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1 Introduction

Inequalities continue to play an essential role in
mathematics. The subject is perhaps the last field that is
comprehended and used by mathematicians that work in
all the areas of that noble science. Since the seminal work
inequalities [13] of Hardy, Littlewood and Polya
mathematicians have labored to extend and sharpen the
earlier classical inequalities. New inequalities are
discovered every year, some for their intrinsic interest
whilst others flow from results obtained in various
branches of mathematics. The study of inequalities
reflects the many and various aspects of mathematics.
There is, on the one hand, the systematic search for the
basic principles and the study of inequalities for their own
sake. On the other hand, there are many applications in a
wide variety of fields from mathematical physics to
biology and economics. In this article we will present the
counterparts forstrongly reciprocally convex functionsof
two well-known inequalities: those known as Ostrowski
and Simpson (inequalities).

In 1938, Alexander Markovich Ostrowski (see [26])
proved the following integral inequality (1). Ostrowski
considered the problem of estimating the deviation of a
function from its integral mean. To be precise, for any
continuous function f on [a,b] ⊆ R which is
differentiable on (a,b) and with the property that

| f ′(x)| ≤ M for all x∈ (a,b), the inequality
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∣

∣

f (x)−
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a
f (x)dx

∣
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1
4
+

(

x− a+b
2

)2

(b−a)2






(b−a)M, (1)

holds for everyx ∈ (a,b). The constant
1
4

is the best

possible in the sense that it cannot be replaced by a
smaller constant. The inequality (1) is well known in the
literature as the Ostrowski inequality. Recently, several
generalizations of the Ostrowski inequality for mappings
of bounded variation and for Lipschitzian, monotonic,
absolutely continuous and n-times differentiable
mappings, with error estimates for some special means
and for some numerical quadrature rules, have been
considered by many authors.

Many researchers have given considerable attention to
the inequality (1) and several generalizations, extensions
and related results have appeared in the literature. For
some results which generalize, improve, and extend the
above inequality, see [9,1,3,5,10,11,23].

One of the two goal of this paper is to establish an
Ostrowski type inequality for strongly reciprocally convex
functions.

One of the fundamental results in numerical
integration is the Simpson’s inequality which states:

∗ Corresponding author e-mail:mireyabracamonte@ucla.edu.ve

c© 2017 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/110505


1280 M. Bracamonte et al.: Ostrowski and simpson type inequalities...

Theorem 1([34]). Let f : [a,b] → R be a four times
continuously differentiable mapping on(a,b) with
‖ f (4)‖∞ := sup

x∈(a,b)
| f (4)(x)| < ∞. Then the following

inequality holds:
∣

∣

∣

∣

1
3

[

f (a)+ f (b)
2

+2 f

(

a+b
2

)]

−
1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
1

2880
‖ f (4)‖∞(b−a)4. (2)

This inequality gives an error bound for the classical
Simpson quadrature formula, which is one of the most
used quadrature formulae in practical applications. It is
well known that if the functionf is neither four times
differentiable nor its fourth derivative is bounded on
(a,b), then we cannot apply the classical Simpson
quadrature formula.

For recent results and generalizations concerning
Simpson’s inequality see [2,7,8,11,6,12,15,20,21,31,
32,36,35,27,28] and the references therein.

Another goal of this paper is to establish a Simpson-
type inequality for strongly reciprocally convex functions.

The setup of this paper is as follows. In section2 we
review the necessary background on strongly convex
functions and on strongly reciprocally convex function.
Next, in section 3 we prove our main results.

2 Preliminaries

Convexity is one of the most natural, fundamental, and
important notions in mathematics whose applications go
down to the times of Archimedes (Circa 287 B.D.).
Convex functions were introduced by J. L. W. V. Jensen
over 100 years ago and since then they have been a
subject of intensive investigations. In recent years several
extensions and generalizations have been given for this
classical notion.

A function f : [a,b] ⊆ R → R is said to be convex if
whenever x,y ∈ [a,b] and t ∈ [0,1], the following
inequality holds:

f (tx+(1− t)y)≤ t f (x)+ (1− t) f (y).

A significant generalization of the notion of convex
functions is that of Strongly convex function introduced
by B. Polyak in [29].

