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Abstract: We present a system of ordinary nonlinear differential equations describing the population growth dynamics of theAedes
aegyptimosquito, the main transmitter of the dengue virus in Colombia. This model incorporates the three types of known controlfor
mosquito eradication: mechanical, biological and chemical, focusing on biological control through the use of theWolbachiabacterium,
which is the new hope for the control of the diseases transmitted by this mosquito. A local stability analysis of the modelis performed
on the three equilibrium points that are found, determiningthe conditions under which those points become stable or unstable. Finally,
we present numerical simulations implemented in Matlab, where the numerical results are obtained using hypothetical values of the
parameters obtained from the literature.
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1 Introduction

Aedes aegyptiis a mosquito that mainly lives close to
human populations. It flies only short distances and
requires blood (primarily human), to reproduce [1], [7].

During their lifetime the mosquitoes go through two
stages: immature and mature. In the immature phase, the
mosquito is aquatic and undergoes a metamorphosis from
egg to an adult. It feeds mainly on residues in the water
where they were laid by the female. Adult mosquitoes are
airborne and while the males feed on plant nectar, the
females feed on blood. [4].

By feeding on blood, in order to mature and deposit
her eggs, the female mosquito promotes the transmission
of viruses and pathogens that cause various diseases
including Dengue fever. For this reason global campaigns
have been founded to eradicate the mosquito. So far, the
struggle has been unsuccessful because although some
countries have achieved temporary the extinction, the
mosquito soon returns due to the infestation of
neighbouring countries [2], [7].

There are three main mechanisms to control the
propagation of mosquitoes, namely: mechanical control,
focused on preventing the reproduction of the mosquito

using traps, destroying breeding grounds, etc.; chemical
control based on insecticides or larvicides; and biological
control that makes use of other living organisms such as
the Wolbachiabacterium which reduces the life span of
the mosquito and also, in the case of dengue, almost
eliminates the probability of transmitting the virus to
humans [5], [7], [8].

The present article demonstrates a mathematical
model that describes the population growth of the female
mosquito in the adult phase. The model incorporates all
three control mechanisms for the mosquito. A stability
analysis is performed and we show how the population
growth dynamics change in response to a program of
biological control via the introduction of theWolbachia
bacterium into the population. In this way, the model will
serve as a tool for the those who wish to determine the
way in which mechanical, chemical and biological
controls should be applied to diminish the breeding of
mosquitoes and, therefore, the propagation of diseases
like dengue that are transmitted by them.
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2 The Model

The following hypotheses are considered in the creation of
the model:

–The population of interest is that of the adult female
Aedes aegyptimosquitoes.

–There are two populations of adult female mosquitoes:
those that are infected by theWolbachiabacterium and
those that are not.

–The death rate of an adult mosquito infected with the
bacterium is greater than the death rate of an
uninfected mosquito.

–Three controls on the mosquito population are used:
traps that prevent the eggs from reaching adulthood
(mechanical control); in the immature state a
proportion of the eggs are infected by theWolbachia
bacterium, which genetically manipulates the
mosquito and is transmitted vertically (biological
control); a proportion of adult mosquitoes die from
the use of insecticides (chemical control).

Taking these hypotheses into account, let us consider
b, the total number of adult female mosquitoes that are
not infected with the bacterium at timet; andB, the total
number of adult female mosquitoes thatare infected with
the bacterium in a timet. We also consider the parameters
in Table 1. In this analysis we use the week as the period
of time because it is short enough that a single female
mosquito will lay eggs at most once during the period.

Table 1: Parameters of the model
Parameter Description

ξ Rate of development of a mosquito
from the immature phase to the
adult phase

f Proportion of immature mosquitoes
that develop into adult females

φ The probability that an adult female
mosquito will lay eggs in the week

δ The average number of eggs laid at a
time by an adult female mosquito

π The natural death rate of immature
mosquitoes

κ The maximum number of mosquitoes
that the environment can support

ε The natural death rate of the mosquito
without Wolbachia

ν The death rate of mosquitoes
infected byWolbachia

u1 The proportion of immature mosquito
deaths caused by traps

u2 The proportion of immature mosquito
deaths caused by insecticides

u3 The proportion of eggs infected by the
Wolbachiabacterium through
micro-injection

