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Abstract: Humans reason by means of their own language and they caselaoal decide alternatives by evaluating semantics of
linguistic terms. The fundamental elements in human réagare sentences normally containing vague conceptshase sentences
have implicitly or explicitly a truth degree, which is oftexpressed also by linguistic terms suchnasre or less false, very false,
false, true, very true, more or less true, approximatelyetetc. In this article, we introduce a linguistic-valued poade logic along
with an inference system based on resolution. The truth doofathe logic is a refined hedge algebra, generated by a swetitbf
generators and a set of hedges. The syntax and semantiestipspf the logic make sure that every formula has an etigfisédle
formula in conjunctive normal form, and a conjunctive nokifioam transformation algorithm can be devised. The resmfuinference
system, parameterized with a threshold of acceptabisitypuind and complete. The linguistic-valued predicatecltmgjether with the
resolution inference system provides a framework for desuy vague statements and mechanizing human reasonihg iprésence

of vagueness.

Keywords: Linguistic Truth, Hedge Algebra, Refined Hedge Algebra,duiistic-valued Predicate Logic, Resolution, Approximate
Reasoning

1 Introduction Furthermore, humans reason by means of their own
language and they can choose and decide alternatives by

Inference in logical languages is an approach to modegVvaluating .semantics of Iingu@stic terms. The fundamental
human thinking and reasoning processes relying orflements in human reasoning are sentences normally
accurate mathematical foundations. With a set ofcontaining vague concepts, and these sentences have
statements, called premises, one can infer new statemen#§Pplicitly or explicitly a truth degree, which is often
called conclusions, so that if the premises are true thergXpressed also by linguistic terms suchrasre or less
the conclusions must also be true. false, very false, false, true, very true, more or less true,
The classical logic is suitable to reason with concepts@PProximately truegtc. For example, one might want to
that are crisp and well-defined in nature. However, in thefind out to what degree a person, John, would have heart
real-world applications, uncertainty, which refers to a disease if the certainty théit is approximately true that
form of deficiency or imperfection in the information for @n obese person would have heart diseasaid “It is
which the truth of such information is not established VerY true that John is obeseSuch knowledge cannot be
definitely, is everywhere. Approximate reasoning expressed nor reesorjed with standard logics or'fuzzy
methods, in general, are based on fuzzy sets theory ani@gics. Therefpre, in this paper, we are concerned with the
fuzzy logics P4. The fuzzy logics deal with the two followingissues:
vagueness in the knowledge, where a proposition is true ) .
only to some degree in the unit-intervaD,1). For 1..construct|ng dogical languagefor vague statements
example, the statement “John is obese with degree 0.4?” in natural languages, and
indicates John is slightly obese. Here, the value 0.4 is the 2.designing arinference systenfor human reasoning
degree of membership that John is obese. with linguistic truth value.
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Linguistic-valued Predicate Logic of SlightlyTrue the claim “John is smart” can be
endorsed to be used in the reasoning process, but for a

In 1965, Zadeh 34 introduced the fuzzy set theory and threshold of acceptability ofrue the claim“John is

fuzzy logic to deal with reasoning under vagueness. And  smart” is not sufficiently endorsed.

later Zadeh 2829,30] used linguistic variables and ) ] o ]

linguistic values to formalize the reasoning in natural TO Summarize, our first contribution is the LPL for

languages. Subsequently, Nguyen and Wech§ [ desc_rlblng vague statements in natural languages. That

introduced the concept of hedge algebra which is arProvidesa solution to Issue 1.

algebraic model for linguistic hedges in Zadeh's fuzzy

logic. ) )

According to Zadeh8,29,30] the statementélt is Approximate Reasoning

true that John is very smartand “It is very true that

John is smart”are approximately equivalent. Therefore,

instead of considering arbitrary linguistic variablesglsu

Since LPL is a multiple-valued fuzzy logic whose truth
domain is the set of the linguistic values of the linguistic

as SMART, we can only consider a single linguistic variable TRUTH, traditional' automateq reasoning
variable TRUTH. And the logic under consideration can methods based on the resolution for multiple-valued and
be viewed as a multiple-valued logic with the truth fuzzy logics can be applied naturally. The resolution
domain being the set of the linguistic values of the Principle, initially designed for two-valued logics by
linguistic variableTRUTH. Robinson B3], is the heart of many kinds of automated
As pointed out in 25] the set of linguistic values of €asoning systems such as theorem proving and logic

the linguistic variable TRUTH, e.g., VeryTrue programming. The main advantage of resolution is that it
MoreOrLessTrue SIightIyTru,e ' VeryFaIse7 is sound and complete for a wide range of multiple-valued

MoreOrLessFalse, SlightlyFalse, ...} is a partially ordered and fuzzy logics12,18,13,14,31,11,23,22,19].

set with an ordering meaning that an element describes a  Along the line of B1,23,19], we develop a resolution
smaller degree of truth than another, and is generate]iférence system for LPL. One of the main problems is
from a set of generators, e.dTrue, False,...} and a set that resolution usually works with a particular form of
of operations  also called ’hedges e.g., formulae called conjunctive normal form (CNF), but the

{Very, Slightly, MoreOrLess,...}. This set can be LPL formulae may have nested truth operators, e.g.,

represented by an abstract algebra with four components: VeryTrue RatherTrue\ True
the set of elements, the set of generators, the set of (SmartJohn A\WorkHard Johry )

hedges, and the ordering. Furthermore, one can refine thig g the traditional CNF transformation algorithm does
abstract algebra into a De Morgan lattice by definingpot apply. We need a new CNF transformation algorithm.
appropriately the join, meet, complementation operators=ortunately, CNF transformation is feasible in LPL since
[24,26,20). _ its syntax and semantics are defined in such a way that
_ Starting from these observations, we construct thegyery formula has an equisatisfiable CNF formula, and a
Linguistic-valued Predicate Logic (LPL) which is cNFE algorithm can be built by extending the traditional
expressive enough to descrlbg vague statements in ”aturﬁfgorithm. The extension consists of driving truth
languages. LPL has the following features: operators inward the formulae. As an example, the

—The truth domain is a refined hedge algebra generatefPrmula
by a set of truth generators and a set of hedges, for VeryTrue RatherTrues False
example{VeryTrue, SlightlyTrue, MoreOrLessTrue, (Smar(John) ™™ AWorkHardJohr) )
VeryFalse, MoreOrLessFalse, SlightlyFalse,...}. It
can be further refined to become a De Morgan lattice
equipped with join, meet, complementation operators.  Smar{John)Ve¥F2's¢\yWorkHard(John)RatherFalse
—The syntax is similar to the syntax of two-valued
predicate logics but augmented with truth operators.by driving the truth operatdfalse inward the formula
For example, the statement “John is very smart and
works rather hard” is described by the formula Smar{John) VeV AWorkHard(John)RatherTrue

can be converted into the CNF formula

(Smar{John)Vev e AWorkHard John)RatherTrue) True On the other hand, our resolution procedure is
parameterized with a threshotd called r-resolution, so
whereSmar{John), WorkHard Johr) are atoms, and  as to check whether a formulaissatisfiable, i.e., has the
True, VeryTrue, RatherTrue are truth operators. truth value greater or equal tor under some
—The semantics is defined so as to capture the meaningyterpretation. For example, if the threshalds VeryTrue
of vague statements. For instance, the meaning of théhen we have the following-resolution
formula Smar{John)>'ehtyTrue js that the level of the

vagueness of the claim‘John is smart’ is WorkHardJohn) T v Smar{John)VT Smar{John)VVF
SlightlyTrue. That is, for a threshold of acceptability WorkHardJohn) T
(@© 2017 NSP
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andWorkHard(John) T is nott-satisfiable. of HIGH are Tall and Small and so on... The primary
(where T,VT,VVF are the abbreviations for vague conceptsTrue, Old and Tall have “positive
True, VeryTrue, VeryVeryFlase). meaning” and the others have “negative meaning”. We

We prove the soundness and completeness ofay that the hedgé/ery strengthens the positive or
T-resolution. Soundness means that if reresolution  negative meanings, and the hedg&pproximately
derivation finds ar-empty clause at some point, then the weakens them. In this respect, the first characteristic of
input formula ist-unsatisfiable. Completeness means thathedges is thaevery hedge either strengthens or weakens
if the input formula ist-unsatisfiable then a-resolution  the positive or negative meaning of the primary vague
derivation will find ar-empty clause after a finite number concepts Besides, the hedgé/ery strengthens the
of inferences. We show howresolution can be adapted meanings of the heddéery, but weakens the meaning of
to other reasoning problems such as entailment checkinthe hedge Approximately, the hedge Approximately
and theorem proving. strengthens the meaning of the hedgsroximately but

The rt-resolution inferences are approximate by weakens the meanings of the hedyesy. This results in
nature. Especially in the case where the threshoid the second characteristic of hedgesery hedge either
low, the inferences are even more approximate, and wetrengthens or weakens the meanings of any other hedges
say that they have low confidence. To cope with thisOn the other hand, observe that the element
problem, we propose the so-called-strategy for  VeryVerylLessTrue expresses something abotitue but
selecting inferences with the highest confidence. As thenot about False, and likewise, VeryVerylLessFalse
standard t-resolution, the A-strategy is sound and expresses something aboEilse but not aboutTrue.
complete. Accordingly, the third characteristic of hedges is tts:

In a nutshell, our second contribution is a resolutionhedges have a local and separated meaning and the
framework for mechanizing the human reasoning undemeaning of a term generated from a vague concept stems
vagueness. That constitutes a solution to Issue 2. from the meaning of this vague concept.