Definition 1(See [14,22,29,30]). Let I be a interval ofR
and let c> 0. A function f: I →R is called strongly convex
with modulus c if

f (tx+(1− t)y)≤ t f (x)+ (1− t) f (y)− ct(1− t)(x−y)2(3)

for all x,y∈ I and t∈ [0,1].

The usual notion of convex function correspond to the case
c= 0. The followings facts are well known (see e.g. [30]):
If f is strongly convex, then it is bounded from below, its
level sets{x ∈ I : f (x) ≤ λ} are bounded for eachλ and

f has a unique minimum on every closed subinterval of
I ([24, p. 268]). Any strongly convex function defined on
a real interval admits a quadratic support at every interior
point of its domain.

Strongly convex functions play an important role in
optimization theory and mathematical economics. The
notion of strongly convex function is of great use in
optimization problems, as it can significantly increase the
rate of convergence of first-order methods such as
projected subgradient descent [18], or more generally the
forward-backward algorithm [5, Example 27.12].

The following result states the relation between convex
and strongly convex functions.

Theorem 2([25]). Let D be a convex subset ofR and let
c be a positive constant. A function f: D → R is strongly
convex with modulus c if and only if the function g(x) =
f (x)− cx2 is convex.

In [33], E. Set et al. proved the following result on
Ostrowski’s type inequality for strongly-convex
functions.

Theorem 3.Let f : I ⊆R→R be a differentiable mapping
on I◦ such that f′ ∈ L[a,b], where a,b∈ I with a< b. If |g′|
is strongly-convex on[a,b] with respect to c> 0, | f ′| ≤ M

and M≥ max

{

c(x−a)2

6
,
c(b− x)2

6

}

, then the following

inequality holds;
∣

∣

∣

∣

f (x)−
1
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∫ b

a
f (u)du

∣

∣

∣

∣

≤
(x−a)2

2(b−a)

(

M−
c(x−a)2

6

)

+
(b−x)2

2(b−a)

(

M−
c(b−x)2

6

)

,

for all x,y∈ [a,b] and t∈ (0,1).

Given to numbersx,y in an intervalI ⊂ R\{0} the
quantity

xy
tx+(1− t)y

is known as the harmonic mean ofx andy. Recently, in
[17], Işcan introduced the notion of harmonically convex
function, which is defined as follows.

Definition 2.Let I ⊆ R\{0} be a real interval. A function
f : I →R is said to be harmonically convex, if

f

(

xy
tx+(1− t)y

)

≤ t f (y)+ (1− t) f (x)

for all x,y∈ I and t∈ (0,1).

In [4], we introduced the notion of strongly
reciprocally convex function:

Definition 3.Let I be an interval inR \ {0} and let
c ∈ (0,∞). A function f : I → R is said to bestrongly
reciprocally convexwith modulus c on I, if the inequality

f

(

xy
tx+(1− t)y

)

≤ t f (y)+(1− t) f (x)−ct(1− t)

(

1
x
−

1
y

)2

,(4)

holds, for all x,y∈ I and t∈ [0,1].
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The symbol SRC(I ,c) will denote the class of functions
that satisfy the inequality (4). We obtained the following
properties for this kind of functions:

Theorem 4.Let f,g : I ⊂R\{0}→R be two functions and
let c1,c2,k∈ R+. Then

1.If f ∈SRC(I ,c1) and g∈ SRC(I ,c2), then
f +g∈ SRC(I ,c1+c2)∩SRC(I ,c1)∩SRC(I ,c2),

2.If f ∈SRC(I ,c), then k f∈ SRC(I ,kc). In addition, if
k≥ 1, then k f∈SRC(I ,c).

Moreover, in [4], we also obtained the following
complete characterization:

Theorem 5.Let I ⊂ R\{0} be a real interval and
c∈ (0,∞).

1.If f ∈SRC(I ,c), then f es harmonically convex.
2. f ∈SRC(I ,c) if and only if the function g: I →R, defined

by g(x) := f (x)−
c
x2 es harmonically convex.

