, where F, T stand for False, True,
respectively;

–H = {V,A,P,ML,S}, whereV, A, P, ML, S stand for
Very, Approximately, Possibly,
MoreOrLess, Slightly, respectively;

–≤ is a partially ordering relation overX as represented
in Figure1.

Definition 1.Let h,k∈ H, we say that:

–h and k areconverse(or h is converse to k and vice
versa) if∀x∈ X(x≤ hx iff x≥ kx);

–h and k arecompatibleif ∀x∈ X(x≤ hx iff x≤ kx);
–h is positive with respect to k if∀x ∈ X(either kx≥
x implies hkx≥ kx or kx≤ x implies hkx≤ kx);

–h is negativewith respect to k if∀x ∈ X(either kx≥
x implies hkx≤ kx or kx≤ x implies hkx≥ kx).

We assume that:

(H1)each elementh∈H is anordering operation, i.e.∀x∈
X(eitherhx≥ x or hx≤ x);

(H2)the setH is decomposed into two non-empty disjoint
subsetsH+, H− such that for anyh∈H+ andk∈H−,
h andk areconverse;

V

I

Fig. 2: Lattices of hedgesH++ I

S

PA ML

I

Fig. 3: Lattices of hedgesH−+ I

(H3)the setsH++ I andH−+ I , where+ stands for∪, are
finite lattices with unit-elementsV andS, respectively,
and zero-elementI , whereI is the identity element
of H, i.e. ∀x ∈ X(Ix = x). SinceX, H+ andH− are
disjoint, the partially ordering relation over each of
X, H+ andH− will be denoted by the same notation
≤ without any confusion.

To simplify the notation, we use the superscriptc to denote
either the superscript+ or −.

Example 2.Let us consider the abstract algebra
AX = (X,G,H,≤) in Example1. Intuitively, we can see
that:

–H+ = {V}; H− = {A,P,ML,S},
–H++ I andH−+ I are finite lattices;
–≤ is a partially ordering relation overH++ I andH−+
I as represented in Figure3.

It is clear thatAX satisfies Assumption2.

Definition 2.We say that X and H aresemantically
consistentif the following conditions hold:

1.X is generated from the generators in G by means of
hedges in H, i.e. elements of X are of the form hn . . .h1a
for hi ∈ H, i = 1, ..,n, and a∈ G.

2.For any h,k ∈ Hc + I, where c∈ {+,−}, h < k in
Hc+ I iff ∀ x ∈ X((hx> x or kx> x implies hx< kx)
and (hx< x or kx< x implies hx> kx)). And h,k are
incomparable in Hc+ I iff ∀ x∈ X((hx 6= x or kx 6= x)
implies hx and kx are incomparable).

Example 3.Consider the abstract algebraAX= (X,G,H,≤
) in Example2. It is clear thatX andH are semantically
consistent.

In the followingHc+ I is a finite modular lattice, unless
stated otherwise. According to [5] Hc + I can be graded
by its height function, and then decomposed intograded
classes Hci + I , i = 1,2, . . . , l wherel is the length of the
partially ordered setHc+ I . Additionally we assume that
any two elements ofHc+ I belonging to different graded
classes are comparable. LetLHc

i be the free distributive
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lattice generated by the set of incomparable elements of
Hc

i , ⊔ and⊓ be the correspondingjoin andmeetoperators.
Let LHc be the union of suchHc

i , andLH be the union of
LH+ andLH−.

Proposition 1.[20] (LH+ + I ,⊔,⊓, I ,V,≤) and
(LH− + I ,⊔,⊓, I ,S,≤) are free distributive lattices with
unit-elements V and S, respectively, and the zero-element
I.

Example 4.Consider the abstract algebraAX=(X,G,H,≤
) in Example2. Clearly,Hc+ I is a finite modular lattice,
the graded classes are{S},{A,P,ML},{I},{V}. We can
see that and any two elements ofHc+ I belonging to two
different graded classes are comparable, in other words,
there is linearly ordering relation between graded classes.
Following the construction above, the obtained distributive
latticesLH++ I andLH−+ I generated fromH++ I and
H−+ I , respectively, are represented as in Figure5, where

–l1 = A∨P∨ML;
–l2 = A∨P;
–l3 = A∨ML;
–l4 = P∨ML;
–l5 = (A∨P)∧ (A∨ML);
–l6 = (A∨P)∧ (P∨ML);
–l7 = (A∨ML)∧ (P∨ML);
–l8 = (A∨P)∧ (A∨ML)∧ (P∨ML)

= (A∧P)∨ (A∧ML)∨ (P∧ML);
–l9 = (A∧P)∨ (A∧ML);
–l10 = (A∧P)∨ (P∧ML);
–l11 = (A∧ML)∨ (P∧ML);
–l12 = A∧P; l13 = A∧ML; l14 = P∧ML;
–l15 = A∧P∧ML.

Definition 3.We say that H isPN-homogenousif V is
positive (respectively negative) with respect to some
operation in a graded class Hci then V is positive
(respectively negative) with respect to any other ones in
Hc

i , for any Hc
i .

From now on, we denoteH the set of primary hedges
and LH the lattice of composed hedges constructed as
above. For any elementx ∈ X, LH(x) denotes the set of
all elements generated fromx by means of hedges inLH.
For any X′ ⊂ X and LH ′ ⊂ LH, LH ′(X′) denotes the
subset ofX generated from the elements inX′ by means
of the operations inLH ′. By LH ′[X′] we denote the set
{hx : h∈ LH ′ andx∈ X′}. By SIc we denote the set of all
indexes i which are not single-class elements.LHc

i
denotes the graded classi of LHc, LH∗ denotes the set of
all strings of hedges inLH. Let us denote byUSOthe set
of two unit-elementsV andSof LH++ I andLH−+ I .

Definition 4.AX is called arefined hedge algebra, if X
and LH are semantically consistent and the following
conditions hold (where h,k∈ LH):

1.Every operation in LH− is converse to each operation
in LH+.

V

I

Fig. 4: Distributive latticeLH++ I

S

l1

l3l2 l4

l6l5 l7

PA l8 ML

l10l9 l11

l13l12 l14

l15

I

Fig. 5: Distributive latticeLH−+ I

2.The unit operation V of LH+ + I is either positive or
negative w.r.t. any operation in LH. In addition, LH
satisfies the PN-homogeneous property.

3.(Semantic independent property) If u and v are
independent, i.e. u/∈ LH(v) and v /∈ LH(u), then
x /∈ LH(v) for any x∈ LH(u) and vice versa. If x6= hx
then x/∈ LH(hx). Further, if hx 6= kx then kx and hx
are independent.

4.(Semantic inheritance) If hx and kx are incomparable,
then so are for any elements u∈ LH(hx) and
v ∈ LH(kx). Especially, if a, b∈ G and a< b then
LH(a)< LH(b). And if hx< kx then
(a)In the case that h,k ∈ LHc

i , for some i∈ SIc the
following statements hold:

–δhx< δkx, for anyδ ∈ LH∗.
–δhx and y are incomparable, for any∀y∈ LH(kx)
such that y� δkx.

–δkx and z are incomparable, for any∀z∈ LH(hx)
such that z� δhx.

(b)If {h,k} 6⊂ LHc
i , then h′hx≤ k′kx, for every h′,k′ ∈

UOS.
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5.(Linear order between the graded classes) Assume that
u∈ LH(x) and u/∈ LH(LHc

i [x]), for any i∈SIc. If there
is v∈ LH(hx), for h∈ LHc

i such that u≥ v (or u≤ v),
then u≥ h′v (or u≤ h′v) for any h′ ∈UOS.

Example 5.[20] Consider the abstract algebra
AX = (X1,G,LH,≤) such that, as considered in
Examples1 and2 , G= {F,T}, H = {V,A,P,ML,S}, but
X1 = {ha : h ∈ LH + I ,a ∈ G} which is ordered as in
Figure6, whereL(A,P,ML) denotes the lattice generated
from the incomparableA, P, ML, and L(A,P,ML)[a]
denotes the set{ha : h∈ L(A,P,ML)}. Herehx is defined
as follows: for every hedgeh∈ LH, hT andhF are defined
as elements given in Figure6 andhx= x for x 6= F and
x 6= T. We can see thatAX satisfies Definition4.