If we consider the variation ofb with over time, we
recognise that this population grows continuously as a
result of the development of immature mosquitoes. It also
decreases as a result of the natural death of mosquitoes or
the use of insecticides. Therefore, in terms of the
parameters shown in Table 1, we see that the expression
(1− u3)

ξ f φδ
π+u1

represents, for each adult female that lays
eggs in the week, the average number of eggs that survive
to adulthood without being infected by theWolbachia
bacterium. Furthermore, the expression 1− b+B

κ
represents the probability that a mosquito that develops to
the mature phase finds space available in the environment.
From these, we have the number of mosquitoes that enter
the population of adult females without being infected by
the bacterium is given by(1 − u3)

ξ f φδ
π+u1

(

1− b+B
κ

)

b.
Similarly, the number of female mosquitoes in this state
that die in each instant is given by(ε + u2)b. Thus we
have that:

db
dt

= (1−u3)
ξ f φδ
π +u1

(

1−
b+B

κ

)

b− (ε +u2)b.

Now, the mosquitoes that enter the population of adult
females infected by theWolbachiabacterium are those
that develop from eggs that have been laid by an infected
female mosquito (because the bacterium is transmitted
vertically) and those that develop from eggs that have
been laid by uninfected females but are infected through
micro-injection Therefore the change in this population is
given by:

dB
dt

=
ξ f φδ
π +u1

(

1−
b+B

κ

)

B+
u3ξ f φδ
π +u1

(

1−
b+B

κ

)

b

− (ν +u2)B.

Thus the system of ordinary non-linear equations
representing the growth dynamic of the population of
adult female mosquitoes both with and without
Wolbachiainfection is given by:

db
dt

= (1−u3)
ξ f φδ
π +u1

(

1−
b+B

κ

)

b− (ε +u2)b (1)

dB
dt

=
ξ f φδ
π +u1

(

1−
b+B

κ

)

(B+u3b)− (ν +u2)B.

3 Points of Equilibrium

Setting the right hand side of the system’s differential
equations to zero, we find that the model has three points
of equilibrium:

P1 = (0,0), P2 =

(

0,k

(

H −1
H

))

and P3 = (b1,B1)
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where

b1 = k
h−1

h

(

1−
u3(ε +u2)

(ν − ε)(1−u3)

)

,

B1 =
h−1

h
u3k(ε +u2)

(ν − ε)(1−u3)
,

with

H =
ξ f φδ

(ν +u2)(π +u1)
and h=

(1−u3)ξ f φδ
(π +u1)(ε +u2)

,

which represent the thresholds of the growth of the
populations of adult female mosquitoes with and without
Wolbachiainfection respectively.

We can further see that, whenu3 = 0, the third point of
equilibrium can be written as:

P3 =

(

k
h−1

h
,0

)

4 Stability Analysis

Theorem 1. The local stability of the system can be
summarised as:

1.If h 6= H, h< 1 and H< 1, P1 is asymptotically stable,
and the points P2 and P3 are unstable.

2.If h= H and h< 1, P1 is asymptotically stable and the
points P2 y P3 are not hyperbolic.

3.If h= H = 1, none of the three points of equilibrium
are hyperbolic.

4.If h= 1 and H 6= 1, P1 and P3 are not hyperbolic, but
P2 is asymptotically stable when H> 1 and unstable
when H< 1.

5.If H = 1 and h 6= 1, P1 y P2 are not hyperbolic, but P3
is asymptotically stable when h> 1 and unstable when
h< 1.

6.If h < H, h 6= 1 y H > 1, P2 is asymptotically stable
and the points P1 and P3 are unstable.

7.If h > H, h> 1 y H 6= 1, P3 is asymptotically stable
and the points P1 and P2 are unstable.

8.If h= H, h> 1, P1 is unstable and the points P2 y P3
are not hyperbolic.