3.If f ∈SRC(I ,c), then the functionϕ = f + ε ∈SRC(I ,c),
for any constantsε. If f : [a,b] ⊂ R \ {0}→ R and if

we consider the function g:

[

1
b
,
1
a

]

→ R, defined by

g(t) := f

(

1
t

)

, then f∈SRC([a,b],c) if and only if g is

strongly convex in

[

1
b
,
1
a

]

.

3 Main results

In this section, we derive our main results. We establish
some inequalities of Ostrowski and Simpson type for
strongly reciprocally convex functions.

Ostrowski type inequalities

For the reader’s convenience, we recall here the
definitions of hypergeometric functions that are employed
in the following discussion.

Definition 4([19]). For the real or complex numbers a,b,c
other than0,−1,−2, ..., the hypergeometric series of a,b
and c is defined by

2F1(a,b;c;z) = 1+
a ·b
c

·
z
1!

+
a(a+1)b(b+1)

c(c+1)
·
z2

2!
+ · · ·

=
∞

∑
m=0

(a)m(b)m

(c)m
·

zm

m!
.

Here,(α)m :=

{

1 m= 0
α(α +1) · · ·(α +m−1), m> 0, which

has the integral form:

2F1(a,b;c;z) =
1

β (b,c−b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt,

where |z| < 1, c > b > 0 and

β (x,y) :=
Γ (x)Γ (y)
Γ (x+ y)

=

∫ 1

0
tx−1(1− t)y−1dt.

We will need the following lemma, whose proof can
be found in [18].

Lemma 1([18]). Let f : I ⊂ R \ {0} → R be a
differentiable function on I◦ and a,b ∈ I, with a < b. If
f ′ ∈ L[a,b], then

f (x)−
ab

b−a

∫ b

a

f (u)

u2 du

=
ab

b−a

{

(x−a)2
∫ 1

0

t

(ta+(1− t)x)2
f ′
(

ax
at+(1− t)x

)

dt

−(b−x)2
∫ 1

0

t

(tb+(1− t)x)2
f ′
(

bx
bt+(1− t)x

)

dt

}

.

Theorem 6.Let I⊂ (0,∞) be an real interval and f: I →R

be a differentiable function on I◦. Suppose that a,b ∈ I◦

with a< b, and that f′ ∈ L[a,b]. If | f ′|q ∈ SRC([a,b],c) for
q≥ 1, then for all x∈ [a,b], we have
∣

∣

∣

∣

f (x)−
ab

b−a

∫ b

a

f (u)

u2 du

∣

∣

∣

∣

≤
ab

b−a

{

(x−a)2
[

λ1(a,x,q,q)| f
′(x)|q+λ2(a,x,q,q)| f

′(a)|q

−c

(

1
a
−

1
x

)2

λ3(a,x,q,q)

]
1
q

+(b−x)2
[

λ4(b,x,q,q)| f
′(x)|q+λ5(b,x,q,q)| f

′(b)|q

−c

(

1
x
−

1
b

)2

λ6(a,x,q,q)

] 1
q







,

where

λ1(a,x,ν,ρ) :=
β (ρ +2,1)

x2ν · 2F1

(

2ν,ρ +2;ρ +3;1−
a
x

)

,

λ2(a,x,ν,ρ) :=
β (ρ +1,2)

x2ν · 2F1

(

2ν,ρ +1;ρ +3;1−
a
x

)

,

λ3(a,x,ν,ρ) :=
β (ρ +2,2)

x2ν · 2F1

(

2ν,2;ρ +4;1−
a
x

)

,

λ4(b,x,ν,ρ) :=
β (1,ρ +2)

b2ν · 2F1

(

2ν,1;ρ +3;1−
x
b

)

,

λ5(b,x,ν,ρ) :=
β (2,ρ +1)

b2ν · 2F1

(

2ν,2;ρ +3;1−
x
b

)

,

λ6(b,x,ν,ρ) :=
β (2,ρ +2)

b2ν · 2F1

(

2ν,2;ρ +4;1−
x
b

)

