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Abstract: The existing literature in Geometric Function Theory of Qd@ex Analysis contains a considerably large number of
interesting investigations dealing with differential soflination and differential superordination problems doalytic functions in
the unit disk. Nevertheless, only a few of these earlierstigations deal with the above-mentioned problems in thEeupalf-plane.
The notion of differential subordination in the upper haléne was introduced by Raducanu and Pascdéh For a setQ in the
complex planeC, let the functionp(z) be analytic in the upper half-plaZegiven by

A={z:zeC and 0O(z) >0}

and suppose thaji : C3 x A — C. The main object of this article is to consider the problerdetermining properties of functionxz)
that satisfy the following differential superordination:

Qc{y(p2.p(2),p"(2);2) :zeA}.

We also present several applications of the results denivélus article to differential subordination and diffetih superordination
for analytic functions im.

Keywords: Analytic functions; Univalent functions; Starlike funeotis; Convex functions; Upper half-plane; Differential
subordination; Differential superordination; Admissilfinctions.

1 Introduction Also let.#[A] denote the class of all functions i’ [A]
which are univalent inA. Various basic properties
Let A denote the upper half-plane, that is, concerning functions belonging to the clag§A] were
developed in a series of articles (see, for detalld],[21]
A={z:zeC and 0O(z) >0}, and p2)).

A function f € s[A], with f(z) # 0, is said to be

and letsZ[A] denote the class of functiors: A — C starlike in if and only if

which are analytic inrA and which satisfy the so-called
hydrodynamic normalization (se&][[15] and [2Q])

lim [f(z)—7=0. D(f/(z)><0 (ze A).

A>z—00 f(2)
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We denote by *[A] the subclass of#’[A] consisting of ~ whenever
functions which are starlike iMA. We note that, the r=q(), s=kq(&)
functions in the class”*[A] have the property @ f(A).
A function f € JZ[A], with f(z) #zandf’(z) #0, is
said to be convex id if and only if "
9/~ q) )
whereze A, & € A\ E(q) andk = 0.

D(]::((ZZD >0 (ze ).

We denote by [A] the subclass of#’[A] consisting of 2 N
functions which are convex id. The classes”*[A] and It Y:C x4~ C, then the above admissibility
#A] were introduced by Stankiewic2(. condition reduces to the following form:

We first need to recall the notion of subordination in w(Q(E)’kd(E);Z) ¢ Q,
the upper half-plane. whereze A, & € 0A\ E(q) andk = 0.

Let f and g be members of the class’[A]. The

function f is said to be subordinate tp or g is said to be Theorem 1(see 1L6]). Lety € 44(Q,q and pe H#[A]. If

superordinate td, if there exists a functiog € J7[4], / 1N
i B8] CA. such that W(p@.P@.p (20 eQ  (ze4),
f(2=9(¢(2) (ze4). then
In such a case, we write pP(2) <q(2  (zed).
f<g or f(z2<49(2 (ze ). In this sequel to the recent pape4], we follow the

theory of differential superordinations in the unit disk,
Furthermore, if the functiog is univalent inA, then we  which was introduced by Miller and Mocand4], and
have the following equivalencef([16]): consider the dual problem of determining properties of
functions p that satisfy the following differential
f@ <92 (zed) = f(4)cgd) superordination:

Let Q be any set in the complex plarig Also let p , P
be analytic inA and suppose thay : C3x A — C. Q c{u(p@),P(2,p"(2);2) : z€ A}.
Raducanu and Pasculf] extended the theory of
differential subordination to the upper half-plane by gsin
methods similar to those used in the unit disk introduced
by Miller and Mocanu 13]. They determined properties
ngfgrréi(i:ggggn? that satisfy the following differential oc {w(p(z),p’(z),p”(z);z) :zeA}

{W(p2,P(2,p"(2);2) :ze b} C Q. . . o
] o where X is any set inC. The results presented in this
We will now recall some definitions and a theorem, naner would provide improvements and generalizations of

In other words, we determine the conditions@n> and
Y for which the following implication holds true:

=3 C p(4), (1.1)

which are required in our present investigation. these in the aforementioned woiz4.
Definition 1 (see [L3, p. 403, Definition 8.3i]). Denpte by If either Q or 5 is a simply-connected domain, then
2(4) the set of functiong| € #’[A] that are analytic and (1 1) can be rephrased in terms of superordinatiop.itf
injective onA \ E(q), where univalentinA, and if < is a simply-connected domain with
> # C, then there is a conformal mappiggf A onto >
E(q) = {g €A :limq(z) = 00}7 such thag(0) = p(0). In this case, (1.1) can be rewritten
¢ as follows:

and are such thaf (&) # 0for & € A\ E(q).

Definition 2 (see [L6]). Let Q be a set inC and Qc{y(p2),0(2),p"(2);2) :ze A}

g€ 2(A). The class of admissible functiorig[Q,q] = q(@9=<p@ (z€l). 1.2)
consists of those functiong : C3 x A — C that satisfy ) ] o
the following admissibility condition: If Q is also a simply-connected domain with# C,
then there is a conformal mappimgof A onto Q such
Yrst;z) ¢ Q that h(0) = y(p(0),0,0;0). In addition, if the function
(@© 2017 NSP
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Y(p(2), P (2),0"(2);2) is univalentinA, then (1.2) can be  such that
rewritten as follows:
() a(z) = p(éo),

h(z2) <y(p(2),p'(2),p"(2:2)  (z€4d) (i) q(4o) C p(4), where
= 4@ =<p@ (z€ ). Ay, ={z:zeC and 0(2) > Yo},

There are three key ingredients in the implication

relationship (1.2): the differential operatgr, the setQ

and thedominatingfunction g. If two of these entities iy v -m

were given, one would hope to find conditions on the (i) o'(z) Héo)

third entity so that (1.2) would be satisfied. In this article 5.4

we start with a given se® and a given function, and we

then determine a set of “admissible” operatgrso that ) q"(z0) p”(&o)
(1.2) holds true. (iv) D( /(20)) > n? D{ 7 (20) }

We first introduce the following definition.
2 A Class of Admissible Functions and a

Definition 3. Let ¢ : C3 x A — C and the functiorh be Fundamental Result

analytic in A. If the functions p and
Y(p(2),p(2),p"(2);2) are univalent inA and satisfy the

following (second-order) differential superordination: In this section, we first define the class of admissible

functions referred to in the preceding section.

/ /! .
h@) < w(p@).P (2),p"(2:2) (ze4), (1.3) Definition 4. Let Q be a set inC andq € s [A] with
then p is called a solution of the differential d(2) # 0. The class of admissible function (2, ]

superordination. An analytic functiom is called a Consists of those functiong given by : C3 x4 — C
subordinant of the solution of the differential that satisfy the following admissibility condition:
superordination or, more simply, a subordinangik p

for p satisfying (1.3). A univalent subordinarf that Y(rstf) e
satisfies the following condition: whenever
_ —q. s- 90
92 <q(»  (ze4) — 4% T m

for all subordinantsg of (1.3) is said to be the best and
subordinant. We note that the best subordinant is unique t 1 q'(2)
up to a rotation ofA. ( ) g ( ) ,
q(@) = n?
For Q a set inC, with ¢y and p as given in Definition ~ whereze A, £ € A andm> 0.
3, we suppose that (1.3) is replaced by

. B If :C?xA — C, then the admissible condition (2.1)
Qc{y(p(2),p(2),p"(2);2) :zeA}. reduces to following form:

Although this more general situation is a “differential
containment”, yet we also refer to it as a differential ¢ {a@),
superordination, and the definitions of solution,
subordinant and best subordinant as given above can be The next theorem is a foundation result in the theory
extended to this more general case (see also the recenf the first-order and the second-order differential
works [8] and [12]). superordinations id.

;E)eQ (zeA; E€0A; m>0).