Let us now take a closer look at the linguistic variable
TRUTH with the domain True, False, VeryTrue,
Structure of the paper The paper is organized as followsVeryFalse, SlightlyTrue, SlightlyFalse, PossiblyTrue,
Section2 introduces hedge algebras. Secti®rdefines  PossiblyFalse, ApproximatelyTrue, VeryPossiblyTrue,
LPL. Section4 presentst-resolution and proofs of its ApproximatelyFalse,... This domain is a partially ordered
soundness and completeness. SecBoshows how to  set, and the ordering means that an element describes a
apply t-resolution in approximate reasoning. Secti®n smaller degree of truth than another. From an algebraic
discusses related work. Sectignconcludes and draws point of view, this set is generated from the basic
some future work. elementsTrue, False by using hedges/ery, Possibly,
Approximately, Slightly, ... and can be described by an
abstract algebra with four components: the set of
2 Algebraic Approach to Linguistic Truth elements, the set of generators, the set of hedges, and the
ordering over the set of elements. This abstract algebra is
Linguistic hedges were first studied by Lakoff’][ called ahedge algebra
Subsequently, Zadeh argued that the set of linguistic In the following, we consider a subclass of hedge
values of linguistic variables can be regarded as a formahlgebras, calledefined hedge algebraf20]. We first
language generated by a context-free grammar andecall the formal definitions of refined hedge algebras.
hedges can be viewed as operators on fuzzy 2829, Then we show how a refined hedge algebra can be further
30]. In [24,20,25] Nguyen et al. considered the sets of refined to become a distributive lattice. This is done in
such linguistic values abedge algebrasThe class of two steps: first, we construct the distributive lattice of
hedge algebras enjoys interesting algebraic propertiges arhedges by defining appropriate join and meet operators
is suitable to be used as truth domains for multiple-valuedover the set of hedges; second, we construct the
and fuzzy logics. Below we recall the concept of hedgedistributive lattice of linguistic truth values by defining
algebras from24,20,25] and show how it can be used in appropriate join and meet operators over the set of
defining linguistic truth domains. linguistic truth values. Finally, we consider the subclass

A linguistic variable is a variable whose values are of symmetric refined hedge algebraswhere
words or sentences in some language, for exafle is complementation operator can be defined over the set of
a linguistic variable if its values are linguistic, i.€©Jd, linguistic truth values. In this way, a symmetric refined
Young, VeryOld, VeryYoung, etc ... A linguistic hedge is hedge algebra becomes a De Morgan lattice and can be
an operator which acts on the meaning of its operand, foreadily used to define the truth domain for LPL. We
example in the composite woderyYoung the operator assume the usual notions (such as posets, graded posets,
Very acts on the meaning ofYoung. Many linguistic  lattice, modular lattice, finite lattice, free Iattice,
variables have some primary vague concepts, for instancalistributive lattice, etc...) from lattice theory iB][
the primary vague concepts of the linguistic variables We consider a class of abstract algebras of the form
AGE areOld andYoung, of TRUTH are True andFalse, AX = (X,G,H, <), whereX is the underlying set is the
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Fig. 1: A poset of values of the linguistic variableRUTH

set of generator$] is a set of mappings fromd to X, and

< is partial order orX. The seX is interpreted as the term
set,G as a set of primary terms and special constats,
as a set of hedges, ardas a semantic ordering relation.
For convenience the image »fe X underh € H will be
denoted bynxinstead oh(x).

Example 120] Let X be a poset of values of the linguistic
variableTRUTH as represented in FiguteThenX can be
considered as an abstract algeBva= (X,G,H, <) such
that

-G = {F,T}, where F, T stand for False, True,
respectively;

-H ={V,A P,ML,S}, whereV, A, P, ML, S stand for
Very, Approximately, Possibly,
MoreOrLess, Slightly, respectively;

—< is a partially ordering relation ovet as represented
in Figurel.

Definition 1.Leth k € H, we say that:

—h and k areconversgor h is converse to k and vice
versa) ifvx € X(x < hx iff x > kx);

—h and k arecompatibleif ¥x € X(x < hx iff x < kx);

—h is positive with respect to k if¥x € X(either kx>
x implies hkx> kx or kx< x implies hkx< kx);

—h is negativewith respect to k if¥x € X(either kx>
x implies hkx< kx or kx< x implies hkx> kx).

We assume that:

(H1)each elemerite H is anordering operationi.e.Vvx €
X(eitherhx > x or hx < x);

(H2)the setH is decomposed into two non-empty disjoint
subset#i™, H™ such thatforanhc H™ andk € H™,
h andk areconverse

N

Fig. 3: Lattices of hedgeBsl — + |

(H3)the set$1* +1 andH ™~ +1, where+ stands fotJ, are
finite lattices with unit-elemenks andS, respectively,
and zero-element, wherel is the identity element
of H, i.e. Vx € X(Ix = x). SinceX, H" andH~ are
disjoint, the partially ordering relation over each of
X, HT andH~ will be denoted by the same notation
< without any confusion.

To simplify the notation, we use the superscfipt denote
either the superscriptor .

Example et us consider the abstract algebra
AX = (X,G,H, <) in Examplel. Intuitively, we can see
that:

_H+:{V}’ H_:{A,P,ML,S},

—H* +1 andH~ +1 are finite lattices;

—< is a partially ordering relation ovét™ +1 andH ™~ +
| as represented in FiguBe

Itis clear thatAX satisfies Assumptio®.

Definition 2.We say that X and H aresemantically
consistentf the following conditions hold:

1.X is generated from the generators in G by means of
hedgesin H, i.e. elements of X are of the fogm bh;a
forhjeH,i=1,..,n,and ac G.

2.For any hk € H®+ 1, where ce {+,—}, h< k in
H¢+ 1 iff V x € X((hx> x or kx> x implies hx< kx)
and (hx< x or kx< x implies hx> kx)). And hk are
incomparable in K+ I iff V x € X ((hx=£ x or kx# X)
implies hx and kx are incomparable).

Example 3onsider the abstract algelAX = (X,G,H, <
) in Example2. It is clear thatX andH are semantically
consistent.

In the followingH€® +1 is a finite modular lattice, unless
stated otherwise. According t&][H®+1 can be graded
by its height function, and then decomposed igtaded

classes H+1,i=1,2,...,1 wherel is the length of the

partially ordered seiti® + |. Additionally we assume that
any two elements dfi®+ | belonging to different graded
classes are comparable. Lgt be the free distributive

(@© 2017 NSP
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lattice generated by the set of incomparable elements of
HS, U andr be the correspondirjgin andmeetoperators.

Let LH® be the union of suchif, andLH be the union of
LH* andLH".

Proposition 1[20] (LH* + 1Lu,nmlv,<) and
(LH™ +1,u,m,1,S <) are free distributive lattices with
unit-elements V and S, respectively, and the zero-element
l.

Example 4Consider the abstract algelkX = (X,G,H, <

) in Example2. Clearly,H® + I is a finite modular lattice,
the graded classes afé},{A,P,ML},{I},{V}. We can

see that and any two elementstdf + | belonging to two
different graded classes are comparable, in other words,
there is linearly ordering relation between graded classes
Following the construction above, the obtained distriaiti
latticesLH™ +1 andLH~ + 1 generated frontH ™ +1 and

H~ +1, respectively, are represented as in Figyrehere

-1 =AVPVML:

-1, =AVP;
-3 =AVML;
—l4=PVML;

5= (AVP) A (AVML);
= (AVP)A(PVML):
7= (AVML) A (PVML);
g = (AVP)A(AVML) A (PVML)

= (AAP)V (AAML)V (P AML);
o= (AAP)V (AAML);
0= (A/\P)\/(P/\ML);
—11= (AAML) V (P AML);
—12=AAP;liz=AAML; l14=PAML;
115 =AAPAML.