Proof. We can see that the Jacobian matrix associated
with the linearised system aboutP1 is given by:

J(P1) =

(

(ε +u2)(h−1) 0
(ν +u2)u3H (ν +u2)(H −1)

)

and so it’s characteristic equation is

(λ − (ε +u2)(h−1))(λ − (ν +u2)(H −1)) = 0. (2)

For the linearisation about the pointP2, we have the
matrix:

J(P2) =





(ε +u2)

(

h−H
H

)

0

(ν +u2)(u3− (H−1)) (ν +u2)(1−H)





and the characteristic equation of this system is

(λ −λ1)(λ −λ2) = 0. (3)

where

λ1 = (ε +u2)

(

h−H
H

)

and λ2 = (ν +u2)(1−H).

Finally, the matrix for the linearised system aroundP3
is:

J(P3) =

(

a11 a12
a21 a22

)

where

a11 =(ε +u2)

[

(h−1)

(

u3(ε +u2)

(ν − ε)(1−u3)
−1

)]

a12 =− (ε +u2)(h−1)

[

1−
u3(ε +u2)

(ν − ε)(1−u3)

]

a21 =−u3(ν +u2)
H
h

[

(h−1)

(

ν +u2

ν − ε

)

−1

]

a22 =(ν +u2)

[

H
h

(

1−
u3(h−1)(ν +u2)

ν − ε

)

−1

]

and it’s characteristic equation is:

λ 2+
ν +u2

h
[H(h−1)+ (h−H)]λ+ (4)

+(ε +u2)(h−1)(ν − ε)
(

1−
u3(ν +u2)

ν − ε
H
h

)

= 0.

Thus we have:

1.If h < 1, H < 1, by equation (2) the eigenvalues of
J(P1) are real and negative, from which the equilibrium
pointP1 is asymptotically stable at the local level.
If we consider further thatH 6= h, from equation (3)
we can see that there are no null eigenvalues and that,
because 1−H > 0, there exists an eigenvalue that is
real and positive. This leads us to conclude thatP2 is
an unstable point of equilibrium.
Finally, under this hypothesis, we have thath< H < 1
or H < h < 1. If H < h < 1 and h 6= 2H

H+1, then

H(h−1)+(h−H) 6= 0 and
H
h
< 1. That is to say that
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ε +u2

(ν +u2)(1−u3)
< 1 and, applying algebraic

operations to this equation, we arrive at
u3(ν +u2)

ν − ε
< 1. From this we get:

(ε +u2)(h−1)(ν − ε)
(

1−
u3(ν +u2)

ν − ε
H
h

)

< 0,

from which we conclude, by the Routh-Hurwitz
criterion, that equation (4) has at least one root with a
positive real part and soP3 is unstable. Similarly,
whenH < h< 1 y h= 2H

H+1, the roots of equation (4)
are real and of opposite signs which implies thatP3 is
an unstable point of equilibrium. On the other hand, if
si h < H < 1, then H(h− 1) + (h− H) < 0 and

(ε + u2)(h− 1)(ν − ε)
(

1−
u3(ν +u2)

ν − ε
H
h

)

6= 0, and

by the Routh-Hurwitz criterion, equation (4) has at
least one root with a positive real part which implies
that the pointP3 is unstable.

2.Analogously, if we have thath = H, h < 1, the point
of equilibriumP1 is asymptotically stable atthe local
level. However, whenh = H, equation (3) has an
eigenvector ofzero, which implies thatP2 is not a
hyperbolic point. Similarly, H

h = 1 gives us
u3(ν +u2)

ν − ε
= 1 and, from equation (4), we have that

the matrixJ(P3) has a zero eigenvalue; and soP3 is
not hyperbolic either.

3.We observe that whenh= 1 andH = 1, we find a zero
eigenvalue in each of the three characteristic equations
and therefore none of the three points of equilibrium
are hyperbolic.

4.Analogously to the previous case, whenh = 1, the
characteristic equations forP1 andP3 give eigenvalues
of zero, and these points are therefore not hyperbolic.
However, whenH < 1 in equation (3) we get a
positive real eigenvalue and another non-zero. Thus
the pointP2 is unstable. In the case thatH > 1, from
equation (2) we get negative real eigenvalues which
means that the pointP2 is asymptotically stable.