We will use the following lemmal[3, p. 405, Lemma Theorem 2.Lety € ¥;[Q,q] and qe 7 [A]. If pe 2(A)
8.3k] from the theory of differential subordinationsdn  andy/(p(2),p'(2), p”(2);2) is univalentinA, then
to determine subordinants of the differential
superordinations id. Qc{y(p(2),0(2.p"(2;2) :ze A} (2.2)

Lemma (see [L3)). Let qe #[A] and pe 2(A). lf qis  implies that
not subordinate to p, then there exist points
20 = Xo+iyo € A and & € dA \ E(p), and an m> 0, a2 <p(2  (zel).
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Proof. Suppose that In the next two sections, by making use of the
differential subordination results of Raducanu and Pascu
q(2) A p(2) (ze A). [16] in the upper half-planeA and the differential

Then, by the above Lemma, there exist pomts= Xg +
iyo € A andép € dA \ E(p), and anm > 0. that satisfy

the conditions (i) to (iv) of the above Lemma. Using these jnyestigate

conditions withr = p(&), s= p'(&o), t = p”(&) and& =
&o in Definition 4, we obtain

W(p(&o), P (&), P"(&0); &0) € Q,
which contradicts (2.2), so we have

9z <p(@)  (ze4d).

In the special case whe® = C is a simply-connected
domain andh is a conformal mapping off onto Q, we
denote this clas¥/;[h(A),q] by ¥ [h,q]. The following
result is an immediate consequence of Theorem 2.

Theorem 3. Let qe #[A]. Also let the function h be
analytic inA and suppose thap € ¥, [h,q]. If p € 2(4)
andy(p(2),p'(2), p"(2);2) is univalentinA, then

h(z) < ¢ (p(2),P (2, 0" (2):2)

implies that

(zed) (23

Az <p(@)  (z€d).

superordination results iA obtained in Section 2 (see,
for details, Theorems 2, 3 and 4), we determine certain
appropriate classes of admissible functions and
some differential subordination and
differential superordination properties of analytic
functions inA. It should be remarked in passing that, in
recent years, several authors obtained many interesting
results associated with differential subordination and
differential superordination in the unit disk. The
interested reader may refer to several earlier works
including (for example)?] to [10], [17], [18], [19], [23],

[29 to [27], [29 and [3(] (see also 28 for some
applications of differential subordination anstrong
differential subordination in Probability Theory).

3 A Useful Set of Subordination Results

We first define the following class of admissible functions
that are required in proving our first result.

Definition 5. Let Q be a set inC and letq e 2(A). The
class®,[Q,q of admissible functions consists of those
functions @ : C3 x A — C that satisfy the following
admissibility condition:

Theorems 2 and 3 can only be used to obtain thewhenever

subordinants of the differential superordination of the

form (2.2) or (2.3).

Theorem 4. Let the function h be analytic id and let

o(u,v,w;2) ¢ Q
u=a@). v="98 (@@ 20).

Y : C3x A — C. Suppose that the following differential and

equation

¥(a(2).9(2).9"(2):2) =h(z)
has a solution gc 2(4). If

W e Y¥lh,q,

(2.4)

pe2(4)

and
¥(p2),0(2).0"(2):2)
is univalent inA, then(2.3) implies that
92 <p(x  (z€4)

and q is the best subordinant.

Proof. Sincey € Y, [h,q], by applying Theorem 3, we

deduce thag is a subordinant of (2.3). Sinag satisfies

u(wv+v4) 2 - (9'(&)
o(*Fm) 20 (7))
(ze A; E € dA\E(q); k=0).

Theorem 5.Let @ € ®5[Q,q], f(2) #0and f(z) #0. If
f € 2[A] satisfies the following condition

(2.4), it is also a solution of the differential A simply calculation yields

superordination (2.3). Therefore, all subordinants o3)2.

will be subordinate ta@. It follows thatq will be the best
subordinant of (2.3).