Definition 3.We say that H isPN-homogenousf V is
positive (respectively negative) with respect to some
operation in a graded class Hthen V is positive
(respectively negative) with respect to any other ones in
HE, for any H-.

From now on, we denotd the set of primary hedges
and LH the lattice of composed hedges constructed as
above. For any elememte X, LH(X) denotes the set of
all elements generated frorby means of hedges itH.
For any X’ ¢ X and LH" ¢ LH, LH/(X’) denotes the
subset ofX generated from the elementsXi by means
of the operations inLH’. By LH'[X'] we denote the set
{hx: h e LH’ andx € X'}. By SI° we denote the set of all
indexes i which are not single-class elementsH;°
denotes the graded claissef LH®, LH* denotes the set of
all strings of hedges ihH. Let us denote by SOthe set
of two unit-elementy andSof LH™ +1 andLH™ +1.

Definition 4.AX is called arefined hedge algebraf X
and LH are semantically consistent and the following
conditions hold (where ik € LH):

1.Every operation in LH is converse to each operation
inLH™.

Fig. 4: Distributive latticeLH ™ +1

Fig. 5: Distributive latticeLH ™ + |

2.The unit operation V of LH + 1 is either positive or
negative w.r.t. any operation in LH. In addition, LH
satisfies the PN-homogeneous property.
3.(Semantic independent property) If u and v are
independent, i.e. ¢ LH(v) and v¢ LH(u), then
x ¢ LH(v) for any xe LH(u) and vice versa. If ¥ hx
then x¢ LH(hx). Further, if hx# kx then kx and hx
are independent.
4.(Semantic inheritance) If hx and kx are incomparable,
then so are for any elements @ LH(hx) and
v € LH(kx). Especially, if a, be G and a< b then
LH(a) < LH(b). And if hx< kx then
(a)In the case that Ik € LHF, for some ie SI° the
following statements hold:
—O0hx < dkx, for anyd € LH*.
—ohx and y are incomparable, for arvy € LH (kx)
such that y# dkx.
—okx and z are incomparable, for aiiz € LH (hx)
such that z£ dhx.
(b)If {h,k} ¢ LHE, then Khx < K'’kx, for every hk e
uos.

@© 2017 NSP
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5.(Linear order between the graded classes) Assume thathem in the formx = dhu andy = yku, whereh,k € LH’

ue LH(x) and u¢ LH(LHS[X)), for anyie SI°. If there
is ve LH (hx), for h € LHE such that u> v (or u<v),
then u> h'v (or u< h'v) for any H € UOS.

the abstract

Example §20] Consider

for somei € SI°andd,y € LH*. Then:

XUy = dhuu yku= du' un/
—xNy= dhunyku= ou”" U n”

algebra whereu' = (huk)uandu” = (hrk)uif hu> u; o/ = (hn

AX = (X1,G,LH,<) such that, as considered in yyandu’ = (huk)uif hu<u.

Examplesl and2, G={F,T},H = {V,A P,ML,S}, but
Xp = {ha:he LH +1,a e G} which is ordered as in

Proposition 2[20] Let AX = (X,G,LH, <) be a refined

Figure6, whereL(A,P,ML) denotes the lattice generated hedge algebra. ThefX,G,LH, <,uU,n) is a distributive

from the incomparabled, P, ML, and L(A,P,ML)[a]
denotes the setha: h € L(A,P,ML)}. Herehxis defined
as follows: for every hedgee LH, hT andhF are defined
as elements given in Figu@andhx = x for x # F and
x # T. We can see thaX satisfies Definitior.

VT

|
r
|

(AVPVML)T

(AAPAML)T

ST

SF

(AVPVML)F

(AAPAML)F

F

VF

Fig. 6: The poset of Examplg

It is possible to define th@in and meetoperators

over AX, denoted withu and N, respectively. They are

lattice if G is linearly ordered.

An elementp of G is aprimary generatoiif hp# p
for all h € LH. An elementg of G is apositive generator
if Vg> g, and is anegative generatoif Vg < g. An
elementf of G is a fixed point ifhf = f for all h € LH.
assumption We assume thaAX = (X,G,LH,<) is a
refined hedge algebra such that;

-G={l,c,W,c", T},

—-the elementsc™ and ¢t are primary negative and
positive generators, respectively,

—the elementsl, W and T are fixed points, called the
least, the neutral and the greatest elementsXjn
respectively.

An expressiorh, ... h1y is acanonical representation
of xwith respect tayin AXif x=hy...hyyandh;...hyy #
h_1...hyy for everyi < n. Letx be an element oAX and
the canonical representationis X = hy...hyjawherea e
{c7,c"}. Thecomplementary elemenf x is an element
y such thaty = h,...h;a’ wherea € {¢™,ct} anda # a.
The complementary element®fis L, and vice versa. The
complementary element &Y is itself.

Definition 5.Let AX = (X,G,LH, <) be a refined hedge
algebra satisfying Assumptich Then AX is said to be a
symmetric refined hedge algebfavery elementin X has
a uniqgue complementary element in X.

Letxandy be two elements of the symmetric refined hedge
algebraAX, then:

—the concept negation- is an unary operator defined
such as-xis the complementary elementxf

—theconceptimplicatior= is a binary operator defined
as:x=y=—xuy.

In practice, we only have to deal with linguistic truth
values containing a limited number of hedges. Therefore,
it is reasonable to assume that the set of elements of a
symmetric refined hedge algebra is finite.

Assumption
We assume a symmetric refined hedge algebra

AX = (LHp[G].G.LH. <)

determined recursively based on the corresponding joirwhere:

and meet operators over the hedge lattieke Let x andy

be two incomparable elements AX, we can represent

LHp[G] = {hn..ma:hie LH+1,ac G,n< p}

(@© 2017 NSP
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Since the operations, N, —, = can be defined for the
symmetric refined hedge algelkX = (LHp[G],G, LH, <
) satisfying Assumptiong, 2 and2, we can write:

AX = (LHp[G],G,LH,<,U,N, —, =)
Theorem 1[20] AX = (LHp[G|,G,LH,<,u,N, —,=) is

a complete distributive lattice. Furthermore for allyxe
LHp[G], for all h € LH, we have:

1.—(hx) = h(—x)
2—(—x) =X
3.—(xUy) = —xnN-yand—(xNy) = —xU -y

4XxN—x<yuUu-y
ExN—x<W <xU-—X
6—T=1,—1l=Tand-W=W
7Tx>yiff = x < —y
8X=y=-y=—X
IX= (Yy=2=y= (X=2)
0x=y>X=yifx<xXandy>y
1l1lx=y=Tiffx=Lory=T
12T = x=xandx=T=T,;
1L =x=Tandx= 1L =-X
13x=y>Wiff x<Wory>W, and
X=y<Wiffx>Wory<Ww

Definition 6.Let A1 and A> be elements of LK{G). The
operation® is defined as follows

AM®Ar = ()\1 ﬂ)\z) @] (—Alﬂ —)\2)

Definition 7.A linguistic truth domainis a symmetric
refined hedge algebra AX (LHp[G],G, LH,<,u,n,
—,=), where

-G ={L,False,W, True, T};

—1 < False <W < True < T;

—False, True are the negative and positive primary
generator, respectively;

—L,W, T are the smallest, neutral, biggest elements,
respectively.

3 Linguistic-valued Predicate Logic

—function symbols witB-arity is called a constant;

—predicate symbols: a set PS of symbo®mR ... each
of n-arity (n> 0);

—predicate symbols witlD-arity is called a logical
constant symbol;

—logical connectives:-, vV, A, —;

—quantifiers:v, 3;

—auxiliary symbols{1, (,),...;

Definition 9.A term is defined recursively as follows:

—either a constant symbol or a variable is a term,
—if f is a n-ary function symbol and .t ..,t, are terms
then f(t1,...,ta) (n> 0) is a term.

Definition 10.An atomic formula is an expression of the
form (P(ty,...,tn))*, where P is an n-ary predicate symbol
of the alphabet) is an element of LH{G) and t,...,t,
are terms.