5.If H = 1, the characteristic equations forP1 andP2 we
get eigenvalues of zero which implies that neither
point is hyperbolic. When h > 1,

H(h−1)+(h−H)> 0 and
u3(ν +u2)

ν − ε
H
h
< 1, and so

all the coefficients in the characteristic equation forP3
are positive. Thus, by the Routh-Hurwitz criterion, the
eigenvalues ofJ(P3) have a negative real part andP3
is asymptotically stable. However, whenh < 1,
H(h − 1) + (h − H) < 0 and

(ε + u2)(h− 1)(ν − ε)
(

1−
u3(ν +u2)

ν − ε
H
h

)

6= 0, and

by the Routh-Hurwitz criterion there exists an
eigenvalue with a positive real part and thusP3 is
unstable.

6.If H > 1, we can see that from equation (2) we obtain
an positive real eigenvalue and, ash 6= 1, there are no
zero eigenvalues. Therefore, the point of equilibrium
P1 is unstable. If we also have thath < H, equation
(3) gives us negative real eigenvalues from which we
conclude thatP2 is asymptotically stable at the local
level.
On the other hand, ifh 6= 1, we must have eitherh< 1
or h > 1. But if h < 1 and h < H, we have that
H(h − 1) + (h − H) < 0 and

(ε + u2)(h− 1)(ν − ε)
(

1−
u3(ν +u2)

ν − ε
H
h

)

6= 0, and

therefore, by the Routh-Hurwitz criterion, equation
(4) has at least one root with a positive real part which
means thatP3 is unstable. Similarly, ifh> 1 y h< H,

then(ε +u2)(h−1)(ν − ε)
(

1−
u3(ν +u2)

ν − ε
H
h

)

< 0,

which leads us to the same conclusion.
7.If h> 1, equation (2) gives us a positive real eigenvalue

and, sinceH 6= 1, there are no zero eigenvalues which
implies that the equilibrium pointP1 is unstable. If, in
addition,h>H, equation (3) has no zero roots and also
we get a positive real eigenvalue, soP2 is unstable.
We also observe that under these hypotheses,
ν +u2

h
[H(h−1)+ (h−H)] > 0 and

(ε + u2)(h − 1)(ν − ε)
(

1−
u3(ν +u2)

ν − ε
H
h

)

> 0,

which, by the Routh-Hurwitz criterion, guarantees
that equation (4) gives eigenvalues having a negative
real part. Thus the pointP3 is asymptotically stable a
the local level.

8.If h = H andh > 1, from equation (2) we getJ(P1)
has two positive real eigenvalues and thereforeP1 is
unstable. However, from equations (3) and (4) we
have zero eigenvalues which implies that the
equilibrium pointsP2 andP3 and not hyperbolic.

5 Numeric Results

For the numerical results, hypothetical values have been
considered for each of the parameters in the model. In
Tables 2 and 3 we can see the values that have been given
to these parameters for the different scenarios and also the
values of the thresholdsh andH.

The simulations corroborate the analytic results.
However, of special interest are the cases in which the
local stability analysis doesn’t determine the asymptotic
values of the system, as is the case whereh = H = 1. In
this case, according to Figure 3 which uses the conditions
given in Scenario 3 of Table 2, the stable solution is the
point P1. This result is also obtained whenh = 1 and
H < 1 under the conditions given in scenario 5 of Table 2,
or whenH = 1 andh < 1 under the conditions given in
scenario 7 of Table 3. These results can be seen Figures 5
and 7, respectively. On the other hand, whenh = H > 1,
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Table 2: Values of the parameters in scenario 1-5
Parameter Sce. 1 Sce. 2 Sce. 3 Sce. 4 Sce. 5

ξ 0.5 0.4 0.5 0.5 0.5
f 0.4 0.4 0.4 0.4 0.4
φ 0.5 0.4 0.5 0.5 0.5
δ 10 10 10 10 10
π 0.2 0.2 0.2 0.2 0.2
k 10000 10000 10000 10000 10000
ε 0.1428 0.1428 0.1 0.1 0.1
ν 0.4 0.21 0.2 0.16 0.21
u1 0.8 0.9 0.8 0.8 0.8
u2 0.8 0.462 0.8 0.8 0.8
u3 0.8 0.1 0.1 0.1 0.1
h 0.2121 0.8658 1 1 1
H 0.8333 0.8658 1 1.0417 0.9901