VT

T

(A∨P∨ML)T

L(A,P,ML)[T]

(A∧P∧ML)T

ST

SF

(A∨P∨ML)F

L(A,P,ML)[F]

(A∧P∧ML)F

F

VF

Fig. 6: The poset of Example5

It is possible to define thejoin and meetoperators
over AX, denoted with∪ and∩, respectively. They are
determined recursively based on the corresponding join
and meet operators over the hedge latticeLH. Let x andy
be two incomparable elements ofAX, we can represent

them in the formx = δhu andy= γku, whereh,k ∈ LHc
i

for somei ∈ SIc andδ ,γ ∈ LH∗. Then:

–x∪y= δhu∪ γku= δu′∪ γu′

–x∩y= δhu∩ γku= δu′′∪ γu′′

whereu′ = (h⊔k)u andu′′ = (h⊓k)u if hu> u; u′ = (h⊓
k)u andu′′ = (h⊔k)u if hu< u.

Proposition 2.[20] Let AX = (X,G,LH,≤) be a refined
hedge algebra. Then(X,G,LH,≤,∪,∩) is a distributive
lattice if G is linearly ordered.

An elementp of G is a primary generatorif hp 6= p
for all h∈ LH. An elementg of G is apositive generator
if Vg ≥ g, and is anegative generatorif Vg ≤ g. An
elementf of G is a fixed point ifh f = f for all h ∈ LH.
assumption We assume thatAX = (X,G,LH,≤) is a
refined hedge algebra such that:

–G= {⊥,c−,W,c+,⊤},
–the elementsc− and c+ are primary negative and
positive generators, respectively,

–the elements⊥, W and⊤ are fixed points, called the
least, the neutral and the greatest elements inX,
respectively.

An expressionhn . . .h1y is acanonical representation
of x with respect toy in AX if x= hn . . .h1y andhi . . .h1y 6=
hi−1 . . .h1y for everyi ≤ n. Let x be an element ofAX and
the canonical representation ofx is x= hn...h1a wherea∈
{c−,c+}. Thecomplementary elementof x is an element
y such thaty = hn...h1a′ wherea′ ∈ {c−,c+} anda′ 6= a.
The complementary element of⊤ is⊥, and vice versa. The
complementary element ofW is itself.

Definition 5.Let AX= (X,G,LH,≤) be a refined hedge
algebra satisfying Assumption2. Then AX is said to be a
symmetric refined hedge algebraif every element in X has
a unique complementary element in X.

Letx andybe two elements of the symmetric refined hedge
algebraAX, then:

–the concept negation− is an unary operator defined
such as−x is the complementary element ofx;

–theconcept implication⇒ is a binary operator defined
as:x⇒ y=−x∪y.

In practice, we only have to deal with linguistic truth
values containing a limited number of hedges. Therefore,
it is reasonable to assume that the set of elements of a
symmetric refined hedge algebra is finite.
Assumption
We assume a symmetric refined hedge algebra

AX= (LHp[G],G,LH,≤)

where:

LHp[G] = {hn...h1a : hi ∈ LH + I ,a∈ G,n≤ p}

c© 2017 NSP
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Since the operations∪, ∩, −, ⇒ can be defined for the
symmetric refined hedge algebraAX= (LHp[G],G, LH,≤
) satisfying Assumptions2, 2 and2, we can write:

AX = (LHp[G],G,LH,≤,∪,∩,−,⇒)

Theorem 1.[20] AX = (LHp[G],G,LH,≤,∪,∩,−,⇒) is
a complete distributive lattice. Furthermore for all x,y ∈
LHp[G], for all h∈ LH, we have:

1.−(hx) = h(−x)
2.−(−x) = x
3.−(x∪y) =−x∩−y and−(x∩y) =−x∪−y
4.x∩−x≤ y∪−y
5.x∩−x≤W ≤ x∪−x
6.−⊤=⊥,−⊥=⊤ and−W=W
7.x> y iff −x<−y
8.x⇒ y=−y⇒−x
9.x⇒ (y⇒ z) = y⇒ (x⇒ z)

10.x⇒ y≥ x′ ⇒ y′ if x ≤ x′ and y≥ y′

11.x⇒ y=⊤ iff x = ⊥ or y = ⊤
12.⊤⇒ x= x and x⇒⊤=⊤;

⊥⇒ x=⊤ and x⇒⊥=−x
13.x⇒ y≥W iff x ≤W or y≥W, and

x⇒ y≤W iff x ≥W or y≤W

Definition 6.Let λ1 and λ2 be elements of LHp(G). The
operation⊗ is defined as follows

λ1⊗λ2 = (λ1∩λ2)∪ (−λ1∩−λ2)

Definition 7.A linguistic truth domain is a symmetric
refined hedge algebra AX= (LHp[G],G, LH,≤,∪,∩,
−,⇒), where

–G= {⊥,False,W,True,⊤};
–⊥< False<W < True<⊤;
–False,True are the negative and positive primary
generator, respectively;

–⊥,W,⊤ are the smallest, neutral, biggest elements,
respectively.

3 Linguistic-valued Predicate Logic

In this section, we define the syntax and semantics of LPL.
The syntax and semantics properties make sure that every
formula has an equisatisfiable formula in CNF. We give an
algorithm for transforming an arbitrary formula into CNF.
We also show that the Herbrand theorem for two-valued
predicate logics can be smoothly adapted to LPL.

3.1 Syntax and Semantics

Definition 8.An alphabet consists of the followings:

–variables: x,y,z, . . .;
–function symbols: a set FS of symbols f,g,h, . . . each
of n-arity (n≥ 0);

–function symbols with0-arity is called a constant;
–predicate symbols: a set PS of symbols P,Q,R, . . . each
of n-arity (n≥ 0);

–predicate symbols with0-arity is called a logical
constant symbol;

–logical connectives:¬,∨,∧,→;
–quantifiers:∀,∃;
–auxiliary symbols:�,(,), . . .;

Definition 9.A term is defined recursively as follows:

–either a constant symbol or a variable is a term,
–if f is a n-ary function symbol and t1, . . . , tn are terms
then f(t1, . . . , tn) (n> 0) is a term.

Definition 10.An atomic formula is an expression of the
form(P(t1, . . . , tn))λ , where P is an n-ary predicate symbol
of the alphabet,λ is an element of LHp(G) and t1, . . . , tn
are terms.

Definition 11.Formulae are defined recursively as follows:

–any atomic formula is a formula,
–if φ ,ψ are formulae, then¬φ , φ ∨ψ , φ ∧ψ andφ → ψ
are formulae,

–if x is a variable andφ is a formula then∀xφ ,∃xφ are
formulae,

–if φ is a formula andλ is an element of LHp(G) then
φλ is a formula,φλ is also called a literal ifφ is an
atom.

A clause is a finite set of literals, is usually written as
a disjunction l1 ∨ l2 ∨ ... ∨ ln, where l i is a literal (for
i = 1, . . . ,n). A formula is said to be in a conjunctive
normal form (CNF) if it is a conjunction of clauses. A
variable bounded to a quantifier is called a bounded
variable. A free variable is a variable which is not
bounded to any quantifiers. An expression is either a term
or an atom or a formula. An expression is ground if it
does not contain any variables.

A substitution is a finite set of specifications of the
form [t/v] in which t is a term andv is a variable.
Substitutions are usually written in set notation:
{t1/v1, t2/v2, .., tn/vn}, wherevi(i = 1..n) are dinstinct.

A substitution{t1/v1, t2/v2, .., tn/vn} is ground if all
terms t1, . . . , tn are ground. The product of two
substitutionsσ and θ , denoted byσoθ , is defined such
that if xiσ = yi and yiθ = si then xiσoθ = si . Let
θ = {t1/v1, t2/v2, .., tn/vn} be a substitution ande be a
expression. An instanceeθ of e is the expression obtained
by replacing simultaneously all occurrences of variables
v1, . . . ,vn with the corresponding termst1, . . . , tn. Let e1,
e2 be expressions, andγ be a substitution. Thenγ is called
a unifiere1 ande2 if e1 = e2γ. We say that a unifierγ is
more general than another unifierσ if there exists a
substitutionφ such thatσ = γ ◦ φ . We say thatγ is the
most general unifier (m.g.u for short) if there is no unifier
more general thanγ.

Definition 12.A structureM of an alphabetA is a triplet
(D, I f , I p), where:
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–D is a nonempty set called the domain of the structure,
and:

–FD is the set of functions on D:FD = { fD| fD :
Dn 7−→ D,n> 0}

–PD is the set of relations on D:PD = {PD|PD :
Dn 7−→ LHp(G),n≥ 0}

–I f : FS 7−→ FD, for every n-ary function symbol f , f
is assigned to an element inFD

–I p : PS7−→ PD, for every n-ary predicate symbol P, P
is assigned to an element inPD

Definition 13.An assignmentσ is a mapping of the set of
variables V into the domain D,σ : V 7−→ D.