Definition 11.Formulae are defined recursively as follows:

—any atomic formula is a formula,

—if @, Y are formulae, theme, Vv Y, pA Y andep — Y
are formulae,

—if x is a variable andp is a formula thernvxg, Ix¢ are
formulae,

—if @ is a formula and) is an element of LK(G) then
¢ is a formula,@” is also called a literal ifp is an
atom.

A clause is a finite set of literals, is usually written as
a disjunctionly VI, Vv ... VI, wherel; is a literal (for
i =1,...,n). A formula is said to be in a conjunctive
normal form (CNF) if it is a conjunction of clauses. A
variable bounded to a quantifier is called a bounded
variable. A free variable is a variable which is not
bounded to any quantifiers. An expression is either a term
or an atom or a formula. An expression is ground if it
does not contain any variables.

A substitution is a finite set of specifications of the
form [t/v] in which t is a term andv is a variable.
Substitutions are usually written in set notation:
{t1/v1,t2/V2,..,tn/Vn}, Wherev; (i = 1..n) are dinstinct.

A substitution{t; /vi,t2/V2,..,tn/Vn} is ground if all
terms ty,...,t, are ground. The product of two

In this section, we define the syntax and semantics of LPLsubstitutionso and 8, denoted byoo0, is defined such
The syntax and semantics properties make sure that evetpat if xoc = y; and yi60 = 5 then x,006 = 5. Let
formula has an equisatisfiable formula in CNF. We give anf = {t; /vi,to/Va, ..,tn/Vn} be a substitution ané be a

algorithm for transforming an arbitrary formula into CNF.

expression. An instana® of e is the expression obtained

We also show that the Herbrand theorem for two-valuedoy replacing simultaneously all occurrences of variables

predicate logics can be smoothly adapted to LPL.

3.1 Syntax and Semantics

Definition 8.An alphabet consists of the followings:

—variables: xy,z,.. .;
—function symbols: a set FS of symbolg,h,... each
of n-arity (n> 0);

Vi,...,Vn With the corresponding termts, ..., t,. Let e,

e be expressions, andbe a substitution. Thepis called

a unifiere; ande; if e, = eoy. We say that a unifiey is
more general than another unifier if there exists a
substitution@ such thato = yo ¢. We say thaty is the
most general unifier (m.g.u for short) if there is no unifier
more general thap.

Definition 12.A structureM of an alphabet is a triplet
(D,I7,1P), where:
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-D is a nonempty set called the domain of the structure,3.2 Conjunctive Normal Form
and:
—%p is the set of functions on D%p = {fp|fp :
D"+ D,n> 0}

Below we give a rule-based algorithm to transform an
arbitrary formula into an equisatisfiable CNF formula.

- is the set of relations on D = {Po|Pp :
D" +— LHp(G),n > 0}
-1t FS— Zp, for every n-ary function symbol f, f
is assigned to an elementAp
—P: PS— £, for every n-ary predicate symbol P, P
is assigned to an element i#p

Definition 13.An assignmentr is a mapping of the set of
variables V into the domain Og : V — D.

Definition 14.An interpretation? is a pair (M, o), where
M is a structure and is an assignment.

The evaluation of a terrhunder the interpretation?
is denoted byjt|]M, or . (t). Likewise, the evaluation of a
formulag under the interpretatios is denoted by| ||V,
or 7 ().

Definition 15.The evaluation of a term under an
interpretation.# = (M, o) is determined as follows:

—[|c|]M = cM for a constant ¢

—[|X|]M = g (x) for a variable x

I Ee )M = (Y. )Y for a term
f(tla tet 7tn)

Definition 16.The evaluation of formulae under an
interpretation.# = (M,0) is determined recursively as
follows:

@4 =2 ||y

=gll¥ =~ ql)¥

oA o[ = [lglfi 1o
ool = gl Ufig |

o oil¥ = (9] = 6]}

~30ll¥ = Uoep{ [l 0" = oL x— c}}
gll¥ = Necp Il 0" = oL x— c}}

Definition 17 Lett be an element of LKG), .# = (M, 0)
be an interpretation, ang be a formula. Then we say that

-7 1-satisfiesp, or .7 is at-model ofy, iff [|@||M > T,
denoted by¥ = ¢;

—@ is 1-satisfiable iff it has a-model,

— is T-unsatisfiable iff it has n@-model;

—g@is t-valid in M if [|@|]M > 1 for all assignments,
denoted bW |=; @. M is called at-model ofg;

—@ is a t-tautology iff it ist-valid in all structuresM,
denoted by=; .

—¢ isar-consequence @, or ¢ T-entails¢, denoted by
Q=1 ¢, iff for every interpretation?, . = ¢ implies
that 7 =1 .

—@ and ¢ are said to bert-equisatisfiable ifg is
T-satisfiable iffg is T-satisfiable.

The algorithm consists of the following steps.

1.Eliminate implication:
—@— ¢ =cNF PV
2.Move negation inward:
— @ =—=CNF @
—(¢") =cne @
—(@V ) =cNF QAP
— (@A Q) =>cNF @V @
—(3XQ) =>cNF VX-@
——|(VX(0) —CNF Hx—|(p
3.Move operators inward:
_(q))\l))\Z =>CNF q)/\1®/\2

A —=cnE P AP IFA <W
A=>CN|:<p’\\/¢A ifA<W

—(VX(p)A —CNF HXQD/\ ifA<W
4.Standardize variables:
—If two variables have the same name but are in two
different clauses then rename one of them.
5.Move quantifiers outward:
—(Qx@) A p =>cnF QX(PN ¢
—(Qxp) V¢ =>cnF QX(@V ¢
—OA (Qx¢) =-cnr QX(@A P
-V (QX¢) =>cnF QX(@V ¢
whereQ € {3,V}
6.Eliminate existential quantifiers:
- VX1 .. VX0 IXQ =>oNE VXL - VX QX = ”ixl,...,xn)]
wherert is a new n-ary function symbol, also called
“Skolem function”
7.Eliminate universal quantifiers:
—VX@ =>cNF @
8.Distribute disjunctions inward over conjunctions:
@V (¢ Ay) =cnF (PVE)A(@VY)
9.Eliminate duplicates
-V oV =cnF @V
QNP NP =>cNF QNP

To prove that—-cnr preservesr-satisfiability we
need the following results.

(x not free ing)
(x not free ing)
(x not free ing)
(x not free ing)

— N — — —

Proposition 3.® is associative and commutative.

ProofWe haveA; ® A, = ()\1(7)\2) @] (—)\1(7 —)\2) = ()\zﬂ
A1) U (=A2N—A1). This means is commutative.

By definition

()\1 ® )\2) QA3 = ()\1 NAaN )\3) @] (—)\1 N—Az ﬂ)\g) @]
()\1(7 —A1N —)\3) U (—/\1 NAz2N —/\3) U (/\1ﬂ AN —)\3) U
()\zﬂ —A2N —/\3)
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and

A®(A20A3) = (A1NA2NA3) U (AN —=A2N—A3)U
(—A1NA2N—=A2)U(—=A1N—=A2NA3)U(—A1NA2N—A3)U
(—Alﬂ)\gﬂ —)\3).

Consider the following cases:

W < A1,A2,A3: then (A1 ® A2) @ Az = A1NAN A3 =
A1 ® (A2® A3);

—A1,A2,A3 <W: then(A1 ®A2) ® A3 = A1 UAUA3 =
A1 ® (A2® Az);

A2, A3 < W < Az then (A1 ®A2) @ A3 = A1 N —A2N
—A3=A1® (A2®A3);

Az <W < Ag,A2:then(A1®@A2) ® Az = —A1U —AxU
A3=A1® (A2® A3).

In all cases we hav\1 ® A2) @ A3 = A1 ® (A2 ® A3). This
meansy is associative.

Proposition 4—(A1® A2) = —A1®@ A2 =A1® —A2
ProofWe have that
“A1®A2=(A1N=A2)U(=A1NA2) = A1 ® —Ay
and
—(A®A2) = (A1N=A1)U(A1N—=A2) U(=A1NA2)U(A2N—A2)

Consider the following cases:

“A1,A2>W

Then—(A1®A2) = —A1U—-A2=—A1Q@A2=A1Q0—A;
W > )\1,/\2

Then—()\1®/\2) =AUA=-A1®A=A1® —As
A1 >W > Ao

Then—()\1®/\2) =AN=-2A=-A1 Q@A =A1® —A;

In all cases we have (A1 ®A2) = —A1@A2=A1® —A2.

