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Abstract: The aim of this paper is to determine the numerical solutibmro equation which models the nerve conduction in a
myelinated axon. An appropriate stimulus begins a propagetion potential which travels down the axon. It can be tstded as a
traveling wave of voltage. It is proposed a computationgrapimation for the solution of a forward-backward diffatiel equation
that models nerve conduction. We look for a solution of anatign defined inR, which tends to known values ateo. Extending
the approach introduced 13, 29, 14] for linear case, a numerical method for the solution of peoh adapted to non linear case, is
described. Numerical results using a test problem and anu@iton method are computed and analyzed.

Keywords: Mixed-type functional differential equations, non lindeundary value problem, nerve conduction, continuatiothotg
numerical approximation, method of steps

1 Introduction a coat of myelin (figurd) with spaced holes denominated
the nodes of Ranvier.
The main goal is to model nerve conduction in a  In the mathematical modeling of nerve conduction it

myelinated axon. Accordingly with the author of3f], IS necessary to solve numerically a nonlinear

nerve fibers transmit information encoded as uniformdelayed-advanced differential equation of the type

impulses, denominated the action potentials. These

impulses consists in brief changes of membrane

polarization. In the majority of nerves and skeletal muscle X(t) = F(x(1)) + BUOX({t— 1) + y(OX(t+71), (1)

membranes, an impulse results from a transient flow of . )

Na' into the fiber followed by an outflow ok*. The = Wherexis the unknown functiong, y andF are known

flow of these ions is down their respective and oppositefunctions.t is some positive constant.

the electrochemical gradient. This movement of ions At second half of 20 century, the author df7] made

takes place in discrete membrane sites. an important contribution for the analysis of MTFDE's in
In [2] is presented some work about behavior of the optlmallcor)trol theory. Later, ing, 19 there is a

models of myelinated axons. The same author,dp [ good contribution about functional analysis of linear

studies some details about a diffusive model for a@utonomous MTFDESs. o .

myelinated axon. In particular, this work takes into ~ More recently, in 1], the approximation of a mixed

account a nonlinear mixed type functional differential type functional differential equation is done by

equation (MTFDE) with deviating arguments from nerve transforming the original problem in a boundary value

conduction theory that describes the potential propagatio Problem (BVP).

along a myelinated nerve axon, where the membrane has The main interest is the development, extension and
adaptation of numerical methods which solve numerically

1 Myelin is a mix of proteins and phospholipids creating an equation {), whenF (x(t)) = a(t)x(t) anda, B andy are
insulating sheath which involves many nerve fibers, raishg ~ smooth functions of and t is known. These numerical
speed at which impulses are propagated. schemes were introduced initially for a linear autonomous
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Fig. 1: Myelinated nerve axon.

case in P9] and extended to a hon-autonomous case at irexcite the membrane there. The nerve impulse travels the
[13], using collocation. The numerical approach for linear axon one way only, until reach the axon terminal (place

case was further developed 4], where a numerical where signals in a axon link with other axons).

scheme, using the finite element method, was proposed It is supposed that nodes have the same lepgtnd

for the solution of such boundary value problems. Theare equally spaced and electrically similar, the potential

authors of 9] focused on the decomposition, by cross-sectional variations in axon are negligible and the
numerical methods, of solutions to MTFDE’s into sums axon is infinite in extent.

of forward solutions and backward solutions. &g[it is When it is used an adequate variable substitution,
solved a nonlinear MTFDE which models human equation 2) can be reduced to the following non
phonation. dimensional model:

In particular, the equation in study is given (8 (

V(t) = f(v(t)) +Vv(t—T)+Vv(t+T1)—2v(t), teR,

RCV(t) =F(v(t)) +Vv(t—T)+V(t+T1), —c0 <t < +oo. (4)
(2)  wherert is the non dimensional time delay.
The equation?) is a boundary value problem (BVP) Several models can be obtained using different

of first order. We look for for a solution defined iR, current-voltage expressions. Here it is used the
which satisfies the nonlinear MTFDR)(with boundary  FitzZHugh-Nagumo dynamics for the nodal membrane,

conditions B) without a recovery term and it is assumed that a
supra-threshold stimulus begins a propagated axon

V(=) =0, 3) potential and consequently travels down the axon from

V(+e0) =1 node to node. This can be interpreted as a traveling wave

These boundary conditions correspond to the rest an
the maximum activated potential, respectively.