2 e @ fE["eP-@t"@] @ ).
{"’(f%z)’ 0 7@ TofeP- (@ @] f<z>'z> zespee
(3.1)
then t2)
z
7 <q(2) (ze A).
Proof. Define the functiorp(z) in A by
_f@
p(z) = 72 (ze ). (3.2)
f/ f// /
@ @ _F @ (ze ). (3.3

f @ »@

(@© 2017 NSP
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Further computations show that (ze ), (3.9)
then
(Q"@2-1@"@)] @ ‘@
@[22~ (@) i)~ qa2)  (z€4d).
// /
= p/(z) 2AC) (3.4) Our next result is an extension of Theorem 5 to the
P p@) case when the behavior gfz) ondA is not known.

We now define the transformation fro@? to C by

u(r,s,t) =r, v(r,st) = -
and e
w(r,st) = - r_s . (3.5)
Let
P(r,st;z) = e(u,v,W;2) = @ (r, ?, t r_ssz;z) . (36)

Using equations (3.2) to (3.4), we find from (3.6) that
¥(p(2),0'(2),0"(2);2)

(2 f(
f'(2)

_o( 12 F@ [’ ()]
f'(2) 1(2) @) [[1(

Therefore, (3.1) becomes
¥(p(2),0(2).0"(2);2) € Q.
We easily find from (3.5) that

t = u(wv+V2). (3.8)
Thus, clearly, the admissibility condition fgre ®,[Q, ]

in Definition 5 is equivalent to the admissibility condition
for ¢ as given in Definition 2. Therefore, we hayee
Y4 [Q,q] and, by Theorem 1, we get

p(z)<a(»  (ze4)
or, equivalently,
f(2)
@ " az)  (z€4d),

which evidently completes the proof of Theorem 5.

If Q # C is a simply-connected domain, then
Q = h(A) for some conformal mapping(z) of A onto
Q. In this case, the clas®s[h(4),q] is written (for
convenience) asPalh,g]. The following result is an
immediate consequence of Theorem 5.

Theorem 6.Let ¢ € @, [h,q], f(z) #0and f(z) #0. If

Theorem 7. Let the functions h and q be univalentdh
with g€ 2(A) and set ¢(z) = q(pz) and hp(2) = h(pz).
Suppose also thap : C3 x A — C satisfies one of the
following conditions

(1) @€ @4lh,qp] for somep € (0,1)
or

(2) There existgg € (0,1) such thatp € @4[hy,qp] for
all p € (po,1).

If f € #]A] satisfieq3.9), then
f(2)
f'(2)

Proof. The proof of Theorem 7 is similar to that of a
known result L3, p. 30, Theorem 2.3d] and so we choose
to omit it.

<q(2 (ze ).

Our next theorem yields the best dominant of the
differential subordination (3.9).

Theorem 8. Let the function h be univalent id and let

@: C3x A — C. Suppose that the following differential

equation:

92 d9'(d d(@ )
, — ;2| =h(z

W@ d2 az') "

has a solution (g) and satisfies one of the following
conditions:

(3.10)

@ (Q(z),

(1) g€ 2(4) andg € du[h,q],

(2) q is univalent inA and @ € ®,[h,qp] for some
pe(0,1)

or

(3) g is univalent inA and there existgg € (0,1) such
thatg € ®a[hp,qp] forall p € (po,1).

If f € 2°[A] satisfieq3.9), then

f € J[A] satisfies the following condition :’((Zz)) ~q(2) (ze h)
fd @ '@ ([I"@QP-Ia"@] @, . .
“’(W o TR To[feP-fofe] @ ~Z> <h@ and q is the best dominant.
(@© 2017 NSP
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Proof.

Following the same arguments as for proving the

We next introduce the following class of admissible

known result L3, p. 31, Theorem 2.3e], we deduce that functions.

g is a dominant from Theorems 6 and 7. Simpsatisfies
(3.10), it is also a solution of (3.9) and, therefayayill be
dominated by all dominants. Hengés the best dominant.

In view of Definition 5, in the particular case when
g(z) = z the class®,[Q,q] of admissible functions,
denoted simply byP,[Q, 7], is described below.