Proposition 5Let .# = (M, o) be an interpretation, and
o, ¢,y be formulae. Then

[(@*) 2y = <P"1®A2|]2"
A =[|<0‘A 15
~(=eMg = [lo 7
@V )5 =[I(¢*) v (9*)[]5 if A =W
(@AM )5 =[I(¢*) A (9*)[]5 if A =W
@V )5 =[I(¢*) A (9*)[]5 if A <W
(e d) )5 = [I(@)V(dﬂ)l]?f" ifA<wW
~[|(vx@)* )5 = [Ivxg* [ if A > W
(@M )5 = [17x¢ [ if A > W
~[|(vx@ )5 = [IFx¢ 5 if A <W
@M )5 = [Ivxg* 5 it A <W

ProofThe first property follows from Propositidh

—[|(§0'\1)’\2|]?;A = [|gM=%2 Y
Let [|g]|M = A. Then we have[|(¢™ AZI]? =
ARA)RA=AR®(A1®A2) = |¢)\1®)\2|

The next two properties follow from Propositidn

=@My = [l []F
Let [l¢M = A’ Then we have
[=(@M)]F =A@ =[lo7*]F.

~1=e")]5 = -[lo” AI]
Let oM = A" Then we have
[CAME =2A0-A"=-A0A =[]}

We now prove the following properties.

@V ) ¥ =[I(¢") v (9M))1§ if A > W
Let[|@|]M = A1 and[|¢|]¥ = A,. Then we have
lle v ¢y = A © (A U A

(AN (AL U A)) U (A N =AU A)

(ANADUANA2)U(—AN—A1N—Ap)

d

(@) V(@MY = A @A) UL @A) = (ANA)U
ANA)U(=AN=A1)U(=AN=Az).
We consider the following cases
-A >WandA, A > W
Then we have [[(¢ Vv MM =
ANAYUMANAZ) = [[(9*) v (*)[]Y
-A >WandW > A1, A,
Then we have
1@V I = -AUALUA = [[(¢") v (#M)[1Y.
-A >Wand)\1>W>/\2

Then we havd|(@V ¢)* IM =ANA1 = [|(¢")V
(¢A)|]

—{l(pA0)* <P’\)A(¢’\) ifA>W

Let[|@|]M = 1a nd[|¢[]M = A,. Then we have

(@ A ¢) gy = A ® (AL N Ay
AN ()\1 n )\2)) U (—)\ n —()\1 n /\2))
ANAINA)U(=AN=A1)U(=AN=A)
and
@) A @MY = A @A) NA @A) = (ANAN
AUAN=ANAIN=2A)UAN=-AN=A1NA)U
(—)\ N—A1N —)\2).
We consider the following cases
-A >WandA, A > W

Then we have

[(@A®)M M =ANArn A= [|(@") A (M)
-A >WandW > A1, A,

Then we have

(@AM =—AUANA2=[|(¢") A (™).
-A>WandA; >W > Ay

Then we have

(@A) 5 = —-Aure=[I(¢") A ($M)]]F-

~~——

The proof for the following properties is similar to the

previous ones.

— eV )17 =@ ) A (@M5 i A <W
— @A) I = [I(¢") v (915 if A <W

Now let us prove the following properties.

| (x@ 1§ = [[vx@ [[§ if A >W
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We have S. LetShe a clause set, lef (S) be the alphabet containing
exactly the constant symbols, function symbols, predicate
(V@) I = A @ [[vx[]y symbols appearing i$, along with usual symbols such
_ r_ as variables, logical symbols, auxiliary symbols. THhe
A ®CDD{ g0’ = ou{xc}} universe ofS, denoted byJ (S), is theH-universe of the
M1 alphabete7 (S). TheH-base ofS, denoted byB(S), is the
= {rellelylo’=ou{x— c}} H-base of the alphabet/(S). An H-structure ofSis an
ceb H-structure of the alphabe¥ (S). An H-interpretation of
= N{le" %o’ = ou{xr c}} Sis anH-interpretation of the alphabet (S).
ceb
. [|VX(p’\ I Theorem 3A clause set S is-satisfiable iff S ig-satisfied
a g in an H-interpretation.
@ I3 = [13x¢ 5 it A > W Proof(=) Assume thatS is 1-satisfiable, then it is
We have T-satisfied by an interpretation” = (M,o) over the
I EPPRIEN domainD. We construct afl-interpretation ofSbased on
€ qo) ” &l (p|] the existing interpretatiory as follows: 57 = (My, 0n)
pr— /_
=2 ®CL€JD{ [@llorlo’ = oU{x—c}} My = (U(9)),HT HP), where:
M -U QS) is theH-universe ofS,
= U ellelylo’=ou{x— c}} —HI(F)(hy,...,hn) = f(hy,....hn) €U(S),
<D —HP(P)(hy,...,hn) = IP(P)(A (hy),...,.7 (hn) €
= Ulle 510" = ou x> ch AX.
ceD —on (X) = hwhereh e U(S)) and.# (h) = g(X).
=[x Iy Then, we have:
The proof for the following properties is similar the  Jz(pP(t;,... t,)) = HP(P)(0k (ta), ..., O (t))
two previous ones.
P = IP(P)(#(0h (1)), # (O (tn))
—[|(vx@)M M = [|3x@* M if A <W =1 p( )(0(t2),-..,0(t))
~[|Gx@)M I = [Ivxg 5 if A <W (P(ta,..., ))

We are now ready to prove thatcnr preserves-
satisfiability.

Theorem 2Let ¢ and ¢ be formulae such thap —-cnr
¢. Thengp and ¢ are T-equisatisfiable.

ProofSteps 1-3 and 8-9 preservesatisfiability because
of Theorem1, Propositions4 and 5. Step 4 clearly

preserves Tt-satisfiability. — Steps 5-7  preserve
T-satisfiability by definition of the quantifiekéand3.

3.3 Herbrand Theorem

The Herbrand universe, dd-universe for short, of an
alphabete7, denoted byJ («7), is the set of all ground
terms built overe/. The set of all ground atoms built over
</ is called the Herbrand base, ét-base for short,
denoted byB(«7). A Herbrand structure, o-structure
for short, of an alphabet? is a structure having the
domain which is the Herbrand universg(<). A
Herbrand interpretation, di-interpretation for short, of
an alphabetes is a pair (Mu,0nH), where My is an
H-structure of the alphabe? andoy :V — U (%) is a
variable assignment.

Itis convenient to define the notionstdfuniverseH-
base H-structure andH-interpretation for a set of clauses

This shows that if# t-satisfiesSthen./Z t-satisfiesS
as well.

(«) If an H-interpretations” 1-satisfiesS, then it is
obvious thaSis t-satisfiable.

Let Sbe a set of ground clauses aB(@S) be theH-
base ofS. Fort > W, a 1-semantic tree o§is ann-level
complete binary tree constructed as follows.

—Each level corresponds to an elemenB(8). If the it"
level corresponds to the atof € B(S), then the left
edge of each node at the levéd labeled withA; < —1,
and the right edge of each node at the lévsllabeled
with Ay > 71 (cf. Fig 7).

—Each element dB(S) corresponds to exactly one level
in the tree, which means that; € A(S) appears in
leveli then it must not appear in any other levels.

There are different-semantic trees for a given set of
clauses, depending on the choice of atoms at each level of
the tree.

Notice that each path from the root to a certain leaf in
aT-semantic tree corresponds totdrinterpretations of
the clause s, such that? (A)) < —tor £(A) > 1, for

=1,...,n. We do not consider thel-interpretations#
such that—r < Z(A) < T because they will nat-satisfy

Af' for everyAj € LHp[G], fori=1,...,n
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root. The treeT’ is obtained byT removing all nodes
which are below the failure nodd.’ is a closed tree.
Every branch off’ has finite length. By Konig's lemma,
T’ has finite nodes.

(<) Assume that there is always a finite closed tree
for at-semantic tre@ of the set of clauseS. Then every
branch of T contains a failure node, it means that no
H-interpretation r-satisfies S. By Theorem 3, S is
T-unsatisfiable.

| | | | 4 1-Resolution

. . We now devise a resolution inference system, called
Fig. 7: T-semantic tree T-resolution. The t-resolution inference system is
parameterized with a threshotd> W. It can semi-decide
whether a formula ist-unsatisfiable. We prove the
) soundness and completeness @fresolution. The
Let T be ar-semantic tree of a set of claus8sA  goundness is relatively simple, the completeness proof

clauseC of Sis failed at nodeN of T if there exist an  makes use ofr-semantic tree technique described in
H-interpretation .# corresponding to a branch of Section3.3

ContainingN SUCh thaC iS not T-SatiSfied byf A nOde An inference ru'df]as the form:

N of T is called a failure node o iff C is failed atN but

is not failed at any nodes abod A nodeN of T is an C GC... Gy

inference node if both of its successor nodes are failure C

nodes. If every branch il contains a failure node, where the clause3;,C; .. .,C, are the premises ar@
cutting off its descendants frorli, we have a treel’ s the conclusion. An inference rule issound iff its
which is called a closed tree & if the number of nodes  conclusion is ar-consequence of its premises. That is,
in T' is finite thenT" is called a finite closed tree. {C1,C,...,Ca} = C.