Definition 14.An interpretationI is a pair(M,σ), where
M is a structure andσ is an assignment.

The evaluation of a termt under the interpretationI
is denoted by[|t|]Mσ , orI (t). Likewise, the evaluation of a
formulaφ under the interpretationI is denoted by[|φ |]Mσ ,
or I (φ).

Definition 15.The evaluation of a term under an
interpretationI = (M,σ) is determined as follows:

–[|c|]M = cM for a constant c
–[|x|]Mσ = σ(x) for a variable x
–[| f (t1, . . . , tn)|]Mσ = fM([|t1|]Mσ , . . . , [|tn|]Mσ ) for a term

f (t1, . . . , tn)

Definition 16.The evaluation of formulae under an
interpretationI = (M,σ) is determined recursively as
follows:

–[|φλ |]Mσ = λ ⊗ [|φ |]Mσ
–[|¬φ |]Mσ =−[|φ |]Mσ
–[|φ ∧ϕ |]Mσ = [|φ |]Mσ ∩ [|ϕ |]Mσ
–[|φ ∨ϕ |]Mσ = [|φ |]Mσ ∪ [|ϕ |]Mσ
–[|φ → ϕ |]Mσ = [|φ |]Mσ ⇒ [|ϕ |]Mσ
–[|∃xφ |]Mσ =

⋃

c∈D{[|φ |]Mσ ′ |σ ′ = σ ∪{x 7−→ c}}
–[|∀xφ |]Mσ =

⋂

c∈D{[|φ |]Mσ ′ |σ ′ = σ ∪{x 7−→ c}}

Definition 17.Letτ be an element of LHp(G), I = (M,σ)
be an interpretation, andφ be a formula. Then we say that

–I τ-satisfiesφ , or I is aτ-model ofφ , iff [|φ |]Mσ ≥ τ,
denoted byI |=τ φ ;

–φ is τ-satisfiable iff it has aτ-model;
–φ is τ-unsatisfiable iff it has noτ-model;
–φ is τ-valid in M if [|φ |]Mσ ≥ τ for all assignmentsσ ,
denoted byM |=τ φ . M is called aτ-model ofφ ;

–φ is a τ-tautology iff it isτ-valid in all structuresM,
denoted by|=τ φ .

–ϕ is aτ-consequence ofφ , or φ τ-entailsϕ , denoted by
φ |=τ ϕ , iff for every interpretationI , I |=τ φ implies
thatI |=τ ϕ .

–φ and ϕ are said to beτ-equisatisfiable ifφ is
τ-satisfiable iffϕ is τ-satisfiable.

3.2 Conjunctive Normal Form

Below we give a rule-based algorithm to transform an
arbitrary formula into an equisatisfiable CNF formula.
The algorithm consists of the following steps.

1.Eliminate implication:
–φ → ϕ =⇒CNF ¬φ ∨ϕ

2.Move negation inward:
–¬¬φ =⇒CNF φ
–¬(φλ ) =⇒CNF φ−λ

–¬(φ ∨ϕ) =⇒CNF ¬φ ∧¬ϕ
–¬(φ ∧ϕ) =⇒CNF ¬φ ∨¬ϕ
–¬(∃xφ) =⇒CNF ∀x¬φ
–¬(∀xφ) =⇒CNF ∃x¬φ

3.Move operators inward:
–(φλ1)λ2 =⇒CNF φλ1⊗λ2

–(¬φ)λ =⇒CNF φ−λ

–(φ ∨ϕ)λ =⇒CNF φλ ∨ϕλ if λ ≥W

–(φ ∧ϕ)λ =⇒CNF φλ ∧ϕλ if λ ≥W

–(φ ∨ϕ)λ =⇒CNF φλ ∧ϕλ if λ <W

–(φ ∧ϕ)λ =⇒CNF φλ ∨ϕλ if λ <W

–(∀xφ)λ =⇒CNF ∀xφλ if λ ≥W

–(∃xφ)λ =⇒CNF ∃xφλ if λ ≥W

–(∃xφ)λ =⇒CNF ∀xφλ if λ <W

–(∀xφ)λ =⇒CNF ∃xφλ if λ <W
4.Standardize variables:

–If two variables have the same name but are in two
different clauses then rename one of them.

5.Move quantifiers outward:
–(Qxφ)∧ϕ =⇒CNF Qx(φ ∧ϕ) (x not free inϕ)
–(Qxφ)∨ϕ =⇒CNF Qx(φ ∨ϕ) (x not free inϕ)
–φ ∧ (Qxϕ) =⇒CNF Qx(φ ∧ϕ) (x not free inφ )
–φ ∨ (Qxϕ) =⇒CNF Qx(φ ∨ϕ) (x not free inφ )

whereQ∈ {∃,∀}
6.Eliminate existential quantifiers:

- ∀x1 . . .∀xn∃xφ =⇒CNF ∀x1 . . .∀xnφ [x := π(x1,...,xn)]
whereπ is a new n-ary function symbol, also called
“Skolem function”

7.Eliminate universal quantifiers:
–∀xφ =⇒CNF φ

8.Distribute disjunctions inward over conjunctions:
–φ ∨ (ϕ ∧ γ) =⇒CNF (φ ∨ϕ)∧ (φ ∨ γ)

9.Eliminate duplicates
–φ ∨ϕ ∨ϕ =⇒CNF φ ∨ϕ
–φ ∧ϕ ∧ϕ =⇒CNF φ ∧ϕ

To prove that=⇒CNF preservesτ-satisfiability we
need the following results.

Proposition 3.⊗ is associative and commutative.

Proof.We haveλ1⊗λ2 = (λ1∩λ2)∪ (−λ1∩−λ2) = (λ2∩
λ1)∪ (−λ2∩−λ1). This means⊗ is commutative.

By definition
(λ1⊗λ2)⊗λ3 = (λ1∩λ2∩λ3)∪ (−λ1∩−λ2∩λ3)∪

(λ1∩−λ1∩−λ3)∪(−λ1∩λ2∩−λ3)∪(λ1∩−λ2∩−λ3)∪
(λ2∩−λ2∩−λ3)
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and
λ1⊗ (λ2⊗λ3) = (λ1∩λ2∩λ3)∪ (λ1∩−λ2∩−λ3)∪

(−λ1∩λ2∩−λ2)∪(−λ1∩−λ2∩λ3)∪(−λ1∩λ2∩−λ3)∪
(−λ1∩λ3∩−λ3).

Consider the following cases:

–W ≤ λ1,λ2,λ3: then(λ1 ⊗ λ2)⊗ λ3 = λ1∩ λ2∩ λ3 =
λ1⊗ (λ2⊗λ3);

–λ1,λ2,λ3 < W: then(λ1 ⊗ λ2)⊗ λ3 = λ1∪ λ2∪ λ3 =
λ1⊗ (λ2⊗λ3);

–λ2,λ3 < W ≤ λ1: then (λ1 ⊗ λ2)⊗ λ3 = λ1 ∩−λ2 ∩
−λ3 = λ1⊗ (λ2⊗λ3);

–λ3 <W ≤ λ1,λ2: then(λ1⊗λ2)⊗λ3 = −λ1∪−λ2∪
λ3 = λ1⊗ (λ2⊗λ3).

In all cases we have(λ1⊗λ2)⊗λ3 = λ1⊗ (λ2⊗λ3). This
means⊗ is associative.

Proposition 4.−(λ1⊗λ2) =−λ1⊗λ2 = λ1⊗−λ2

Proof.We have that

−λ1⊗λ2 = (λ1∩−λ2)∪ (−λ1∩λ2) = λ1⊗−λ2

and

−(λ1⊗λ2)= (λ1∩−λ1)∪(λ1∩−λ2)∪(−λ1∩λ2)∪(λ2∩−λ2)

Consider the following cases:

–λ1,λ2 ≥W
Then−(λ1⊗λ2)=−λ1∪−λ2 =−λ1⊗λ2 =λ1⊗−λ2

–W > λ1,λ2
Then−(λ1⊗λ2) = λ1∪λ2 =−λ1⊗λ2 = λ1⊗−λ2

–λ1 ≥W > λ2
Then−(λ1⊗λ2) = λ1∩−λ2 =−λ1⊗λ2 = λ1⊗−λ2

In all cases we have−(λ1⊗λ2) =−λ1⊗λ2 = λ1⊗−λ2.