The unknown function v(t) represents the f(v) = bvv—a)(1—v), (5)
transmembrane action potential at a node in a myelinated
axon, considering the nerve conduction model.is wherea is the threshold potential in the non dimensional
related with the current-voltage model as it will be problem(0 < a< 1) andbis a parameter related with the
discussed belowRk andC are respectively the axomatic strength of the ionic current densitp > 0). The solution
nodal resistivity and the nodal capacityis the inverse of at any node should be monotone increasing. This arises
the wave potential speed propagation down the axon, it ifrom the current-voltage relatioffi(v): once a node is
unknown. A detailed derivation of the mod&@){(3) can  turned on, it cannot return to the rest potentia 0.
be found in B]. This mathematical model is formulated The equation4) is autonomous, thereforeft) is a
from an equivalent electric circuit model which assumessolution of the problem4)-(3), then any function of the
pure saltatory conduction. When compared with theform v(t 4+ g), with o € R, will also be a solution. To
membrane, myelin has higher resistance and lowespecify a particular solution to this problem, we need to
capacitance. If the membrane is depolarfzatia node, impose an additional condition. Following the authors of
the action potentidltends to jump to the next node and [6], we will set

Qf voltage just like it is presented in next section. The
unction f is given by

2 A membrane is depolarized when there is a negative change v(0) =05 (6)
of membrane potential.

3 In physiology, the action potential in neurons are often appropriate stimulus. It is a short-time occurrence whéee t
named nerve impulse. It is a set of electrical response due amembrane potential increases and decreases rapidly.
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to guarantee the uniqueness of solution.

In this article we have continued the numerical
investigation of a nonlinear MTFDE started ib5. This
work is an extended version o025, 23]. In next section

there are presented some details about the formulation of

mathematical model, the asymptotic behavior of solution,
as well as a test problem with known solutions so we cal
test the proposed method.
apply the method of steps. In sections 3 and 4 is describe

the numerical scheme to determine the solution. In lasf", )
Qfjimpulse;v(t), v(t = 1) are the potential at a node and

two sections are presented and discussed the results a
obtained some conclusions.

2 Preliminaries

In this section we will present and discuss some
properties of BVP 4)-(3) which will be needed for its
numerical solution.

This is not an easy problem to solve numerically: the

It is also described how td®

If we consider that nodes are uniformly spaced and the
signal propagates an constant speed, we get
Vipa(t) =vi(t—1), i€Z (8)

When we introducef) in lattice equationsq) we get a

pMTFDE with the form @), the discrete Fitzhugh-Nagumo

quation, where the delay corresponds to the time the
gignal reaches the closest neighbor node which depends
n the distance between nodes and the propagation speed

neighboring nodes respectively.
We can see easily that the solution @ &s the form
of a travel wave solution.
In [7], a discrete traveling wave can be formulated by
equations9) and (L0)
—cp(&) = aLnd (&) —9(

(&), E€R,

equation contains both retarded and advanced arguments

and the deviationt is unknown. Moreover, boundary
conditions are given at infinity.

We shall begin by introduce some details about the
model, followed by the asymptotic analysis of the
solutions of the problen¥-(3). Then, we will present an
alternative approach to compute a numerical solution
starting from an asymptotic expansion.

2.1 The model

¢
{ $(—w)=0,  P(+w)=1, (9)
with
Land (&) ={>p10(E+00)+¢(E—0ok)}—2np(&),
(10)

where¢ : R — R, g is a non linear functiong some
positive scalar. Typicallyg is a bistable third degree
polynomial function.

,  For a detailed description of the solution of equation
(7) as a traveling wave of voltage, we can see the work
developed in10].