,

Proof.From Lemma1, for all x∈ [a,b] , we have
∣

∣

∣

∣

f (x)−
ab

b−a

∫ b

a

f (u)
u2

∣

∣

∣

∣

=

∣

∣

∣

∣

ab
b−a

{

(x−a)2
∫ 1

0

t
(ta+(1− t)x)2

f ′
(

ax
at+(1− t)x

)

dt

−(b−x)2
∫ 1

0

t
(tb+(1− t)x)2

f ′
(

bx
bt+(1− t)x

)

dt

}∣

∣

∣

∣

,

applying Hölder inequality to the integral on the right side
of the above inequality, we obtain
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≤
ab(x−a)2

b−a

(

∫ 1

0
1dt

)1− 1
q
[

∫ 1

0

(

t
(ta+(1− t)x)2

∣

∣

∣

∣

f ′
(

ax
ta+(1− t)x

)∣

∣

∣

∣

)q

dt

]
1
q

+
ab(b−x)2

b−a

(

∫ 1

0
1dt

)1− 1
q
[

∫ 1

0

(

t
(tb+(1− t)x)2

∣

∣

∣

∣

f ′
(

bx
tb+(1− t)x

)∣

∣

∣

∣

)q

dt

]
1
q

=
ab(x−a)2

b−a

[

∫ 1

0

tq

(ta+(1− t)x)2q

∣

∣

∣

∣

f ′
(

ax
ta+(1− t)x

)∣

∣

∣

∣

q

dt

]
1
q

+
ab(b−x)2

b−a

[

∫ 1

0

tq

(tb+(1− t)x)2q

∣

∣

∣

∣

f ′
(

bx

tb+(1− t)x

)
∣

∣

∣

∣

q

dt

]
1
q

≤
ab(x−a)2

b−a

[

∫ 1

0

tq

(ta+(1− t)x)2q
[t| f ′(x)|q+(1− t)| f ′(a)|q

−ct(1− t)

(

1
a
−

1
x

)2
]

dt

]
1
q

+
ab(b−x)2

b−a

[

∫ 1

0

tq

(tb+(1− t)x)2q
[t| f ′(x)|q+(1− t)| f ′(b)|q

−ct(1− t)

(

1
b
−

1
x

)2
] 1

q


 . (5)

Thus, by simple calculations, we have:

λ1(a,x,q,q) =
∫ 1

0

tq+1

(ta+(1− t))2q dt

=
β (q+2,1)

x2q .2F1

(

2q,q+2;q+3;1−
a
x

)

,

λ2(a,x,q,q) =
∫ 1

0

tq(1− t)

(ta+(1− t))2q dt

=
β (q+1,2)

x2q .2F1

(

2q,q+1;q+3;1−
a
x

)

,

λ3(a,x,q,q) =
∫ 1

0

tqt(1− t)

(ta+(1− t))2q dt

=
β (q+2,2)

x2q .2F1

(

2q,q+2;q+4;1−
a
x

)

,

λ4(b,x,q,q) =
∫ 1

0

tq+1

(tb+(1− t))2q dt

=
β (1,q+2)

b2q .2F1

(

2q,1;q+3;1−
x
b

)

,

λ5(b,x,q,q) =
∫ 1

0

tq(1− t)

(tb+(1− t))2q dt

=
β (2,q+1)

b2q .2F1

(

2q,2;q+3;1−
x
b

)

,

λ6(b,x,q,q) =
∫ 1

0

tqt(1− t)

(tb+(1− t))2q dt

=
β (2,q+2)

b2q .2F1

(

2q,2;q+4;1−
x
b

)

.

Substituting these values into the inequality (5), we
obtain the desired result. This completes the proof.

Simpson type inequality

The following facts have been greatly motivated by the
important work of Işcan [16]. The purpose of this
subsection is to give an inequality of Simpson type for
strongly reciprocally convex functions.

In order to prove our main results we need the
following lemma.

Lemma 2.Let f : I ⊂ R\{0} → R be a differentiable
function on I◦ and a,b∈ I with a< b. If f ′ ∈ L[a,b] then
for λ ∈ [0,1]:

(1−λ ) f

(

2ab
a+b

)

+λ
(

f (a)+ f (b)
2

)

−
ab

b−a

∫ b

a

f (x)
x2 dx

=
ab(b−a)

2

[

∫ 1
2

0

λ −2t

A2
t

f ′
(

ab
At

)

dt+
∫ 1

1
2

2−λ −2t

A2
t

f ′
(

ab
At

)

dt

]

, (6)

where At = tb+(1− t)a.