Table 3: Values of the parameters in scenario 6-10
Parameter Sce. 6 Sce. 7 Sce. 8 Sce. 9 Sce. 10

ξ 0.5 0.5 0.8 0.6 0.6
f 0.4 0.4 0.7 0.4 0.4
φ 0.5 0.5 0.9 0.5 0.5
δ 10 10 10 10 10
π 0.2 0.2 0.143 0.2 0.2
k 10000 10000 10000 10000 10000
ε 0.09 0.1428 0.1428 0.1 0.1428
ν 0.2 0.2 0.28 0.21 0.21
u1 0.8 0.8 0.4 0.8 0.8
u2 0.8 0.8 0.3 0.8 0.462
u3 0.1 0.1 0.4 0.1 0.1
h 1,0112 0.9546 12.5769 1.2 1.7857
H 1 1 16.0031 1.1881 1.7857

b
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Fig. 1: Scenario 1.

according to Figure 10 which uses the conditions given in
scenario 10 of Table 3, the stable solution is the
equilibriumP2.

b
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B

0

2000

4000

6000

8000

10000

P
1

Fig. 2: Scenario 2.
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Fig. 3: Scenario 3.
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Fig. 4: Scenario 4.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1314 A. Pulecio et al.: Stability analysis of a model for population growth...

b
0 100 200 300 400 500 600 700 800 900 1000

B

0

200

400

600

800

1000

P
1

Fig. 5: Scenario 5.
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Fig. 6: Scenario 6.
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Fig. 7: Scenario 7.
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Fig. 8: Scenario 8.
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Fig. 9: Scenario 9.
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Fig. 10: Scenario 10.

c© 2017 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.11, No. 5, 1309-1316 (2017) /www.naturalspublishing.com/Journals.asp 1315

6 Conclusions

In the proposed model, as in all mathematical models
based on ordinary differential equations that describe
population growth, the so-called Growth Threshold was
determined. This, like the Basic Reproduction Number
described in [9], determines the number of new
individuals of a species that are generated during the
lifetime of one of them, and which are capable
reproducing when introduced into a free environment of
that species.

For this model two growth thresholds have been
found, since adult female mosquitoes are classified into
two groups: those that are carriers of theWolbachia
bacterium and those that aren’t. ThusH represents the
number of infected adult female mosquitoes that can be
generated by a single mosquito with these characteristics
during its life span. Similarly,h represents the number of
adult female mosquitoes without the bacterium that can
be generated by a single mosquito during its lifetime.

The stability analysis of the system, determined that
there are three equilibrium points. Biologically, the point
of equilibrium P1 represents the free equilibrium of the
two populations, i.e. where neither of the two groups of
adult female mosquitoes exist. The equilibrium pointP2
represents the situation where all adult female mosquito
population are carriers, while non-carriers disappear from
the environment. On the other hand, the equilibriumP3 is
the point at which the two groups of adult female
mosquitoes coexist. In this case it is necessary that the
control u3 be practised permanently, otherwise, the adult
female mosquito population withoutWolbachiacontinues
and those who are infected with the bacterium disappear.

Analytically we have established that whenh< H and
H > 1, under initial conditions close toP2, the population
of adult female mosquitoes with theWolbachiabacterium
will persist in the environment and the other population
will be extinguished, as demonstrated by conditions 4 and
6 of Theorem 1. This also seems to be the result in the
case whereh = H as shown in Figure 10, but the local
stability analysis does not prove this. WhenH < h and
h > 1, under initial conditions close to pointP3, the two
groups of mosquitoes will coexist in the medium
(provided thatu3 6= 0), as demonstrated by conditions 5
and 7 of Theorem 1. Finally, when both thresholds are
less than one, under initial conditions close toP1, both
populations will disappear, as demonstrated by conditions
1 and 2 of Theorem 1. This condition seems to persist
when the thresholds are equal to one, as shown in Figure
3, and also whenh = 1 andH < 1 as shown in Figure 5,
or in the case whereH = 1 andH < 1 as shown in Figure
7.

7 Materials and Methods

The numerical solutions of the proposed model were
derived using the software Matlab 2015a and its ODE45

function. This function is based on the Runge-Kutta
method, which is defined in [6] and is useful for solving
ordinary differential equations with initial conditions.
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