Definition 6. Let Q be a set inC. The class®,[Q, 7] of
admissible functions consists of those functignsC? x
A — C such that
k Lnp—k? )
, =, Z Q
( n kn #

wheneveze A, J(L) 20,n € R\ {0} andk >0

(3.11)

Corollary 1. Letp € ®4[Q,7, f(z) #0and f(z) #0. If
f € 24| satisfies the following condition
;z) €Q,

(2 1@[[I"@I°- (2" (@2)]
'@ [P -2 (2)]

f'(2)
f(2)

_h
=
N
-
N
-

f(2)
f/—(z)<z

In the special case when
Q=q(4)={w:0(w) >0},

the class®,[Q,7 is denoted, for brevity, by®,[A, 7.
Corollary 1 can now be rewritten in the following form.

Corollary 2. Let@ € ®,[A,Z], f(z) #0and f(z) #0. If
f € 2[A] satisfies the following condition

(ze ).

A" @I - '@t (2)]
‘@[t -2 (2)]

f(2)
0 (f’—(z)) >0 (ze ).
Example 1.Let the functionsA: A — C andB: A
be analytic inA and satisfy(][A(z)] < 0 and[B(2)]
Then the functions

—C
<0

@ (u,v,wW;z) = é—v+A(z) and  @(u,v,w;z) =vw+B(2)
satisfy the admissibility conditiof8.11). Hence Corollary

1yields

Definition 7. Let Q be a set inC andqg € 2(A). The
class®, 1[Q, q] of admissible functions consists of those
functions ¢ : C?> x A — C that satisfy the following
admissibility condition:

e(a(&).kd(£):2) ¢ ,
whereze A, & € A\ E(q) andk = 0.

(3.12)

Theorem 9. Let ¢ € ®441[Q,q] and f(z) # 0. If
f € 24| satisfies the following condition

{(0(:,((22)),1— 2 f//(Z);z) 1Z€ A} cQ, (313

[f'(2))?
then
f(2)
f/—(Z) < q(Z) (Z S A)
Proof. Define the functiorp(z) in A by
_f@
p(z) = 72 (ze ). (3.14)
A simply calculation yields
f@-t"(2 _
1—W_ p(2). (3.15)
We next define the transformation fra@f to C by
ur,s)=r and v(r,s)=s (3.16)
Then, upon setting
W(rs2) = @(u,v;z2) = @(r,52), (3.17)

the proof will make use of Theorem 1. Indeed, if we use
the equations (3.14) and (3.15), we find from (3.17) that

w(p(2),p(2);2)

s
“"(f/(z)’l‘

so that (3.13) becomes
W(p(2),p(2):2) € Q.

We now see from (3.17) that the admissibility condition
for @ € @4 1[Q,q] in Definition 7 is equivalent to the
admissibility condition forgs as given in Definition 2.

@) 1(2).
[P ’Z)’

(3.18)

£(2) f(2) Hencey € Y4[Q,q] and, by Theorem 1, we have
o7 +4@) >0 = 0(75) > P2 <a2)  (zea)
and or, equivalently,
(2 2\ f(2) f(2)
D(( 2~ f/(z)> +B(z)> >0 = D<f,(z)) >0 72 <q(2)  (ze4).
(@© 2017 NSP
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We will denote the clas®s 1[h(4),q] by ®a1[h,q],
whereh is the conformal mapping & onto Q # C.

Theorem 10. Let ¢ € ®p1/h,q and f(z) # 0. If
f € 77[A] satisfies the following condition

o(12 1 18 1)

[F'(2))?

< h(2) (ze ), (3.19)

then
f(2)
(2)

<2 (zeA). (3.20)

We extend Theorem 10 to the case in which the

behavior ofg(z) on dA is not known.

Theorem 11. Let Q C C and let the function q be
univalent in A with q € 2(A). Suppose also that
@ € @, 1[h,qp] for somep € (0,1), where ¢(2) = q(pz).

If f € #°[A] satisfieq3.13), then(3.20) holds true.

As a special case, wheyiz) = z, we get the following
corollary.