Proposition 5.Let I = (M,σ) be an interpretation, and
φ ,ϕ ,ψ be formulae. Then

–[|(φλ1)λ2|]Mσ = [|φλ1⊗λ2|]Mσ
–[|¬(φλ )|]Mσ = [|φ−λ |]Mσ
–[|(¬φλ )|]Mσ = [|φ−λ |]Mσ
–[|(φ ∨ϕ)λ |]Mσ = [|(φλ )∨ (ϕλ )|]Mσ if λ ≥W

–[|(φ ∧ϕ)λ |]Mσ = [|(φλ )∧ (ϕλ )|]Mσ if λ ≥W

–[|(φ ∨ϕ)λ |]Mσ = [|(φλ )∧ (ϕλ )|]Mσ if λ <W

–[|(φ ∧ϕ)λ |]Mσ = [|(φλ )∨ (ϕλ )|]Mσ if λ <W

–[|(∀xφ)λ |]Mσ = [|∀xφλ |]Mσ if λ ≥W

–[|(∃xφ)λ |]Mσ = [|∃xφλ |]Mσ if λ ≥W

–[|(∀xφ)λ |]Mσ = [|∃xφλ |]Mσ if λ <W

–[|(∃xφ)λ |]Mσ = [|∀xφλ |]Mσ if λ <W

Proof.The first property follows from Proposition3.

–[|(φλ1)λ2|]Mσ = [|φλ1⊗λ2|]Mσ
Let [|φ |]Mσ = λ . Then we have [|(φλ1)λ2|]Mσ =

(λ ⊗λ1)⊗λ2 = λ ⊗ (λ1⊗λ2) = [|φλ1⊗λ2|]Mσ .

The next two properties follow from Proposition4.

–[|¬(φλ )|]Mσ = [|φ−λ |]Mσ
Let [|φ |]Mσ = λ ′. Then we have
[|¬(φλ )|]Mσ =−λ ⊗λ ′ = [|φ−λ |]Mσ .

–[|(¬φλ )|]Mσ = [|φ−λ |]Mσ
Let [|φ |]Mσ = λ ′. Then we have
[|(¬φλ )|]Mσ = λ ⊗−λ ′ =−λ ⊗λ ′ = [|φ−λ |]Mσ .

We now prove the following properties.

–[|(φ ∨ϕ)λ |]Mσ = [|(φλ )∨ (ϕλ )|]Mσ if λ ≥W
Let [|φ |]Mσ = λ1 and[|ϕ |]Mσ = λ2. Then we have
[|(φ ∨ ϕ)λ |]Mσ = λ ⊗ (λ1 ∪ λ2) =
(λ ∩ (λ1 ∪ λ2)) ∪ (−λ ∩ −(λ1 ∪ λ2)) =
(λ ∩λ1)∪ (λ ∩λ2)∪ (−λ ∩−λ1∩−λ2)
and
[|(φλ )∨ (ϕλ )|]Mσ = (λ ⊗λ1)∪ (λ ⊗ λ2) = (λ ∩ λ1)∪
(λ ∩λ2)∪ (−λ ∩−λ1)∪ (−λ ∩−λ2).
We consider the following cases

–λ ≥W andλ1,λ2 ≥W
Then we have [|(φ ∨ ϕ)λ |]Mσ =

(λ ∩λ1)∪ (λ ∩λ2) = [|(φλ )∨ (ϕλ )|]Mσ .
–λ ≥W andW > λ1,λ2
Then we have
[|(φ ∨ϕ)λ |]Mσ =−λ ∪λ1∪λ2 = [|(φλ )∨ (ϕλ )|]Mσ .

–λ ≥W andλ1 ≥W > λ2
Then we have[|(φ ∨ϕ)λ |]Mσ = λ ∩ λ1 = [|(φλ )∨

(ϕλ )|]Mσ .

–[|(φ ∧ϕ)λ |]Mσ = [|(φλ )∧ (ϕλ )|]Mσ if λ ≥W
Let [|φ |]Mσ = λ1 and[|ϕ |]Mσ = λ2. Then we have
[|(φ ∧ ϕ)λ |]Mσ = λ ⊗ (λ1 ∩ λ2) =
(λ ∩ (λ1 ∩ λ2)) ∪ (−λ ∩ −(λ1 ∩ λ2)) =
(λ ∩λ1∩λ2)∪ (−λ ∩−λ1)∪ (−λ ∩−λ2)
and
[|(φλ )∧ (ϕλ )|]Mσ = (λ ⊗ λ1)∩ (λ ⊗ λ2) = (λ ∩ λ1 ∩
λ2)∪ (λ ∩−λ ∩ λ1 ∩−λ2)∪ (λ ∩−λ ∩−λ1 ∩ λ2)∪
(−λ ∩−λ1∩−λ2).
We consider the following cases

–λ ≥W andλ1,λ2 ≥W
Then we have
[|(φ ∧ϕ)λ |]Mσ = λ ∩λ1∩λ2 = [|(φλ )∧ (ϕλ )|]Mσ .

–λ ≥W andW > λ1,λ2
Then we have
[|(φ ∧ϕ)λ |]Mσ =−λ ∪λ1∩λ2 = [|(φλ )∧ (ϕλ )|]Mσ .

–λ ≥W andλ1 ≥W > λ2
Then we have
[|(φ ∧ϕ)λ |]Mσ =−λ ∪λ2 = [|(φλ )∧ (ϕλ )|]Mσ .

The proof for the following properties is similar to the
previous ones.

− [|(φ ∨ϕ)λ |]Mσ = [|(φλ )∧ (ϕλ )|]Mσ if λ <W

− [|(φ ∧ϕ)λ |]Mσ = [|(φλ )∨ (ϕλ )|]Mσ if λ <W

Now let us prove the following properties.

–[|(∀xφ)λ |]Mσ = [|∀xφλ |]Mσ if λ ≥W
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We have

[|(∀xφ)λ |]Mσ = λ ⊗ [|∀xφ |]Mσ
= λ ⊗

⋂

c∈D

{[|φ |]Mσ ′ |σ ′ = σ ∪{x 7→ c}}

=
⋂

c∈D

{λ ⊗ [|φ |]Mσ ′ |σ ′ = σ ∪{x 7→ c}}

=
⋂

c∈D

{[|φλ |]Mσ ′ |σ ′ = σ ∪{x 7→ c}}

= [|∀xφλ |]Mσ .

–[|(∃xφ)λ |]Mσ = [|∃xφλ |]Mσ if λ ≥W
We have

[|(∃xφ)λ |]Mσ = λ ⊗ [|∃xφ |]Mσ
= λ ⊗

⋃

c∈D

{[|φ |]Mσ ′ |σ ′ = σ ∪{x 7→ c}}

=
⋃

c∈D

{λ ⊗ [|φ |]Mσ ′ |σ ′ = σ ∪{x 7→ c}}

=
⋃

c∈D

{[|φλ |]Mσ ′ |σ ′ = σ ∪{x 7→ c}}

= [|∃xφλ |]Mσ .

The proof for the following properties is similar the
two previous ones.

–[|(∀xφ)λ |]Mσ = [|∃xφλ |]Mσ if λ <W

–[|(∃xφ)λ |]Mσ = [|∀xφλ |]Mσ if λ <W

We are now ready to prove that=⇒CNF preservesτ-
satisfiability.

Theorem 2.Let φ andϕ be formulae such thatφ =⇒CNF
ϕ . Thenφ andϕ are τ-equisatisfiable.

Proof.Steps 1-3 and 8-9 preserveτ-satisfiability because
of Theorem 1, Propositions4 and 5. Step 4 clearly
preserves τ-satisfiability. Steps 5-7 preserve
τ-satisfiability by definition of the quantifiers∀ and∃.

3.3 Herbrand Theorem

The Herbrand universe, orH-universe for short, of an
alphabetA , denoted byU(A ), is the set of all ground
terms built overA . The set of all ground atoms built over
A is called the Herbrand base, orH-base for short,
denoted byB(A ). A Herbrand structure, orH-structure
for short, of an alphabetA is a structure having the
domain which is the Herbrand universeU(A ). A
Herbrand interpretation, orH-interpretation for short, of
an alphabetA is a pair (MH ,σH), where MH is an
H-structure of the alphabetA andσH : V −→U(A ) is a
variable assignment.