The proof of this lemma can be found in [16].

Now using Lemma2 we prove the second main result
of this paper.

Theorem 7.Let f : I ⊂ (0,∞) → R be a differentiable
function on I◦, a,b ∈ I with a < b, and suppose that
f ′ ∈ L[a,b]. If | f ′|q ∈SRC([a,b],c) for q ≥ 1 then the
following inequality holds forλ ∈ [0,1]:

∣

∣

∣

∣

(1−λ ) f

(

2ab
a+b

)

+λ
(

f (a)+ f (b)
2

)

−
ab

b−a

∫ b

a

f (x)
x2

dx

∣

∣

∣

∣

≤
ab(b−a)

2

{

C
1− 1

q
1 (λ ;a,b) [C2(λ ;a,b)| f ′(a)|q+C3(λ ;a,b)| f ′(b)|q

−c

(

1
a
−

1
b

)2

C4(λ ;a,b)

]
1
q

+ C
1− 1

q
1 (λ ;b,a) [C3(λ ;b,a)| f ′(a)|q+C2(λ ;b,a)| f ′(b)|q

−c

(

1
a
−

1
b

)2

C4(λ ;b,a)

]
1
q






, (7)

where

C1(λ ;u,ν) :=
1

(ν −u)2

[

−4+
[λ (ν −u)+2u](3u+ν)

u(u+ν)
+2ln

(

2u(u+ν)
[λ (ν −u)+2u]2

)]

,

C2(λ ;u,ν) :=
1

(ν −u)3

[

[λ (ν −u)+4u] ln

(

[λ (ν −u)+2u]2

2u(u+ν)

)

−
[λ (ν −u)+2u](5u+3ν)

u+ν
+7u+ν

]

,

C3(λ ;u,ν) := C1(λ ;u,ν)−C2(λ ;u,ν),

C4(λ ;u,ν) :=
1

(b−a)4

[

{

λ (b2−a2)+2a(a+2b)
]

ln

(

[λ (b−a)+2a]2

2a(a+b)

)

−
[a2+10ab+5b2][λ (b−a)+2a]

2(a+b)
+

7a2+30ab+3b2

4

−
[λ (b−a)+2a]2

2

}

,

with u,ν > 0.

Proof.Let At = bt+(1− t)a, with t ∈ [0,1]. From Lemma

2 and using the Hölder inequality, forλ ∈ [0,1] and
1
p

:=
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1−
1
q

, we get

∣

∣

∣

∣

(1−λ ) f

(

2ab
a+b

)

+λ
(

f (a)+ f (b)
2

)

−
ab

b−a

∫ b

a

f (x)
x2 dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ab(b−a)
2

[

∫ 1
2

0

λ −2t

A2
t

f ′
(

ab
At

)

dt+
∫ 1

1
2

2−λ −2t

A2
t

f ′
(

ab
At

)

dt

]
∣

∣

∣

∣

∣

≤
ab(b−a)

2

[

∫ 1
2

0

|λ −2t|

A2
t

∣

∣

∣

∣

f ′
(

ab

At

)
∣

∣

∣

∣

dt+
∫ 1

1
2

|2−λ −2t|

A2
t

∣

∣

∣

∣

f ′
(

ab

At

)
∣

∣

∣

∣

dt

]

=
ab(b−a)

2





∫ 1
2

0

(

|λ −2t|

A2
t

)
1
p
(

|λ −2t|

A2
t

)
1
q
∣

∣

∣

∣

f ′
(

ab
At

)
∣

∣

∣

∣

dt

+

∫ 1

1
2

(

|2−λ −2t|

A2
t

)
1
p
(

|2−λ −2t|

A2
t

)
1
q
∣

∣

∣

∣

f ′
(

ab
At

)∣

∣

∣

∣

dt
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∫ 1
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∣

∣

∣
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∣
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1
q
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∫ 1

1
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(

|2−λ −2t|
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t

) 1
p





p

dt





1
p





∫ 1

1
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(

|2−λ −2t|

A2
t

)
1
q
∣

∣

∣

∣

f ′
(

ab
At

)
∣

∣

∣

∣





q

dt





1
q










=
ab(b−a)