A spatially discrete problem similar to
one-dimensional partial differential equation,
reaction-diffusion equation, can be formulated
Summarizing, nervous propagation in a axon is a naturafollowing differential-difference equation
process which results from combination of two

the
the
in

phenomena: in myelinated region, a very fast propagation(%t) = @ (U(x+1,t) —2u(x,t) +u(x—1,t)) — f(u,a),

and a quickly reduction of signal strength, in the nodes, a

slow propagation and a growth of signal strength

U:ZxR—R,
(11)

chemically stimulated. There exists a threshold behaviorVith @ > 0 andf : R — R as a bistable nonlinear third
some conditions lead to a decay solution, others to &1€gree function

non-decay solution (sub-threshold or supra-threshold

response). From electrical and chemical analysis, at nod
i we have the potential; at each node, given by
equation ), as it was presented ing]

. 1
CV=——

iez, (7
HLRp 7)

{Vi+1—|—Vi_1 - 2Vi} - |ionic(Vi)7

where lignic is the current-voltage relation, usually a
bistable non-linear function which satisfy some
conditions,; is the length of nodé, R is the resistance
per unit length,p is the perimeter of the fibreg is the
capacitance., is the length of myelinated sheath between
nodes. In §, 7] current-voltage relation is given by cubic
polynomial function. Equation7] is a particular case of
model introduced by Bell ind], when we discard the
recovery term.

In [3], the sufficient conditionvi(+») =1, i € Z
guarantees that all nodes are entirely activated.

f(u,a) =u(u—a)(u—1), O<ax<1,

e

where a a detuning parameter. Equatioflf define a
countable system of ODE’s indexed by integeon a
spatial lattice. When we take the one-dimensional
traveling waveu(x,t) = ¢ (x — ct) and substitute in1(1)

we get

—cp'(8) = a ($(E+1)—20(E)+ ¢ (£ —1))— f(m’a()ia

which assume the form8)and (L0) whenn = 1.
Considering constant node lengths, the substitution

vi(t) = ¢(i — ct) in equation {) provides the traveling
wave solution with the form1(2). In this differential
difference equation, we impose thgt(0) = a and
¢(—c0) =0, ¢ (+w) = 1. The potential of impulse
propagation from7) can be considered a traveling wave
solution. Some details about the global structure of
traveling waves can be found itg.
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2.2 Asymptotic behavior of solution

In problem @)-(3) f is C!0,1] and verifies V
f(0) = f(1) =0, f'(0) < 0 andf’(1) < 0. The deviation
T and the monotone increasing solutieft), satisfying
0 < v(t) < 1 are computed at the same time.

The study of the asymptotic behavior of solution-at >
and+-co and on right is essential to proceed and implement
the numerical scheme. We follow an approach similar to
the one considered ir].

Considett < —L, with L being a positive constant.

Whent — —oo, we havev(t) — 0 and f(v(t)) — O.
Thus, we can use the Taylor expansionfdbr x close to A
zero, f(x) = a;x + agx? + agx® + O(x*). Introducing this )
expansion in4) we obtain

Fig. 2: Roots of the Characteristic Equatioh +2 + B —
2coshiA1) = 0: rootsA_ andA;. B= —a; > 0 (in the case of

vt =awv(t) + azv( ) N a3v(t) +V(t -7 equation 17)); B= Az > 0 (in the case of equatior24)).

+V(t+ 1) - 2v(t) + O(v(t )Y,
=av(t)? +agv(t) P+ vt —1)+v(t+1)  (13)
+(a1 - 2)V(t) + O(V(t)4)7 A+2+B-2 cosh(A 1) =0
= apV(t)? +agv(t)3+ L v(t) + O(v(t)%), .
where
Lev(t) =v(t— 1) +V(t+ 1)+ (ar — 2)v(t), o baafe o
With —0 <t < —L, a = f'(0), ap = f"(0)/2, of
f///( )/3| /’*"f
Lete v(—L); thene — O whenL — +o. Moreover,
let us search fov in the form of a series of powers ef

V(t) = euy (t) 4 £2uy(t) 4 £3u3(t) + O(e%), (14) 2O A A

whereu, U; andus satisfy the initial conditions Fig. 3: Characteristic Equation: roofs. and A for a specific
value ofT (T = 11). B= —a; > 0 (in the case of equatiori)));

’ B = A; > 0 (in the case of equatio24)).
(15) 1>0( quatioa4))

ug(—L)
U2( L)
us(—L)

By replacing (4) in (13), we conclude that the After some computations taking into consideration the
coefficientsus, u; andug of this series satisfy the system jnitial conditions (5), whent < —L the asymptotic

1
0
0.

of equations

Uy (t) — Lrus(t) =0,
Up(t) — LrUa(t) = auy(t)?, (16)
U5(t) — Leug(t) = aguy (t)® + 2apuy (t)up(t).