Lemma 1There always exists an inference node on theDefinition 18.Define ther-resolution rule as follows:
finite closed tree.
nvAeL  ARVE

Proof Assume that we have a closed tfieeBecausd has (iLvh)y
a finite level, so there exists one (or more) leaf nodd on

at the highest level, let say this node is caljeteti be the where

parent node of. By definition of the closed treécannot ANAy < —1

be failure node. This implies thahas another child node, AMUA>T

namedk. If k is a failure node thenm is inference node, yis the most general unifier ofiAand A

the lemma is proved. Ik is not a failure node then it has

two child nodest, m. Clearlyl, mare at higher level thap (FL Vv I,)yis called at-resolvent of \/A’1\3L and AQZ V.
This contradicts with the assumption thas at the highest
level. Thereforek is a failure node andis an inference
node. ProofLet .# = (M,0) be an interpretation. We need to

prove that if.7 (I, V AY) A (AX2 v 1)) > T then.s (I v
r2)y) > t.

It is obvious that.7 ((I1V AM) A (A2 V IR) > T
implies

Theorem 4Thet-resolution rulel8is t-sound.

Lemma 2Let S be a set of the ground clause. Then & is
unsatisfiable iff for every-semantic tree of S, there exists
a finite closed tree.

Proof(=) Suppose thaS is T-unsatisfiable and is a A A
T-semantic tree o8. Let B be a branch off, we denote S (VAN AP VIR)Y)) 2 T

#g the H-interpretation corresponding & By Theorem  \We have that

3, Sis not r-satisfied by.#g. But then there exists a

ground instanceC’ of a clauseC in S which is not A A

1-satisfied by.#z. There must exist a failure nodés on S (VAL A (K VT2))Y)

the branchB. SinceC’ has a finite number of literalds = .7 (I AAY) vV (M ARV (A AAR)V (A AT))Y)
is a finite number of edges away from the root. We have A A A A

actually shown that there is a failure node on every branch— SNV (IAT)YV (AT ARGy Y (A AT2)Y)

of T which is a finite number of edges away from the = .7 (L AAR)Y)V Z(MAR)Y)V 2 (A AAR)Y)V 7 (A AR)Y)

@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1328

N. Thi-Minh-Tam, Tran Duc-Khanh : Linguistic-valued logibased on...

Itis easy to see that:
I (MAAR)Y) < 7 (Iy) < I ((MV)Y),
I (M AR)y) < I (IVI2)y),
—7 (AL AAR)Y) < —T, and
~7 (A ARR)Y) < I (R2y) < 7 (LY T2)y).
Now by contradiction assume that((liV R2)y < T.
Then we have #((I1 A Aéz)y) vV (I A R)y) Vv
F (A AAR)Y) V.7 (A AT)Y) < T or equivalently

(VAN A (AR VIR))y) < T
which contradicts with the fact that

(VA AAZVR)Y) > T
This completes the proof of the theorem.

Definition 19.Define ther-factoring rule as follows:
A VA VT
(A VIT)y

wherey is the most general unifier oflAand M.
(A} vIMyis called a factor of AV AL VI

Theorem 5The factoring rulel9is sound.
ProofStraightforward.

Definition 20.A t-resolution derivation is a sequence of
the form

S,--,S,- .

where

-§ is a set of clauses (for= 1,...,n), and
-S:1=SU{C},andC¢ S , and C is the conclusion
of a resolution inference with premises fromo® of a

factoring with premise from;S

Definition 21.A t-empty clause is of the fornﬁ%\/ Y
Al where Ais anatomand-t < A < Tfori={1,...,n}.

Proposition 6 A T-empty clause is nat-satisfiable.

ProofLet Al v ...V Al where A is an atom and
—T <A< tfori={1,...,n} be ar-empty clause. Let
# = (M, o) be an interpretation. By definition of formula
interpretation we have

= (A MU oA
— M@ [ANU...UA© [|Ag]Y

(ALY ... v AR

By definition of ® and the fact that-7 < A; < T for
i={1,...,n}, we have\ ® [|A||M < T fori = {1,...,n}.
This impliesA; @ [|JAL M U...UAn@ [|An]M < T
which also mean§AJt v ... v AMN[M < 1

In other wordsAJ* v ... v Adn is nott-satisfiable.

We useld" to denote ar-empty clause. The empty

clause is the clause that does not contains any literals. The

empty clause is @a-empty clause. We udd to denote the
empty clause.

Theorem 6(Soundness). Let %,...,S,... be a
T-resolution derivation. If § contains ar-empty clause
(forsome n=0,1,...), then g is T-unsatisfiable.

ProofBy Theorems 4 and 5 S and S,1 are
T-equisatisfiable. This implies that i, contains a
T-empty clause, which also meaBs is T-unsatisfiable,
thenS is T-unsatisfiable.

Lemma 3(Lifting lemma). Let C be a resolvent of
{C1,C2} and C,C; be instances of £C, respectively. If
C' is a resolvent of C;,C;} then C is an instance of C
(or of a factor of C).

ProofLet C} = I/ V (A))*,C, = I v (A,)*2, andy be a
m.g.u of A|,A,. Let 0 be a substitution such that
C, =C10,C, = Cp0 andCy = 1 VA, Cy = [V AR, By
resolution rule 18 C' = ([ vV I;)y = (1 V I3)yoo
becausdy = I10,I, = ;0. Assume thaB is the m.g.u
of Ty, T, then 8 is more general thay, which implies
that 8 is more general thapoo. ThusC' = (I, V I,)yoo

is an instance ofC = (I, v ;)8 (or of a factor of
C= (Vv )o).

Theorem 7(Completeness). Let %,...,S,... be a
T-resolution derivation. If §is t-unsatisfiable then there
exists  containing ar-empty clause.

ProofAccording to Lemma if & is T-unsatisfiable, then
for everyt-semantic tredy of § there is a corresponding
finite closed tred(. By Lemmal, there exists an inference
nodeN on Tj. Let §, be the set of all ground instance of
clauses inS. Let C;,C; € S, be the ground instances of
two clause<;,C, € § such thatCi,C, are failed at the
two children ofN. Assume that the level ™ corresponds
to a ground atont’. ThenC; andC; contains the literal
L' andL’?2 wherea; > 1 andas < —T.

ResolvingC] and C,, we obtain the claus€’ not
containingl’, andC' is failed at the nod&l. By Lemma3,
we can find a resolvef@ of C;,C, € & such that”' is an
instance ofC, or of a factor ofC. The closedr-semantic
treeT] associated t& = SUC has fewer nodes thaly.

The process is then iterated. Becadgehas a finite
number of nodes so there exidtssuch thatT, of S
consists only of one root node, therr@mpty clausél’
must be inS.. By Lemma3, S containg’.

Example @.et AX = (LHp(G),G,H,<,u,N, —,
linguistic truth domain where

-G={L,F,W, T, T}, whereT = True, F = False;

L <F<W<T<T;

—F, T are the negative and positive primary generator,
respectively;

=) be a
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—L,W, T are the smallest, neutral, biggest elements,vagueness of formulas will likely be lowered. For

respectively; example the resolution inference
—H* = {V,R}, H™ = {P,ML}, with the ordering , ,

R <V and ML < P, whereV = Very, R = Rather, ASlightlyTrue - ASlightlyFalse

P = Possibly, ML = MoreOrLess. O

Consider the following set of clauses: involves two clauses with low level of vagueness, i.e., the
LAX)RF v B(2)RF v C(x)PT ;tqutgg:e\:]a(l:lge is at mosslightlyTrue, while the resolution
ZC(y)RF V D(y)VRT AVeryTrue  pVeryFalse
3CHVWTVE(,f(t)RF
4D(a)FF -
5E(a,u)T involves two clauses with higher level of vagueness, i.e.,
6.F (a’)PT the truth value is at mosteryTrue. We say that the latter

inference is moreonfidentthan the former. In this case

wherea is a constant symbol andy, z,t,u are variables.  we successfully derive the empty clause and we say that
Let us consider the case= RT. Then the clause the latter proof of the empty clause is more confident than

E(a,u)’ is a RT-empty clause. We conclude that the the former. In practice more confident inferences and

given set of clauses is n&T-satisfiable. Now consider proofs should be preferred. Below we formalize the

the caser = T. Then the claus&(a)"" is a T-empty  notion of confidence in our resolution framework.

clause. We conclude that the given set of clauses is not

T-satisfiable. Definition 22.Let  be an element of LK{G) and C be a
Now consider the case = PT, then we have the clause. The clause C with confidentés the pair(C, ).
following t-resolution inferences The same clauses with different reliabilities are called
variants. That i5C,d) and (C,d’) are called a variant of

each other.