It is convenient to define the notions ofH-universe,H-
base,H-structure andH-interpretation for a set of clauses

S. LetSbe a clause set, letA (S) be the alphabet containing
exactly the constant symbols, function symbols, predicate
symbols appearing inS, along with usual symbols such
as variables, logical symbols, auxiliary symbols. TheH-
universe ofS, denoted byU(S), is theH-universe of the
alphabetA (S). TheH-base ofS, denoted byB(S), is the
H-base of the alphabetA (S). An H-structure ofS is an
H-structure of the alphabetA (S). An H-interpretation of
S is anH-interpretation of the alphabetA (S).

Theorem 3.A clause set S isτ-satisfiable iff S isτ-satisfied
in an H-interpretation.

Proof.(⇒) Assume thatS is τ-satisfiable, then it is
τ-satisfied by an interpretationI = (M,σ) over the
domainD. We construct anH-interpretation ofSbased on
the existing interpretationI as follows:H = (MH ,σH)

–MH = (U(S)),H f ,H p), where:
–U(S) is theH-universe ofS,
–H f ( f )(h1, . . . ,hn) = f (h1, . . . ,hn) ∈U(S)),
–H p(P)(h1, . . . ,hn) = I p(P)(I (h1), . . . ,I (hn)) ∈
AX.

–σH(x) = h whereh∈U(S)) andI (h) = σ(x).

Then, we have:

H (P(t1, . . . , tn)) = H p(P)(σH(t1), . . . ,σH(tn))

= I p(P)(I (σH(t1)), . . . ,I (σH(tn)))

= I p(P)(σ(t1), . . . ,σ(tn))

= I (P(t1, . . . , tn))

This shows that ifI τ-satisfiesSthenH τ-satisfiesS
as well.

(⇐) If an H-interpretationH τ-satisfiesS, then it is
obvious thatS is τ-satisfiable.

Let S be a set of ground clauses andB(S) be theH-
base ofS. For τ >W, a τ-semantic tree ofS is ann-level
complete binary tree constructed as follows.

–Each level corresponds to an element ofB(S). If the ith

level corresponds to the atomAi ∈ B(S), then the left
edge of each node at the leveli is labeled withAi ≤−τ,
and the right edge of each node at the leveli is labeled
with Ai ≥ τ (cf. Fig 7).

–Each element ofB(S) corresponds to exactly one level
in the tree, which means that ifAi ∈ A(S) appears in
level i then it must not appear in any other levels.

There are differentτ-semantic trees for a given set of
clauses, depending on the choice of atoms at each level of
the tree.

Notice that each path from the root to a certain leaf in
aτ-semantic tree corresponds to anH-interpretationI of
the clause setS, such thatI (Ai) ≤ −τ or I (Ai) ≥ τ, for
i = 1, . . . ,n. We do not consider theH-interpretationsI
such that−τ < I (Ai)< τ because they will notτ-satisfy
Aλi

i for everyλi ∈ LHp[G], for i = 1, . . . ,n.
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A1

A2 A2

A3 A3 A3 A3

A1 ≤−τ A1 ≥ τ

A2 ≤−τ A2 ≥ τ A2 ≤−τ A2 ≥ τ

Fig. 7: τ-semantic tree

Let T be aτ-semantic tree of a set of clausesS. A
clauseC of S is failed at nodeN of T if there exist an
H-interpretation I corresponding to a branch ofT
containingN such thatC is notτ-satisfied byI . A node
N of T is called a failure node ofC iff C is failed atN but
is not failed at any nodes aboveN. A nodeN of T is an
inference node if both of its successor nodes are failure
nodes. If every branch inT contains a failure node,
cutting off its descendants fromT, we have a treeT ′

which is called a closed tree ofS; if the number of nodes
in T ′ is finite thenT ′ is called a finite closed tree.

Lemma 1.There always exists an inference node on the
finite closed tree.

Proof.Assume that we have a closed treeT . BecauseT has
a finite level, so there exists one (or more) leaf node onT
at the highest level, let say this node is calledj. Let i be the
parent node ofj. By definition of the closed tree,i cannot
be failure node. This implies thati has another child node,
namedk. If k is a failure node theni is inference node,
the lemma is proved. Ifk is not a failure node then it has
two child nodes:l ,m. Clearlyl ,mare at higher level thanj.
This contradicts with the assumption thatj is at the highest
level. Therefore,k is a failure node andi is an inference
node.

Lemma 2.Let S be a set of the ground clause. Then S isτ-
unsatisfiable iff for everyτ-semantic tree of S, there exists
a finite closed tree.

Proof.(⇒) Suppose thatS is τ-unsatisfiable andT is a
τ-semantic tree ofS. Let B be a branch ofT, we denote
IB theH-interpretation corresponding toB. By Theorem
3, S is not τ-satisfied byIB. But then there exists a
ground instanceC′ of a clauseC in S which is not
τ-satisfied byIB. There must exist a failure nodeNB on
the branchB. SinceC′ has a finite number of literals,NB
is a finite number of edges away from the root. We have
actually shown that there is a failure node on every branch
of T which is a finite number of edges away from the

root. The treeT ′ is obtained byT removing all nodes
which are below the failure node.T ′ is a closed tree.
Every branch ofT ′ has finite length. By König’s lemma,
T ′ has finite nodes.

(⇐) Assume that there is always a finite closed tree
for a τ-semantic treeT of the set of clausesS. Then every
branch ofT contains a failure node, it means that no
H-interpretation τ-satisfies S. By Theorem 3, S is
τ-unsatisfiable.

4 τ-Resolution

We now devise a resolution inference system, called
τ-resolution. The τ-resolution inference system is
parameterized with a thresholdτ >W. It can semi-decide
whether a formula isτ-unsatisfiable. We prove the
soundness and completeness ofτ-resolution. The
soundness is relatively simple, the completeness proof
makes use ofτ-semantic tree technique described in
Section3.3.

An inference rulehas the form:

C1 C2 . . . Cn

C
where the clausesC1,C2 . . . ,Cn are the premises andC

is the conclusion. An inference rule isτ-sound iff its
conclusion is aτ-consequence of its premises. That is,
{C1,C2 . . . ,Cn} |=τ C.

Definition 18.Define theτ-resolution rule as follows:

Γ1∨Aλ1
1 Aλ2

2 ∨Γ2

(Γ1∨Γ2)γ

where






λ1∩λ2 ≤−τ
λ1∪λ2 ≥ τ
γ is the most general unifier of A1 and A2

(Γ1∨Γ2)γ is called aτ-resolvent ofΓ1∨Aλ1
1 and Aλ2

2 ∨Γ2.

Theorem 4.Theτ-resolution rule18 is τ-sound.

Proof.Let I = (M,σ) be an interpretation. We need to

prove that ifI ((Γ1∨Aλ1
1 )∧ (Aλ2

2 ∨Γ2))≥ τ thenI ((Γ1∨
Γ2)γ)≥ τ.

It is obvious thatI ((Γ1 ∨ Aλ1
1 ) ∧ (Aλ2

2 ∨ Γ2)) ≥ τ
implies

I (((Γ1∨Aλ1
1 )∧ (Aλ2

2 ∨Γ2)γ))≥ τ

We have that

I (((Γ1∨Aλ1
1 )∧ (Aλ2

2 ∨Γ2))γ)

= I (((Γ1∧Aλ2
2 )∨ (Γ1∧Γ2)∨ (Aλ1

1 ∧Aλ2
2 )∨ (Aλ1

1 ∧Γ2))γ)

= I ((Γ1∧Aλ2
2 )γ ∨ (Γ1∧Γ2)γ ∨ (Aλ1

1 ∧Aλ2
2 )γ ∨ (Aλ1

1 ∧Γ2)γ)

= I ((Γ1∧Aλ2
2 )γ)∨I ((Γ1∧Γ2)γ)∨I ((Aλ1

1 ∧Aλ2
2 )γ)∨I ((Aλ1

1 ∧Γ2)γ)
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It is easy to see that:

–I ((Γ1∧Aλ2
2 )γ)≤ I (Γ1γ)≤ I ((Γ1∨Γ2)γ),

–I ((Γ1∧Γ2)γ)≤ I ((Γ1∨Γ2)γ),
–I ((Aλ1

1 ∧Aλ2
2 )γ)≤−τ, and

–I ((Aλ1
1 ∧Γ2)γ)≤ I (Γ2γ)≤ I ((Γ1∨Γ2)γ).