Since the first equation of systerdj is linear and
homogeneous, we obtain the characteristic equation

A+2—a—2coshAT)=0. a7)

Knowing thata; = f/(0) < 0, equation17) has exactly
two roots, one positivé . and one negative (figures 3).
Sinceu ()
positive root so thaii; (t) — 0 ast — —co.

= CéM, whereC is a constant, we choose the

expansion14) takes the form

V(t) — ge/\+(t+L) + gzbl(ez)\+(t+L) _ e/\+(t+L))
_|_€3(b26,2)\+(t+L) + bges)\+(t+L) _ (bz + bg)e/\+(t+L))
+0(&%).

(18)
Notice thate = v(—L), by, by, bz andA_ are constants
depending on the Taylor expansionfoénd characteristic
equation 17). Namely, theb/'s are given by

b, = &2

1 2/\+—a1+2—2005r()\+r) J
b, = —Zbl, (19)
b 2a1b+a3

3A;—a;+2—2cosh3A, 1) "
Considett > L, whereL is a positive constant.
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Whent — +o, we havev(t) — 1 and f(v(t)) — 0.
Writing the Taylor expansion of (x) asx — 1, we have
f(X) =A1(1—%) +A(1—x)2+Ag(1—x)3+0O((1—x)4,
whereA; = —f/(1), A, = —f"(1)/2, A3 = —1"(1)/3.

Substituting in 4), we obtain

V(t) = —Alv( ) — Apv(t)? — Agv(t)3 +v(t — T)
+FV(t+ 1) — 2v(t) + O(v(t)*),
= —Av(t)? — Agv(t)® +v(t T)+Vv(t+1) (20)
—(Ar+ Z)V(t) +O(v(t)*),
= —Aov(t)? — Agv(t)3 + Kpv(t) + O(v(t)*),

with L <t < 40, whereK; is defined by

Kev(t) =v(t — 1) +v(t+ 1) — (Ar+ 2)v(t).

In this case, we search feiin the form:

V(t) = exwa(t) + €2wo(t) + e3wg(t) + O(ed),  (21)

wherew;, w, andws satisfy

{ wi (L) =1,
wa(L) =0, (22)
W3(L) =0.

Consideringv(L) = 1— ¢4, 0 < &+ << 1, we have
v(L) — 1 whenL — oo,

By substituting 21) into (20), we conclude that the
coefficientswy, w, andws satisfy

V\/l(t) - K-[Wj_(t) = 07
V\/Z(t) — KTWZ(t) = —Ale(t)z,
\I\/?’(t) — KTW3(t) = —A3W1(t)3 — 2A2W1(t)W2(t).
(23)
The first equation of system2®) is linear and

autonomous. It has the following characteristic equation:

A+2+A;—2coshAT)=0. (24)

Knowing thatA; = —f’(1) > 0, equation 24) has
exactly two roots, one positive and one negative
(figures 3 or 2). Since wy(t) = Ce', whereC is a

characteristic equation, when> L. The expressions of
Bi, By, Bz are, respectively,

B _ A

1= 2 +A1+2 ZCOSP{)\ T)

By = —2B2, (26)
Bs = —2A1B1—Ag

3A_+A;+2—-2coshBA_1) "

2.3 Test Problem

To analyze the convergence of the numerical scheme we
take into account some test problems with known
solutions.

There is one test problem with known solution which
belongs to the class of the problems under sti&)y(4)
and can be solved exactly. Lé& be a known positive
constant andg (V) given by

f@ (V) = 1+29(2v*l>7(];{10_)(92(\/2;?;72)9(372@(2\/71)37 (27)

with —oo <t < 400, Then the solution of4)-(3) is

v(t) = 1+t+nh(t)’ (28)
where
T =tanh 1(/6). (29)

The solution of the test problen2T) can be used as
an initial approximation for the numerical solution of the
target problem 4) using the continuation method. We
solve a sequence of equations of the fodh Where, in
the right-hand side of the equatiohis replaced byfg. In
each subsequent equatidnis replaced byf, defined by

fa(V) = afe(v) + (1—a)frarget(v), 0<a <1,

with fiarget is the functionf, defined by §).

When a = 1 we get the exact solution of the test
problem. By the other hand, whem = 0, we get the
approximate solution of the target problem. We compute
numerical solutions for the problem starting with an
initial approximation takingr = 1, and sequentiallyy is

constant, we choose the negative one to guarantee thgecreased from 1 until 0. For each problem (eaghthe

wi(t) — O ast — 0.