Corollary 3. Let Q be asetinC andg@: C?>xA — C
satisfy the following conditian

o(n,kz) ¢ Q

whenever 2 A, n € R and k= 0. If f € JZ[A], with
f’(z) # 0, satisfies the following condition

{(2)
q”(f’(z)’l‘

(3.21)

212
T 7)<

then

D(lf/(—(zz))> >0 (ze ).

In the special case when
Q=q(4)={w:0(w) >0},
Corollary 3 can thus be restated as follows.

Corollary 4. Let ¢ : C*> x A — C satisfy the following
inequality.

Ole(n.k2]<0

whenever 2 A, n € R and k= 0. If f € JZ[A], with
f’(z) # 0, satisfies the following condition

f f(z)- "
D(‘p(f/((Zz))’l_ ([Zf)'(zﬂgZ);Z))>O (zed).
then

(ze )

D(lf/(—(zz))> >0 (ze ).

Example 2.Let the functionD : A — C be analytic inA
and satisfy the following inequality:

OD(2)] =0 (ze h).
Then the function
o(u,v;z) =u+v+D(2)

satisfies the admissibility condition (3.21). Hence

Corollary 4 becomes

D(1+ 2

f(2)-"(2)
f/(2) - 2

[f'(2)]
= D(J,((ZZ))>>O (ze ).

+ D(z)) >0

4 Differential Superordinations and
Sandwich-Type Results

In this section, we investigate the dual problem of
differential ~ subordination  (that is, differential
superordination) in the upper half-plane. Because of this,
the class of admissible functions is given in the following
definition.

Definition 8. Let Q be a set inC andq € s [A] with
q(2) # 0. The class®,[Q,q] of admissible functions

consists of those functiong : C2 x A — C that satisfy
the following admissibility condition:

o(u,v,w; &) € Q
whenever
u=a@. V=2 (40 £0),
and

[IA

() o (@)

(zeA; E€0A; m>0).

Theorem 12.Letp e @,[Q,q], f(z) #0and f(z) # 0. If
f e 4],

and

(@© 2017 NSP
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f"(2) f(z)[[f”(z)]z—f’(z)f”’(z)} B f'(z).
f(z)  f'(2)°

"o @QE- 212 f<z>'2>

is univalentinA, then

fa 2 '@ f@[I"@QP-a"@] '@,
QC{"’(f%z)’f(z)’f%z)’ fofer-fara] )" }
(4.1)
then
f(2)
q(2) < 72 (ze ).
Proof. Let the functionp(z) be defined by (3.2) ang

by (3.6). Sincep € @,,[Q,q], (3.7) and (4.1) yield

Qc{y(p(2).P(2),p"(2)2) :ze A}.

We see from (3.5) that the admissible condition for

@ € @,[Q,q in Definition 8 is equivalent to the
admissible condition foryy as given in Definition 4.
Hencey € ¥;(Q,q] and, by Theorem 2, we have

A2 <p2) (ze4)
or, equivalently,
f(2)
q(2) < 72 (ze 4),

which evidently completes the proof of Theorem 12.

If Q # C is a simply-connected domain and

Q = h(A) for some conformal mapping(z) of A onto
Q, then the class®)[h(A),q] is written simply as

@, [h,q]. Proceeding similarly as in the preceding section,
the following result is an immediate consequence of

Theorem 12.

Theorem 13.Let ge #[A]. Also let the function h be
analyticinA andg e @, [h,q). If f € JZ[A], with f(2) #0
and f'(z) #£0,

f(2)
72 €2(4)

w( ) @@ @ fQII"@P-ra" @] @),

@ 1@ @ ralfePr-1@f"@] f@ 'Z>

is univalent inA, then

fl2 (2 ' fO["2P-F@2f"@@] (2.
h(z) < (P< 72 T T’ T @2- 2" @2)] - W,Z
(ze 4) (4.2)
implies that

f(2)

f'(2)
Theorems 12 and 13 can only be used to obtain

subordinations involving the differential superordioati

of the form (4.1) or (4.2). The following theorem proves

the existence of the best subordinant of (4.2) for a

suitably chosemp.

q(z) < (ze ).