Now by contradiction assume thatI ((Γ1 ∨Γ2)γ < τ.
Then we have I ((Γ1 ∧ Aλ2

2 )γ) ∨ I ((Γ1 ∧ Γ2)γ) ∨

I ((Aλ1
1 ∧ Aλ2

2 )γ) ∨ I ((Aλ1
1 ∧ Γ2)γ) < τ or equivalently

I (((Γ1∨Aλ1
1 )∧ (Aλ2

2 ∨Γ2))γ)< τ
which contradicts with the fact that

I (((Γ1∨Aλ1
1 )∧ (Aλ2

2 ∨Γ2)γ))≥ τ

This completes the proof of the theorem.

Definition 19.Define theτ-factoring rule as follows:

Aλ
1 ∨Aλ

2 ∨Γ
(Aλ

1 ∨Γ )γ

whereγ is the most general unifier of A1 and A2.
(Aλ

1 ∨Γ )γ is called a factor of Aλ1 ∨Aλ
2 ∨Γ .

Theorem 5.The factoring rule19 is sound.

Proof.Straightforward.

Definition 20.A τ-resolution derivation is a sequence of
the form

S0, . . . ,Si , . . .

where

–Si is a set of clauses (for i= 1, . . . ,n), and
–Si+1 = Si ∪{C}, and C/∈ Si , and C is the conclusion
of a resolution inference with premises from Si or of a
factoring with premise from Si .

Definition 21.A τ-empty clause is of the form Aλ1
1 ∨ . . .∨

Aλn
n where Ai is an atom and−τ < λi < τ for i = {1, . . . ,n}.

Proposition 6.A τ-empty clause is notτ-satisfiable.

Proof.Let Aλ1
1 ∨ . . . ∨ Aλn

n where Ai is an atom and
−τ < λi < τ for i = {1, . . . ,n} be aτ-empty clause. Let
I = (M,σ) be an interpretation. By definition of formula
interpretation we have

[|Aλ1
1 ∨ . . .∨Aλn

n |]Mσ = [|Aλ1
1 |]Mσ ∪ . . .∪ [|Aλn

n |]Mσ

= λ1⊗ [|A1|]
M
σ ∪ . . .∪λn⊗ [|An|]

M
σ

By definition of⊗ and the fact that−τ < λi < τ for
i = {1, . . . ,n}, we haveλi ⊗ [|Ai|]

M
σ < τ for i = {1, . . . ,n}.

This impliesλ1⊗ [|A1|]
M
σ ∪ . . .∪λn⊗ [|An|]

M
σ < τ,

which also means[|Aλ1
1 ∨ . . .∨Aλn

n |]Mσ < τ
In other wordsAλ1

1 ∨ . . .∨Aλn
n is notτ-satisfiable.

We use�τ to denote aτ-empty clause. The empty
clause is the clause that does not contains any literals. The
empty clause is aτ-empty clause. We use� to denote the
empty clause.

Theorem 6(Soundness). Let S0, . . . ,Si , . . . be a
τ-resolution derivation. If Sn contains aτ-empty clause
(for some n= 0,1, ...), then S0 is τ-unsatisfiable.

Proof.By Theorems 4 and 5, Si and Si+1 are
τ-equisatisfiable. This implies that ifSn contains a
τ-empty clause, which also meansSn is τ-unsatisfiable,
thenS0 is τ-unsatisfiable.

Lemma 3(Lifting lemma). Let C be a resolvent of
{C1,C2} and C′1,C

′
2 be instances of C1,C2 respectively. If

C′ is a resolvent of{C′
1,C

′
2} then C′ is an instance of C

(or of a factor of C).

Proof.Let C′
1 = Γ ′

1 ∨ (A′
1)

λ ′
1,C′

2 = Γ ′
2 ∨ (A′

2)
λ ′

2, andγ be a
m.g.u of A′

1,A
′
2. Let σ be a substitution such that

C′
1 =C1σ ,C′

2 =C2σ andC1 = Γ1∨Aλ1
1 ,C2 = Γ2∨Aλ2

2 . By
resolution rule 18, C′ = (Γ ′

1 ∨ Γ ′
2 )γ = (Γ1 ∨ Γ2)γoσ

becauseΓ ′
1 = Γ1σ ,Γ ′

2 = Γ2σ . Assume thatθ is the m.g.u
of T1,T2, then θ is more general thanγ, which implies
thatθ is more general thanγoσ . ThusC′ = (Γ1∨Γ2)γoσ
is an instance ofC = (Γ1 ∨ Γ2)θ (or of a factor of
C= (Γ1∨Γ2)θ ).

Theorem 7(Completeness). Let S0, . . . ,Si , . . . be a
τ-resolution derivation. If S0 is τ-unsatisfiable then there
exists Sk containing aτ-empty clause.

Proof.According to Lemma2 if S0 is τ-unsatisfiable, then
for everyτ-semantic treeT0 of S0 there is a corresponding
finite closed treeT ′

0. By Lemma1, there exists an inference
nodeN on T ′

0. Let S′0 be the set of all ground instance of
clauses inS0. Let C′

1,C
′
2 ∈ S′0 be the ground instances of

two clausesC1,C2 ∈ S0 such thatC′
1,C

′
2 are failed at the

two children ofN. Assume that the level ofN corresponds
to a ground atomL′. ThenC′

1 andC′
2 contains the literal

L′α1 andL′α2 whereα1 ≥ τ andα2 ≤−τ.
ResolvingC′

1 and C′
2, we obtain the clauseC′ not

containingL′, andC′ is failed at the nodeN. By Lemma3,
we can find a resolventC of C1,C2 ∈ S0 such thatC′ is an
instance ofC, or of a factor ofC. The closedτ-semantic
treeT ′

1 associated toS1 = S0∪C has fewer nodes thanT ′
0.

The process is then iterated. BecauseT ′
0 has a finite

number of nodes so there existsk such thatT ′
k of Sk

consists only of one root node, then aτ-empty clause�τ

must be inS′k. By Lemma3, Sk contains�τ .

Example 6.Let AX = (LHp(G),G,H,≤,∪,∩,−,⇒) be a
linguistic truth domain where

–G= {⊥,F,W,T,⊤}, whereT= True, F= False;
–⊥< F<W < T<⊤;
–F,T are the negative and positive primary generator,
respectively;
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–⊥,W,⊤ are the smallest, neutral, biggest elements,
respectively;

–H+ = {V,R}, H− = {P,ML}, with the ordering
R < V andML < P, whereV = Very, R = Rather,
P= Possibly, ML=MoreOrLess.

Consider the following set of clauses:

1.A(x)RF ∨B(z)RF∨C(x)PT

2.C(y)RF ∨D(y)VRT

3.C(t)VVT ∨E(t, f (t))RF

4.D(a)RF

5.E(a,u)T

6.F(a)PT

wherea is a constant symbol andx,y,z, t,u are variables.
Let us consider the caseτ = RT. Then the clause

E(a,u)T is a RT-empty clause. We conclude that the
given set of clauses is notRT-satisfiable. Now consider
the caseτ = T. Then the clauseF(a)PT is a T-empty
clause. We conclude that the given set of clauses is not
T-satisfiable.

Now consider the caseτ = PT, then we have the
following τ-resolution inferences

C(y)RF ∨D(y)VRT C(t)VVT∨E(t, f (t))RF
[t/y]

D(t)VRT∨E(t, f (t))RF

D(t)VRT∨E(t, f (t))RF D(a)RF
[a/t]

E(a, f (a))RF

E(a, f (a))RF E(a,u)True
[ f (a)/u]

�

A PT-empty clause is derived, we conclude that the
initial clause set isPT-unsatisfiable. Actually the initial
clause set is evenτ-unsatisfiable for allτ >W, since the
resolution procedure drives the empty clause from the
latter.

5 Approximate Reasoning

In two-valued logics, we know that a formula is valid if
and only if its negation is unsatisfiable. This property is
used when one wants to check entailments or prove
theorems. That is if we want to prove thatφ entailsϕ then
we use resolution to derive the empty clause fromφ ∧¬ϕ .
However, this schema does not directly work in our
setting here. Indeed, we only have that a formula is
τ-valid if and only if the truth value of its negation is less
than or equal to−τ under every interpretation. But
τ-resolution assumes thatτ >W, which implies−τ ≤W,
and(−τ)-resolution can not be used.