Solving the system23) and taking into account the
conditions 22), whent > L the asymptotic expansion
takes the form

v(t) =1—g M0 _ 2By (- (-1 _ - (t-1))
—£3(Boe (71) 4 Bge™-(°1) — (B, + By)eM (1))
+0(eh).

(25)
Notice thate; = 1—v(L), By, By, Bz and A_ are
constants depending on the Taylor expansioh ahd the

correspondent initial approximation is the one obtained in
the previous problem, with the previous valueof

2.4 Method of steps

The main goal of this section is to extend the method of
steps to the nonlinear case, using the results presented in
[27]. It uses the ideas based on Bellman’s method of steps
for solving delay differential equations and some work
introduced in 11, 8] where the method of steps is applied

to an autonomous linear forward-backward differential
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equation. In the linear case, one solves the equation over So,

successive intervals of unitary length. In the case of P :V — L(E, Ep),
equation 4), we present the same idea for a non linear v— P E; — Ep.
equation, considering sucessive intervals of lergth

(33)

When we consider a Frchet-differentiable operdor
with invertible derivative in a neighborhood of the solutio
Vt+T1)=V(t)—Vv(t—1)+9g(v(t)), teR, (30) V(x),the equatioPv= 0 is equivalentto

whereg(u) = 2u— f(u). v=v—(R,) *(Pv), w€EE. (34)
We can use formula3Q) to construct a solution for
equation 8) on an interval[a,a+ k1] (wherek is an The Newton’s method constructs a sequence of

integer), a € R, starting from its initial values on approximations using the iterative formula
[a— 21, a]; these starting values can be obtained from the

asymptotic expansiori ). Vipr = Vi — (R, )"Y(Pv), vo€E. (35)
Supposing that all necessary derivativesfoaind v
exist in (a — 2r,a, we may obtain the following The equation35) is equivalent to
expressions for the solution in the first two intervals
(a,a+ 1] and(a+1,a+ 21 Pivey (Vie1—Vi) = —(Py). (36)
Vt+1) =V(t) —v(t—1)+g(V(t)), te(aa+t, In the next section we will apply Newton’s method to

the nonlinear MTFDE4). Equation 86) can be written as

( _
OV —V(t),  te(atrt,ater]. P(V(t) =0, (37)
(31) where
If in first formula of (31) we setg(v) = 2v (which
corresponds td (v(t)) = 0) andr = 1 then we obtain the
results of theorem 1 in27], with a(t) = 1, b(t) = —1, P(v(t)) =V(t) —v(t— 1) — v(t+ 1)+ 2v(t) — f(v(t)),
c(t) =2. (38)
Continuing this process, we can extend the solution toor
any interval, provided that the initial functions in the firs P(v(t)) = V/(t) — f(v(t)) — L*(v(t)), (39)
two intervals with lenghtr are smooth enough functions
and satisfy some simple relationships. wit
L*v(t) = v(t — 1) + v(t+ 1) — 2v(t). (40)
Applying the Frchet derivative to operatBrdefined
When we consider a nonlinear problem, we often
transform it into a sequence of linear problems. This P/(v(t)).u(t) = u'(t) — fl.u(t) — L*(u(t)). (41)
process can be done using iterative schemes like the
Newton's method. Writing the formula 86) in the case where® is

When applying the Newton's method to a functional defined by 89) andP’ is defined by 41) with Newton’s
equation, it is usual to apply the concept of Frchetmethod applied to the equatior8%) we obtain the
derivative of a certain nonlinear operator. following formula for Newton iterative process:

Defin_ition 3llLet E and B be two normed spaces qnd

consider an operator PV ¢ & - Bz, V open set. PIS (v, () ~vi(t)) — i,.(via(t) ~ (1) L (viea(t) ~vi(t))
Frchet differentiable at ve V if exists an operator :—(v-’(t)—f(vi(t))'— L*(vi(1))).

F € L(E1,Ep) such as ! (42)

Equation 42) can also be written as
lim  [[P(v+h)—Pv—Fh[, q 2

IHlle, =0 IHe,

=0, (32)

Viea(t) = £ (Vs (t) = wi(0) — L (Ma (1)) = F(vi(t))(43)
where LE;,Ey) represents the set of all linear and ]
continuous operators which apply; En E; and ||-|| the Or, in a more compact form,
norm in space E.