CRVDY)YRT  COYWTVE(, f(1)*

D(t)VRT VE(t, f(1))RF ) An inference ruleR working with clauses with
reliabilities is represented as follows:
VRT RF RF
D(t)*™™" VE(t, f(t)) D(a) a/t] (C1,81) (C2,3) ... (Cn,dn)
E(a, f(2)R" (C,9)
E(a. f(a))RF E True where (Cy,01) (Cp,8) ... (Cn,dn) are premises
@ 1(@) @) [f(a)/u] and (C,9) is the conclusion. We say thal is the

U confidence ofRR, provided thatd < & fori=1,2,...,n.
A PT-empty clause is derived, we conclude that the The soundness of an inference is defined as for inferences

initial clause set iPT-unsatisfiable. Actually the initial  Without confidence.

clause set is evenrunsatisfiable for alf > W' since the The resolution rule for clauses is adapted as follows:
resolution procedure drives the empty clause from the \ \
latter. (MVA &) (APVIL,8)
(Vv ra)y,o)

5 Approximate Reasoning where

A1NAr < W
In two-valued logics, we know that a formula is valid if AUA >W
and only if its negation is unsatisfiable. This property is yis the most general unifier & andA;
used when one wants to check entailments or prove 0=0aN&HNA1UA)N(=A1U—A3)
theorems. That is if we want to prove thaentailsg then
we use resolution to derive the empty clause fripm—¢. ((iLV )y, d) is called ar-resolvent of( [ \/A/1\1, 1) and

However, this schema does not directly work in our
setting here. Indeed, we only have that a formula is
7-valid if and only if the truth value of its negation is less

(A2 V Iy, ).
The factoring rule for clauses is adapted as follows:

than or equal to—1 under every interpretation. But (A VAL VT, )
T-resolution assumes that> W, which implies—t < W, 1AZ—’
and(—1)-resolution can not be used. (AL VI)y,0)

Fortunately, ift = W then the entailment checking by . - )
refutation applies here in our framework. However Wherey is the most general unifier ¢%, andAx. ((A] Vv
lowering the threshold to W also means that the level of ")y, &) is called a factor of A} vV A} VI, 5).
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The notion of resolution derivation for clauses with Example 8Consider again the linguistic truth domain in
confidence can be adapted as follows. A resolutionExample6. Consider the set of clauses:

derivation is a sequence of the form 1(AT,T)
(AVF v BF )
Sy, S, 3BT T)
where 4,BYFvCh T
AT
—§ is a set of clauses with confidence (fet 1,...,n), 5(CT.T)
and At the beginning we assign each clause to the confidence
-S:1=SU(C,d), and(C,8) ¢ S , and(C,d) is the  T. Then the set of clauses
conclusion of a resolution inference with premises {AVF\/BF,T),(BVT,T),(AT,T)}

from S or of a factoring with premise fror§.

Example TConsider again the linguistic truth domain in will give the following resolution refutation with the

Example6. Consider the set of clauses: confidencer
1(AX)VF VB(2)F vC(X)PT,T) (AFvBLT)  (BVT,T)
2.C(y)>F vD(y)¥"T,T) (AR T) (AT, T)
3(CHVT VE(, f(1)YF,T) o
4.(D(@)'",T) ’
5(E(a,u)T,T) The other set of clauses
At the beginning, the confidence of each clause is {(BYFvCF,T),(BYT,T),(C*,T)}
assigned ta'. o . . . .
We have the following resolution inferences \évélllfggﬁcg.?_ following resolution refutation with the
PF\,CF VT
CHFVOWYTT)  (CONTVELFOVT) | B7venT) (B7LT) )
-
(D(t)VPT VE(t, f(t))VF,ST) y (C",PT) (C*,T)
(O,PT)
VPT VF \Vi=
(B VE(L fU)™,ST) b@™.T) [a/t] Clearly the former resolution refutation has a greater
(E(a, f(a)¥F,ST) confidence than the latter resolution refutation.
VF T Example8 raises a natural question whether we can find
(E(a, f(a)"",ST) (E(au)’,T) ; . ) :
[f(a)/u] the refutation with the maximal confidence. Below we

(0,ST) present a resolution strategy, callédstrategy which
The empty clause is derived, we conclude that theguarantees that the resolution proof of each clause has the
initial clause set is unsatisfiable and the confidence of thenaximal confidence.
proof of unsatisfiability iSlightly True. A set of clauseSis said to be\\- saturatedff for every
resolution inference with premises $the conclusion of
this inference is a variant with smaller or equal reliailit
Oof some clause i8. That is for every resolution inference

A resolution proofof a clauseC from a set of clauses
Sconsists of repeated application of the resolution rule to
derive the claus€ from the seS. If Cis the empty clause
then the proof is called eesolution refutation We will (C1,01) (Cp,0p)
represent resolution proofs assolution treesEach tree (C,d)
node is labeled with a clause. There must be a single node . ,
that has no child node, labeled with the conclusion clauseWhere(Ci, &1), (Cz, &) € S, there is some claus€, d')
we call it the root node. All nodes with no parent node areSsuch thad < &'.

labeled with clauses from the initial s&tAll other nodes A A-strategy derivation is a sequence of the form
must have two parents and are labeled with a cl@usech S.....S,...
that U
where eacl§ is a set of clauses, and
(C.&) (&) -S,1 is obtained by adding the conclusion of a
(C,0) resolution inference with premises with maximal
where(Cy,8,), (Cz, &) are the labels of the two parent ~ confidences fromS, that is §.4 = S U{(C,5)},
nodes. If there is a resolution proof of a clag€ed), then yv?ere (C,8) is the conclusion of the resolution
the resolution proof and representing resolution tree are 'Nference
said to have the confidende Cr0) (G %)
Different resolution proofs may give the same the (C,9)
conclusion clause with different confidences. The (Ci,%1),(C, &) € S and there are not any clauses
following example illustrates this. (C1,07),(C2,05) € S such tha®; > 6; andd;, > &, or
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—S.1 is obtained by removing a variant with smaller ProofBy contradiction, suppose that for some clause

confidence, thati§.1 = S\ {(C,d)} where(C,9) €
S and there is soméC, ') € S such thatd < &'.

Definethe limit of a derivation & ..., S

S=UNS

i>0j>i

Similar to the standard-resolution procedure, thé-

(C,d) in S, there exists a resolution proof ¢€,Jd")
from S such thatd’ > 3. Let (Cy,8,) and(Cp, &) be the
two parents of(C,d') in such a resolution proof of
(C,d). We have thatCy, &) and(Cy, &) cannot be both

in S, because otherwise an inference with these two
clauses as premisses would gif@ d') in S.. Without
lost of generality, we can assume th&t, ;) is not in

S.. That also means there is a clay€g, d;) in S. such
thatd] > 6;. By Lemmab, S, is A-saturated. According

strategy procedure is sound and complete. The proofs arg, Lemmad, the inference with premisse€;,3]) and

exactly the same.
Theorem 8lLet $,....S,...
Then g is W-unsatisfiable if and only if Scontains the
empty clause (for some-n0,1,...).

The most interesting property of thA-strategy

be aA-strategy derivation.

(C2,&2) gives us the conclusiofC,d”), with 8" > &'.
This contradicts with the fact th&, is A-saturated. This
completes the proof of the theorem.

Example Consider again Example. Applying the
A-strategy we get the following saturated set of clauses

procedure is that we can show that it gives resolution 1. (AT T)

proofs with maximal confidence.

Lemma 4 Consider the following resolution inferences:

(MVAL ) (AR2VI5)
(Vv I2)y,o)

(MVAY, &)  (ARVIL,8)
(v a)y,d)
Then,d, > &, impliesd’ > 4.