Fortunately, ifτ =W then the entailment checking by
refutation applies here in our framework. However
lowering the thresholdτ to W also means that the level of

vagueness of formulas will likely be lowered. For
example the resolution inference

ASlightlyTrue ASlightlyFalse

�

involves two clauses with low level of vagueness, i.e., the
truth value is at mostSlightlyTrue, while the resolution
inference

AVeryTrue AVeryFalse

�

involves two clauses with higher level of vagueness, i.e.,
the truth value is at mostVeryTrue. We say that the latter
inference is moreconfidentthan the former. In this case
we successfully derive the empty clause and we say that
the latter proof of the empty clause is more confident than
the former. In practice more confident inferences and
proofs should be preferred. Below we formalize the
notion of confidence in our resolution framework.

Definition 22.Let δ be an element of LHp(G) and C be a
clause. The clause C with confidenceδ is the pair(C,δ ).
The same clauses with different reliabilities are called
variants. That is(C,δ ) and(C,δ ′) are called a variant of
each other.

An inference ruleR working with clauses with
reliabilities is represented as follows:

(C1,δ1) (C2,δ2) . . . (Cn,δn)

(C,δ )

where(C1,δ1) (C2,δ2) . . . (Cn,δn) are premises
and (C,δ ) is the conclusion. We say thatδ is the
confidence ofR, provided thatδ ≤ δi for i = 1,2, . . . ,n.
The soundness of an inference is defined as for inferences
without confidence.

The resolution rule for clauses is adapted as follows:

(Γ1∨Aλ1
1 ,δ1) (Aλ2

2 ∨Γ2,δ2)

((Γ1∨Γ2)γ,δ )

where










λ1∩λ2 <W
λ1∪λ2 ≥W
γ is the most general unifier ofA1 andA2
δ = δ1∩δ2∩ (λ1∪λ2)∩ (−λ1∪−λ2)

((Γ1∨Γ2)γ,δ ) is called aτ-resolvent of(Γ1∨Aλ1
1 ,δ1) and

(Aλ2
2 ∨Γ2,δ2).
The factoring rule for clauses is adapted as follows:

(Aλ
1 ∨Aλ

2 ∨Γ ,δ )
((Aλ

1 ∨Γ )γ,δ )

whereγ is the most general unifier ofA1 andA2. ((Aλ
1 ∨

Γ )γ,δ ) is called a factor of(Aλ
1 ∨Aλ

2 ∨Γ ,δ ).
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The notion of resolution derivation for clauses with
confidence can be adapted as follows. A resolution
derivation is a sequence of the form

S0, . . . ,Si , . . .

where

–Si is a set of clauses with confidence (fori = 1, . . . ,n),
and

–Si+1 = Si ∪ (C,δ ), and(C,δ ) /∈ Si , and(C,δ ) is the
conclusion of a resolution inference with premises
from Si or of a factoring with premise fromSi .

Example 7.Consider again the linguistic truth domain in
Example6. Consider the set of clauses:

1.(A(x)VF ∨B(z)VF ∨C(x)PT,T)
2.(C(y)SF ∨D(y)VPT,T)
3.(C(t)VVT ∨E(t, f (t))VF,T)
4.(D(a)VF,T)
5.(E(a,u)T,T)

At the beginning, the confidence of each clause is
assigned toT.

We have the following resolution inferences

(C(y)SF∨D(y)VPT,T) (C(t)VVT∨E(t, f (t))VF,T)
[t/y]

(D(t)VPT∨E(t, f (t))VF,ST)

(D(t)VPT ∨E(t, f (t))VF,ST) (D(a)VF,T)
[a/t]

(E(a, f (a))VF,ST)

(E(a, f (a))VF,ST) (E(a,u)T,T)
[ f (a)/u]

(�,ST)

The empty clause is derived, we conclude that the
initial clause set is unsatisfiable and the confidence of the
proof of unsatisfiability isSlightlyTrue.

A resolution proofof a clauseC from a set of clauses
Sconsists of repeated application of the resolution rule to
derive the clauseC from the setS. If C is the empty clause
then the proof is called aresolution refutation. We will
represent resolution proofs asresolution trees. Each tree
node is labeled with a clause. There must be a single node
that has no child node, labeled with the conclusion clause,
we call it the root node. All nodes with no parent node are
labeled with clauses from the initial setS. All other nodes
must have two parents and are labeled with a clauseC such
that

(C1,δ1) (C2,δ2)

(C,δ )
where(C1,δ1),(C2,δ2) are the labels of the two parent

nodes. If there is a resolution proof of a clause(C,δ ), then
the resolution proof and representing resolution tree are
said to have the confidenceδ .

Different resolution proofs may give the same the
conclusion clause with different confidences. The
following example illustrates this.

Example 8.Consider again the linguistic truth domain in
Example6. Consider the set of clauses:

1.(AT,T)
2.(AVF∨BF,T)
3.(BVT,T)
4.(BVF∨CF,T)
5.(CAT,T)

At the beginning we assign each clause to the confidence
T. Then the set of clauses

{AVF∨BF,T),(BVT,T),(AT,T)}

will give the following resolution refutation with the
confidenceT

(AVF∨BF,T) (BVT,T)

(AVF,T) (AT,T)

(�,T)

The other set of clauses

{(BVF∨CF,T),(BVT,T),(CAT,T)}

will give the following resolution refutation with the
confidenceAT

(BPF ∨CF,T) (BVT,T)

(CF,PT) (CAT,T)

(�,PT)

Clearly the former resolution refutation has a greater
confidence than the latter resolution refutation.

Example8 raises a natural question whether we can find
the refutation with the maximal confidence. Below we
present a resolution strategy, called∆ -strategy, which
guarantees that the resolution proof of each clause has the
maximal confidence.

A set of clausesSis said to be∆ - saturatediff for every
resolution inference with premises inS the conclusion of
this inference is a variant with smaller or equal reliability
of some clause inS. That is for every resolution inference

(C1,δ1) (C2,δ2)

(C,δ )

where(C1,δ1),(C2,δ2) ∈ S, there is some clause(C,δ ′) ∈
Ssuch thatδ ≤ δ ′.

A ∆ -strategy derivation is a sequence of the form

S0, . . . ,Si , . . .

where eachSi is a set of clauses, and

–Si+1 is obtained by adding the conclusion of a
resolution inference with premises with maximal
confidences fromSi , that is Si+1 = Si ∪ {(C,δ )},
where (C,δ ) is the conclusion of the resolution
inference

(C1,δ1) (C2,δ2)

(C,δ )
(C1,δ1),(C2,δ2) ∈ Si and there are not any clauses
(C1,δ ′

1),(C2,δ ′
2) ∈ Si such thatδ ′

1 > δ1 andδ ′
2 > δ2, or
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–Si+1 is obtained by removing a variant with smaller
confidence, that isSi+1 = Si \ {(C,δ )} where(C,δ ) ∈
Si and there is some(C,δ ′) ∈ Si such thatδ < δ ′.

Definethe limit of a derivation S0, . . . ,Si , . . .

S∞ =
⋃

i≥0

⋂

j≥i

Sj

Similar to the standardτ-resolution procedure, the∆ -
strategy procedure is sound and complete. The proofs are
exactly the same.

Theorem 8.Let S0, . . . ,Si , . . . be a ∆ -strategy derivation.
Then S0 is W-unsatisfiable if and only if Sn contains the
empty clause (for some n= 0,1, . . .).

The most interesting property of the∆ -strategy
procedure is that we can show that it gives resolution
proofs with maximal confidence.

Lemma 4.Consider the following resolution inferences:

(Γ1∨Aλ1
1 ,δ1) (Aλ2

2 ∨Γ2,δ2)

((Γ1∨Γ2)γ,δ )

(Γ1∨Aλ1
1 ,δ1) (Aλ2

2 ∨Γ2,δ ′
2)

((Γ1∨Γ2)γ,δ ′)

Then,δ ′
2 > δ2 impliesδ ′ ≥ δ .

Proof.It is easy to see that ifδ ′
2 > δ2 then

δ ′ = δ1∩δ ′
2∩ (−λ1∪−λ2)∩ (λ1∪λ2)

≥ δ1∩δ2∩ (−λ1∪−λ2)∩ (λ1∪λ2) = δ

Lemma 5.Let S0, . . . ,Si , . . . be a ∆ -strategy derivation,
and S∞ be the limit of the derivation. Then S∞ is
∆ -saturated.