When operator F exists, it represents the Frchet
derivative and F= P, Py Viea(t) = f(vi(t)) — fvi(b). (44)
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4 Numerical Scheme

The asymptotic analysis of the solutions (as> 4)
allows us to transfer the boundary conditions and to

reduce the present problem to an equivalent problem on a

finite interval [-L — 1,L + 1], whereL is a sufficiently
large number. Instead of modeB){(4) we propose a
boundary value problem op-L,L], with the boundary
conditions given af—L — 7,—L] and[L,L + 1], for some
positive large enough integdr. Using the asymptotic
properties of the solutions, for large values (f,
formulae (L8) and @5), we obtain approximations of the
solution on certain intervals-L — 7, —L] and[L,L + 1].

Hence, instead of solving equatiod) (on the entire
real line, we will solve it fort € [-L,L]; in this case
boundary conditions3) are replaced by

{V(t) = @(t),
v(t) = @l(t),

te[-L—r1,-L],
telL,L+1], (45)
where@ and ¢, correspond to the truncated forms of the
asymptotic formulae given byL8) and @5) respectively.

Moreover, we recall that the needed solution must
satisfy the condition@).

We shall now describe a numerical scheme to solve
problem @)-(4) with condition @), where this problem is
first reduced to the formdj with conditions 6) and @5).

A feature of proposed algorithm, which makes it
substantially different from the methods developed
previously in [L, 6] is that it is built in two stages:

1.Compute the shift and define the asymptotic behavior
of the solution a$ < —L andt > L.

2.With the estimate of we can solve numerically the
problem @) with conditions ¢) and @5) using the
Newton’s method, described i8, and solving each
linear iterate by the collocation method.

1 First stage

(a)In order to compute the solution on interjralL —
7,—L], we must fix a certain initial value farand
solve the characteristic equatidiv]. Note that we
imposel = K1, whereK is an integer.

(b)Knowing the characteristic valués. andA_ we
compute the approximate solution at
[-L —1,—L], using formulae18) and (9), and at
[L,L 4+ 7], using the asymptotic expansio25
and @6). Moreover, we can compute the firkt

(c)Using the estimated values ofand its firstK

derivatives at—L — 7 and —L, we compute the
solution values/(—L + 1), v(—L +21), ..., v(0),
recursively, using formula3Q). Then, we compute
¢ from the condition §).

(d)In the same way, we compute the values of

v(L—1),v(L—21),...,Vv(0), starting the values of
vand itskK derivatives at/(L + 1) andv(L). In this
case, we have to apply the formula30f
backwards. The correct value ef is determined
from the condition that®).

(e)Finally, we have to compute the value @ffrom

the condition

lim V(1) = lim V(t
t—l>m0+ v " t—>(0)_ (46)

(differentiability of the solution at = 0). The left
and the right-hand sides limits of, att = 0, are
computed using again formuld@), from —L to O
and fromL to O, respectively. More precisely,
differentiating both sides of3Q), we obtain a
recursive formula that can be used to compute the
derivative ofv.

(HAt the end of this process, we know that the values

of 7, € ande, as well as the values of the solution
and its first derivative at= —L,t = —L+1,....

2.Second stage:

(a)Here we must solve the problem),( (45), for a

known value oft, using the Newton's method.
With this purpose, we must solve a sequence of
linear equations of the form4g), using the
collocation method derived in1B, 29]. In each
iterate @3) we search a solution which satisfies
boundary conditions4®). Note that equatior4)
correspond to the non-autonomous linear equation
consideredin3.

(b)When computing the first iteratiwe(t), for the test

problem (wheref is given by 7)), we take as/g
the function 28).

(c)Then, we compute a sequence of iteratgd),

Va(t),...,vn(t), until the following condition is
satisfied
[[Vn(t) = Va1 (B)[| <tol, (47)

wheretol is a small enough positive constant.

(d)Since the exact solution for the test problem is

known we can compare the numerical results with
the exact ones.