2







(

∫ 1
2

0

|λ −2t|

A2
t

dt

)1− 1
q
(

∫ 1
2

0

|λ −2t|

A2
t

∣

∣

∣

∣

f ′
(

ab
At

)∣

∣

∣

∣

q

dt

)
1
q

+

(

∫ 1

1
2

|2−λ −2t|

A2
t

dt

)1− 1
q
(

∫ 1

1
2

|2−λ −2t|

A2
t

∣

∣

∣

∣

f ′
(

ab
At

)∣

∣

∣

∣

q

dt

)
1
q






≤
ab(b−a)
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(

∫ 1
2

0

|λ −2t|

A2
t

dt

)1− 1
q

(

∫ 1
2

0

|λ −2t|

A2
t

[

t| f ′(a)|q+(1− t)| f ′(b)|q−ct(1− t)

(

1
a
−

1
b

)2
]

dt

)
1
q

+

(

∫ 1

1
2

|2−λ −2t|

A2
t

dt

)1− 1
q

×

(

∫ 1

1
2

|2−λ −2t|

A2
t

[

t| f ′(a)|q+(1− t)| f ′(b)|q−ct(1− t)

(

1
a
−

1
b

)2
]

dt

)
1
q






.

(7) holds when we make the choice

C1(λ ;a,b) =
∫ 1

2

0

|λ −2t|

A2
t

dt =
∫ λ

2

0

λ −2t

[bt+(1− t)a]2
dt

C2(λ ;a,b) =
∫ 1

2

0

|λ −2t|t

A2
t

dt,

C3(λ ;a,b) =
∫ 1

2

0

|λ −2t|(1− t)

A2
t

dt, y

C4(λ ;a,b) =
∫ 1

2

0

|λ −2t|t(1− t)

A2
t

dt.

Now it can easily be shown that

C1(λ ;a,b) =
1

(b−a)2

[

−4+
[λ (b−a)+2a](3a+b)

a(a+b)

+2ln

(

2a(a+b)

[λ (b−a)+2a]2

)]

,

C2(λ ;a,b) =
1

(b−a)3

{

[λ (b−a)+4a] ln

(

[λ (b−a)+2a]2

2a(a+b)

)

−
[λ (b−a)+2a](5a+3b)

a+b
+7a+b

}

,

C3(λ ;a,b) =C1(λ ;a,b)−C2(λ ;a,b).
Similarly,

C4(λ ;a,b) =

∫ 1
2

0

|λ −2t|t(1− t)

A2
t

dt =
∫ 1

2

0

[

|λ −2t|t

A2
t

−
|λ −2t|t2

A2
t

]

dt.

=
1

(b−a)4

[

{

λ (b2−a2)+2a(a+2b)
]

ln

(

[λ (b−a)+2a]2

2a(a+b)

)

−
[a2+10ab+5b2][λ (b−a)+2a]

2(a+b)
+

7a2+30ab+3b2

4

−
[λ (b−a)+2a]2

2

}

.

This concludes the proof.

4 Some applications

Corollary 1.With the same hypotheses and notations of
Theorem6, if, in addition,| f ′(x)| ≤ M, x∈ [a,b], then for
all x ∈ [a,b],
∣

∣

∣

∣

f (x)−
ab

b−a

∫ b

a

f (u)

u2 du

∣

∣

∣

∣

≤
ab

b−a

{

(x−a)2 [λ1(a,x,q,q)M
q+λ2(a,x,q,q)M

q

−c

(

1
a
−

1
x

)2

λ3(a,x,q,q)

] 1
q

+(b−x)2 [λ4(b,x,q,q)M
q +λ5(b,x,q,q)M

q

−c

(

1
b
−

1
x

)2

λ6(a,x,q,q)

] 1
q







.

5 Comments

The main contributions of this paper has been establish
some new Ostrowski and Simpson type inequalities for
the class of strongly reciprocally convex functions. We
expect that the ideas and techniques used in this paper
may inspire interested readers in to explore some new
applications of these functions in various fields of pure
and applied sciences.
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