Proof.By contradiction assume thatS∞ is not∆ -saturated.
Then there must be a resolution inference

(C1,δ1) (C2,δ2)

(C,δ )

where (C1,δ1),(C2,δ2) ∈ S∞, there is not any clause
(C,δ ′) ∈ S∞ such thatδ ≤ δ ′. By definition of∆ -strategy
derivation, either(C,δ ) is in S∞ or there must be a clause
(C,δ ′′) in Si for somei = 0,1, . . . such thatδ ≤ δ ′′, this
also means that(C,δ ) is removed fromSj for somej ≥ i.
In both cases, we have a contradiction.

Theorem 9.Let S0, . . . ,Si , . . . be a ∆ -strategy derivation,
and S∞ be the limit of the derivation. Then for each clause
(C,δ ) in S∞, there is not any other resolution proof of the
clause(C,δ ′) from S0 such thatδ ′ > δ .

Proof.By contradiction, suppose that for some clause
(C,δ ) in S∞, there exists a resolution proof of(C,δ ′)
from S0 such thatδ ′ > δ . Let (C1,δ1) and(C2,δ2) be the
two parents of(C,δ ′) in such a resolution proof of
(C,δ ′). We have that(C1,δ1) and(C2,δ2) cannot be both
in S∞ because otherwise an inference with these two
clauses as premisses would give(C,δ ′) in S∞. Without
lost of generality, we can assume that(C1,δ1) is not in
S∞. That also means there is a clause(C1,δ ′

1) in S∞ such
that δ ′

1 > δ1. By Lemma5, S∞ is ∆ -saturated. According
to Lemma4, the inference with premisses(C1,δ ′

1) and
(C2,δ2) gives us the conclusion(C,δ ′′), with δ ′′ > δ ′.
This contradicts with the fact thatS∞ is ∆ -saturated. This
completes the proof of the theorem.

Example 9.Consider again Example8. Applying the
∆ -strategy we get the following saturated set of clauses

1.(AT,T)
2.(AVF∨BF,T)
3.(BVT,T)
4.(BPF ∨CF,T)
5.(CAT,T)
6.(BF,T)
7.(AVF,VT)
8.(CF,VT)
9.(BPF,AT)

10.(�,T)

The initial set of clauses is unsatisfiable, and the resolution
refutation is

(AT,T) (AVF∨BF,T)

(BF,T) (BVT,T)

(�,T)

6 Related Work

The starting point of our investigation is[21,15]. The
main difference between LPL and fuzzy operator logic of
[15] lies in the truth domain. We use a linguistic truth
domain instead of the real interval[0,1] of fuzzy logic as
in [15]. This allows us to manipulate directly linguistic
terms in describing vague statements and mechanizing the
human reasoning under vagueness. We differ from [21] in
both algebraic and deductive aspects. Our linguistic truth
domain is a refined hedge algebra while [21] uses a linear
hedge algebra. It is worth underlying that in practice we
often have to deal with incomparable hedges, such as
MoreOrLess and Approximately, and incomparable
linguistic truth values, such asMoreOrLessTrue and
ApproximatelyTrue. In these situations our logic can be
used but the one of [21] cannot. On the other hand, our
inference system is based on resolution, while [21] uses
hedge moving rules on arbitrary linguistic terms. Our
resolution inference system is sound and complete but the
inference system in [21] is only consistent.
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The resolution for fuzzy logics has been an active
research direction [18,31,23,22,15]. In [31] Lee
presented a resolution procedure for fuzzy logics and
showed that the equisatisfiability of logical clauses in
fuzzy logics and two-valued logics. Shen et al. [23] went
a step further by giving a fuzzy refutation complete
resolution procedure in which the premises and
conclusions, as well as the inferential results are all fuzzy.
Weigert et al. [15] presented an approach to fuzzy logic
and reasoning under vagueness using the resolution
principle based on the fuzzy operator. Smutná and Vojtás
[22] gave a sound resolution for multiple-valued logics
with arbitrary connectives and graded information, and a
resolution truth function to evaluate the truth value of the
resolvent of a resolution inference. Habiballa [18]
presented a sound and complete resolution inference
system for fuzzy predicate logic with evaluated syntax.
Our resolution framework is heavily based on the one of
[15], but extends it with the concept of proof confidence
to capture the approximate nature of resolution
inferences.

Notable works in using hedge algebra for linguistic
reasoning are [32,21]. Nguyen et al. [21] presented a
logics whose truth domain is based on linear symmetric
hedge algebras along with an inference system consisting
of hedge moving rules. Le et al. [32] proposed a sound
and complete fuzzy linguistic logic programming whose
truth domain is based on linear finite symmetric hedge
algebras. The fuzzy linguistic logic programming only
works with a restricted class of rules, not as expressive as
our class of formulae. Since CNF transformation is
difficult in predicate fuzzy logic with evaluated syntax,
the main advantage of non-clausal resolution is that it
does not require CNF transformation. However, the
evaluated syntax is rather restricted, in the sense that truth
values are over formulae and cannot be distributed over
subformulae. Beside it seems difficult to have an ordered
version of non-clausal resolution for faster proof search as
in [6]. Notice that all of the works [32,21] make use of
linear symmetric hedge algebras as the linguistic truth
domains. Here we consider the class of refined hedge
algebras which includes the class of linear hedge
algebras. In this respect, LPL is more expressive than the
ones in [32,21].

In [37,36,35] we considered a more restricted
resolution inference system for a more restricted class of
formulae where truth operators are only over atoms. Here
we generalize the results in [36,37,35] in two ways. First,
we consider a syntactically more complex class of
formulae where truth operators are over formulae, and can
be distributed over logical connectives and truth operators
during CNF transformation. As an example, the formula

Smart(John)False∨WorkHard(John)RatherFalse

is allowed in [37,36], but the following formula is not

(Smart(John)VeryTrue∧WorkHard(John)RatherTrue)False

Second, theτ-resolution procedure is parameterized with
a truth degree thresholdτ ≥ W, in contrast with [37,36]
which only consider the caseτ = W. Consequently our
LPL and resolution inference system are more expressive
and flexible than the ones in [37,36].

It is worth mentioning that algebraic and logical
aspects of fuzzy logics have been for longtime an active
research direction (see e.g., [17,4,16] for more detailed
surveys). This line of research is concerned with fuzzy
logics in the narrow sense where one is interested in proof
theories for fuzzy logics. Here we consider fuzzy logics
in the broad sense where we are interested in the human
reasoning under vague statements in natural languages.
Especially the degree of vagueness is expressed by means
of linguistic truth terms, and the reasoning under
vagueness is based on resolution. Also algebraic [24,26,
25] and logical [8,10,27,19,9] approaches to linguistic
truth have been attractive research topics. Here we adopt
the algebraic approach to linguistic truth. This allows us
to treat the problem of the human reasoning under
vagueness as the problem of approximate reasoning with
LPL. And the latter can be handled smoothly because
many interesting results on approximate reasoning with
multiple-valued and fuzzy logics are transferable to LPL,
as we have shown.

7 Conclusion

We have presented the LPL for the problem ofdescribing
vague statements in natural languages, along with the
τ-resolution inference system for the problem of
mechanizingthe human reasoning under vagueness. LPL
has the following features: the truth domain is a refined
hedge algebra generated by a set of truth generators and a
set of hedges; the syntax is based on the one of
two-valued predicate logics but augmented with truth
operators; the semantics generalizes the one of
two-valued logics; the syntax and semantics properties
make sure that every formula has an equisatisfiable CNF
formula, and a CNF transforming algorithm has been
given. Theτ-resolution inference system, parameterized
with a thresholdτ, is sound and complete. We have
shown howτ-resolution is used to checkτ-satisfiability
of sets of clauses. We have studied the special case where
τ = W, namely the neutral element, and shown how
τ-resolution is used to check entailments or to prove
theorems. Theτ-resolution inferences have a level of
confidence, and lowering the thresholdτ to W makes
them less confident. We have proposed the∆ -strategy to
guarantee that inferences performed are always the most
confident. The∆ -strategy is, as the standardτ-resolution,
sound and complete.

There are two main lines of future work. First we
intend to study an ordered version ofτ-resolution for
faster proof search along the line of [6]. Ordering and
redundancy elimination techniques based on ordering
have shown to be crucial for the performance of
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resolution theorem proving. It would be interesting to
implement and experiment such an orderedτ-resolution.
Second we plan to apply our approach here to description
logics which are commonly used in knowledge
representation and ontologies, along the line of [1,2,3].
The idea is to use symmetric refined hedge algebras as the
truth domains of the description logics, and tableaux as
the automated reasoning method. This line of research
seems to be promising because vagueness is unavoidable
when modeling many real-world applications, especially
in medical informatics.
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