5 Numerical Results

derivatives of solution (wherk = %), which will In this section, we present and discuss some numerical
be needed to apply the method of steps. In order taresults which illustrate the performance of the numerical
compute these values we must fix certain initial scheme proposed in the previous section, for the solution
guesses fog ande,.. of (3)-(4).
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First, the algorithm is tested using a problem with Table 3: Test Problem8 = 0.35,K = 2 andK = 3. N: number
known solution, the test problen®T), where we take of subintervals. Convergence order estima#nd absolute error
f = fo. We analyze both the convergence of the methodf ("0"M-2)-

and the accuracy of the obtained results. K=2L~204 | K=3 L~272

N £ p £ p
8 1.52x 8 2.83x 7
16 | 348x9 213 | 1.08x~7 140
32 | 325x 10 207 | 3.05x8 182
64 | 1.99x 10 205 7.95x° 1.94
128 | 4.89x 11 204 | 2.02x° 1.98

5.1 Test Problem

In Table1, we present different iterates of the numerical
solution for the test problem described in secti®i3,
taking 8 = 0.35, fort = —1.2 andt = —0.2. Once the
exact solution hag = 0.680136, the initial value taken
for T wast = 0.680. The initial guess, in iterative Newton
process, is given by(ct), where is computed by2g) or
(29) andc is a certain constant.

The results are accurate and the estimates of
convergence orderp, using 2-norm, agree with the
expected valuep = 2, taking into account the analysis of
the linear case (see Section 2 it8]). The absolute error
Table 1: Test Problem: Sequential solution iterates by Newton's of the numerical solution is about.89 x 101! and

method for test problem. Tolerandel = 10°6. 6 =0.35,t=  2.02x 10~ whenL is close to 2 and Z respectively
-12,t=-02. (K=2,3)andN = 128.
t—-12 t——02
Solution Absolute erro Solution Absolute error
exact | 0.083172696 0401312340
fter 1| 0075474  770x 103 | 0456799  555x10 2
iter.2 | 00831057  69x105 | 0410576  926x10°3 5.2 Target Problem

iter. 3 | 0.0831710 170x 1076 0.402767 145x 1073
iter. 4 | 0.0831712 149x 1076 0.401300 123x 1073

f —6 6 - .
e e e | oo B Table4 presents the number of Newton iterates until the

iter. 7 | 00831726  965x 108 | 0401312  340x 10-7 process stops for each value af in the continuation
method, taking the tolerance parametal = 107°.
Taking into account the number of iterates, the process

. ) seems to behave correctly in the sense of convergence.
The iterative process seems to be convergent when

compared with the exact value of solution. The estimated
value of T = 0.680136 has an absolute error of

2.7037x 1077, o Table 4: Target Problema = 0.05,b = 15,N =51,N =81.a =
Thevalues oty att = —L+ir,i=1.2,....,7andK = 0,0.2,04,..., 1. Number of iterations; of the Newton method.
3 are given in Tabl€. Again, the computed values have g N=50 N=8
reasonable accuracy. 0 8 )
0.2 9 8
0.4 10 9
Table 2: Test Problem: Solution estimatgsand absolute error 82 g ;
gatt=—-L+it,i=12...,7,K=3,6 =0.35. 1'0 - 6

i Vi =Vv(—L+i1) &
1.66131563< 10 2 | 1.3644x 10/
6.17718700< 1072 | 6.0553x 10~8
2.04195990< 101 | 1.0833x 10~/
0.5 0
7.95803735¢< 1071 | 1.6635x 10~/
0.3822820% 1071 | 1.3958x 10~/
0.83387041x 1071 | 6.0923x 10°8

Figure 4 represents the graphics of numerical
solutions on [-2,2] obtained by continuation, for
a =0,0.2,04,....1. The casex = 0 corresponds to the
numerical solution of the target probleng = 1
corresponds to the numerical solution of the test problem.
In the test problem we usg = 0.35. The target problem
was considered witlfarget given by 6), a= 0.05,b = 15.

In Table 3 we present the estimates of convergenceWhena decreases from one to zero, the curves became
order p = logz&n /10026y and the absolute error of the more stiff. Also, at the neighborhood bof= 0, the slope
numerical solutiorey, considering the test problem with becomes greater and the graphics approaches to vertical.
6 =0.35. Notice that in all graphics we haw¢0) = 0.5.
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Target problem
solution (a=0)

N

0.5

Fig. 4: Numerical approximatioriy using approximation methotl = 81,a=0.05,b=15,a =0,0.2,0.4,...,1.
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