Prooflt is easy to see that i, > &, then
O =aN&HN(-A1U—-A2)N
>aN&HN(—A1U=A2)N
Lemma5Let $,....S,...

and S be the limit of the derivation. ThenSis
A-saturated.

(A1UA2)

()\1U)\2) =0

ProofBy contradiction assume th& is notA-saturated.

Then there must be a resolution inference

(C,4) (G &)
(C,9)

where (C1,&),(Cy, %) € S», there is not any clause

(C,d") € S» such thatd < &'. By definition of A-strategy

derivation, eithefC, d) is in S, or there must be a clause

(C,8")in § for somei = 0,1,... such thatd < &”, this
also means thgC, d) is removed fronf; for somej > i.
In both cases, we have a contradiction.

Theorem 9let S,...,S,... be aA-strategy derivation,

be a A-strategy derivation,

AVFVBF.T)
BVT T)

BPF ch
CAT T)

AVF VT)
CF V)
9.(BPF, AT)
10(0,T)

The initial set of clauses is unsatisfiable, and the resmiuti
refutation is

2.(
34
4(
5.
6.(B"
7
8.(
9.(

(AVF VBF,T)
(B".T)

(AT, T)

(B'",T)

©.T)

6 Related Work

The starting point of our investigation &[,15]. The
main difference between LPL and fuzzy operator logic of
[15 lies in the truth domain. We use a linguistic truth
domain instead of the real intervi@d, 1) of fuzzy logic as

in [15). This allows us to manipulate directly linguistic
terms in describing vague statements and mechanizing the
human reasoning under vagueness. We differ frathip

both algebraic and deductive aspects. Our linguistic truth
domain is a refined hedge algebra whitd][uses a linear
hedge algebra. It is worth underlying that in practice we
often have to deal with incomparable hedges, such as
MoreOrLess and Approximately, and incomparable
linguistic truth values, such a#loreOrLessTrue and
ApproximatelyTrue. In these situations our logic can be
used but the one of2fl] cannot. On the other hand, our
inference system is based on resolution, whilg] [uses

and S be the limit of the derlvatlon Then for each clause hedge mov|ng rules on arb|trary ||ngu|st|c terms. Our
(C,9) in S,, there is not any other resolution proof of the resplution inference system is sound and complete but the

clause(C,d’) from § such thaty’ > 9.

inference system ir?[l] is only consistent.
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The resolution for fuzzy logics has been an active Second, tha-resolution procedure is parameterized with
research direction 18,31,232215. In [31] Lee a truth degree threshold> W, in contrast with B7,36]
presented a resolution procedure for fuzzy logics andwhich only consider the case= W. Consequently our
showed that the equisatisfiability of logical clauses in LPL and resolution inference system are more expressive
fuzzy logics and two-valued logics. Shen et &3[went  and flexible than the ones iB7,36].

a step further by giving a fuzzy refutation complete It is worth mentioning that algebraic and logical
resolution procedure in which the premises andaspects of fuzzy logics have been for longtime an active
conclusions, as well as the inferential results are alljuzz research direction (see e.gL7[4,16] for more detailed
Weigert et al. 5] presented an approach to fuzzy logic surveys). This line of research is concerned with fuzzy
and reasoning under vagueness using the resolutiologics in the narrow sense where one is interested in proof
principle based on the fuzzy operator. Smutna and Vojtagheories for fuzzy logics. Here we consider fuzzy logics
[22] gave a sound resolution for multiple-valued logics in the broad sense where we are interested in the human
with arbitrary connectives and graded information, and areasoning under vague statements in natural languages.
resolution truth function to evaluate the truth value of the Especially the degree of vagueness is expressed by means
resolvent of a resolution inference. Habiballd8] of linguistic truth terms, and the reasoning under
presented a sound and complete resolution inferencgagueness is based on resolution. Also algebi2dc2p,
system for fuzzy predicate logic with evaluated syntax.25] and logical B,10,27,19,9] approaches to linguistic
Our resolution framework is heavily based on the one oftruth have been attractive research topics. Here we adopt
[15], but extends it with the concept of proof confidence the algebraic approach to linguistic truth. This allows us
to capture the approximate nature of resolutionto treat the problem of the human reasoning under
inferences. vagueness as the problem of approximate reasoning with

Notable works in using hedge algebra for linguistic LPL. And the latter can be handled smoothly because
reasoning are32,21]. Nguyen et al. 1] presented a many interesting results on approximate reasoning with
logics whose truth domain is based on linear symmetricmultiple-valued and fuzzy logics are transferable to LPL,
hedge algebras along with an inference system consistings we have shown.
of hedge moving rules. Le et al3%] proposed a sound
and complete fuzzy linguistic logic programming whose
truth domain is based on linear finite symmetric hedge7 Conclusion
algebras. The fuzzy linguistic logic programming only
works with a restricted class of rules, not as expressive a§Ve have presented the LPL for the problendescribing
our class of formulae. Since CNF transformation isvague statements in natural languages, along with the
difficult in predicate fuzzy logic with evaluated syntax, t-resolution inference system for the problem of
the main advantage of non-clausal resolution is that itmechanizinghe human reasoning under vagueness. LPL
does not require CNF transformation. However, thehas the following features: the truth domain is a refined
evaluated syntax is rather restricted, in the sense ththt tru hedge algebra generated by a set of truth generators and a
values are over formulae and cannot be distributed oveset of hedges; the syntax is based on the one of
subformulae. Beside it seems difficult to have an orderedwo-valued predicate logics but augmented with truth
version of non-clausal resolution for faster proof seach a operators; the semantics generalizes the one of
in [6]. Notice that all of the works32,21] make use of two-valued logics; the syntax and semantics properties
linear symmetric hedge algebras as the linguistic truthmake sure that every formula has an equisatisfiable CNF
domains. Here we consider the class of refined hedgéormula, and a CNF transforming algorithm has been
algebras which includes the class of linear hedgegiven. Thet-resolution inference system, parameterized
algebras. In this respect, LPL is more expressive than thavith a thresholdr, is sound and complete. We have
ones in B2 21]. shown howrt-resolution is used to check-satisfiability

In [37,36,35] we considered a more restricted of sets of clauses. We have studied the special case where
resolution inference system for a more restricted class of = W, namely the neutral element, and shown how
formulae where truth operators are only over atoms. Herg-resolution is used to check entailments or to prove
we generalize the results i86,37,35 in two ways. First,  theorems. Ther-resolution inferences have a level of
we consider a syntactically more complex class ofconfidence, and lowering the threshatdto W makes
formulae where truth operators are over formulae, and cathem less confident. We have proposed Mhstrategy to
be distributed over logical connectives and truth opesgator guarantee that inferences performed are always the most
during CNF transformation. As an example, the formula confident. TheA-strategy is, as the standaretesolution,

sound and complete.

Smar(John)'*¢ v WorkHard(John)RatherFalse There are two main lines of future work. First we
intend to study an ordered version ofresolution for
is allowed in B7,36], but the following formula is not faster proof search along the line d][ Ordering and
redundancy elimination techniques based on ordering
(Smar{John)VeYTre AWorkHard(John)RatherTrue)False have shown to be crucial for the performance of
(@© 2017 NSP
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resolution theorem proving. It would be interesting to [14] Reiner Hahnle Exploiting Data Dependencies in Many-
implement and experiment such an orderegksolution. Valued Logics Journal of Applied Non-Classical Logics, V.
Second we plan to apply our approach here to description 6, No. 1, (1996), 49-69.

logics which are commonly used in knowledge [15] T.J. Weigert, J. J. P. Tsai and X. LiEuzzy Operator Logic
representation and ontologies, along the line H2[3]. and Fuzzy Resolutiodournal of Automated Reasoning, v.
The idea is to use symmetric refined hedge algebras as the 10, No. 1, (1993), 59-78. .

truth domains of the description logics, and tableaux ad16]l G- M. and N. Olivetti and D. Gabbayroof theories for
the automated reasoning method. This line of research _Fuzzy LogicsKluwer, (2009). o
seems to be promising because vagueness is unavoidadte/] Hajek, P. Metamathematics of Fuzzy LogiSpringer,

. _ Y . (1998).
Yxhn?lgdr;::(;?ﬁ::‘ggmrgzgg real-world applications, ESpeCIaIIy[18] H. Habiballa,Non-clausal resolution and fuzzy logidon-

clausal resolution and fuzzy logic, v. 4, No. 3, (2011).
[19] Novak, V., A Comprehensive Theory of Trichotomous
Evaluative Linguistic Expressionfuzzy Sets and Systems,
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