Theorem 14.Let the function h be analytic iA and let
@:C3x A — C. Suppose that the following differential
equation:

92 d'@ d@ )\ _
(o T3 8~ 52
has a solution g 2(A). If o € @, [h,q], f € #[A], with
f(z) #£0and f(z) £0,

f(2)
f'(2)

€ 2(4)

and

@ e '@ f@IreP-rere] e,
T 7o T @ @2-f@f"@] @’

is univalent inA, then

f(z) f'(2 f"(2 f(z)[[f”(z)]zff’(z)f’”(z)} f'(z).
h““"’(f%z)’ 0 7@ Tolfer-fore] 1@ 'Z>
(ze )
implies that
f(2)
z ze A
D=5y (#€h)

and (z) is the best subordinant.

Proof. The proof of Theorem 14 is similar to that of
Theorem 8 and it is being omitted here.

By combining Theorems 6 and 13, we obtain the
following sandwich-type result.

Corollary 5. Let the functions hand g be analytic inA.
Also let the function hbe inA, g, € 2(4) and

@ € @alhz,q2] N @p[hy,qu).
If f € 2]A], with f(z) #0and f(z) #0,

f(@)
@ €2(4)

(f(z) 2 '@ 1R[FER- @) @_Z>
N\Te T

@ @ rolfeE-tore] @
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is univalentinA, then

hl(z)“”(f/(z)’ f(z
<hy(2)
implies that
f(2)
f'(2)
Definition 9. Let Q be a set inC andq € s7[A]. The

class®; ,[Q,q] of admissible functions consists of those

functions @ : C?> x A — C that satisfy the following
admissibility condition:

qi(2) < <0(z) (z€d).

q/g);é) €Q  (zeA; Ecdh;m>0).

0 (q(z>,

Theorem 15.Let ¢ € @) ,[Q.q]. If f € JZ[A], with
f'(2) # 0,

f(2) f(2) f(2)-1"(2).
g eee  ad o(gdatEE)
is univalentinA, then

f(2) f2-"(2) .
QcC {qo(f/(z),l— TR ,z) .zeA} (4.3)
implies that
q(z) < :/((ZZ)) (ze ).
Proof. Let p(z) be defined by (3.14) ang by (3.17).

Sinceg € (DA’l[Q,q], it follows from (3.18) and (4.3) that

Qc{y(p(2),0(2);2) :ze A}.

We know from (3.16) that the admissible condition for
@ € @,,[Q,q] in Definition 9 is equivalent to the
admissible condition foryy as given in Definition 4.
Hencey € ¥,[Q,q] and, by Theorem 2, we get

a2 <p@ (ze4)
or, equivalently,
q(z) < :/(—(ZZ)) (ze ).

In the case whenQ # C is a simply-connected
domain withQ = h(A) for some conformal mappiny z)
of A onto Q, the class ®,,[h(4),q] is written as
@, ,[h,q]. Proceedings similarly, the following result is
an immediate consequence of Theorem 15.

Theorem 16.Let qe 7 [A] and the function h be analytic
inA. Also letg € @, 4[h,q]. If f € JZ[A], with '(2) #0,

f(2) f(2) f(2)-1"(2).
P e e (g tEe)
is univalentinA, then

f f(z)- 1"
h(z) <@ ( f/((zz)) ,1— ([zf)/(z)]éz) ;z) (zeA)
implies that
q(z) < :/(—(ZZ)) (ze ).

If we combine Theorems 10 and 16, then we have the
following sandwich-type result.

Corollary 6. Let the functions hand q be analytic in
A. Also let the function hibe univalent inA and suppose
that g € 2(4) and@ € @4 1[ho, 0] N Py 4 [y, . If F €
4], with f'(z) £ 0,

;Z>

f(2)
(2

f(2)-t"(2)

{(2)
TR

e

€2(4) and (p(
is univalentinA, then

fa . (2 "2

hi(z) < qo<f/(z),1— HoE ;z) <hy(2) (zeA)
implies that

q1(2) < :,((ZZ)) < q2(2) (ze ).
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