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Abstract: In this work we construct a new integrable equation via combining the recursion operator of the Calogero-Bogoyavlenskii-
Schiff (CBS) equation and its inverse recursion operator. We show that this equation nicely passes the Painlevé property to emphasize
its complete integrability. We formally derive multiple soliton solutions by using the simplified Hirota’s direct method. We also use
other techniques to obtain more solutions of distinct physical structures.
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1 Introduction

The recursion operator, an integro-differential operator
which connects two consecutive symmetries [1]- [9],
plays an important role in constructing integrable
systems. It also supports constructing families of
symmetries for equations, which admit recursion
operators [3], and in giving insight into the features of the
integrable equations [3]. The recursion operator of a
nonlinear equation indicates that this equation has
infinitely many higher-order symmetries, which is a
strong feature of its complete integrability as discovered
by Olver [4].

The hereditary symmetryΦ(u(x, t)) is a recursion
operator of the following hierarchy of evolution equations

ut +Φ(u)ux = 0, (1)

which gives rise to a variety of (1+1)-dimensional
equations. The KdV equation

ut +6uux+ uxxx = 0, (2)

is obtained by using the KdV recursion operatorΦ(u)

Φ(u) = ∂ 2
x +4u+2ux∂−1

x , (3)

where ∂x and ∂−1
x denote the total derivative and its

integration operator with respect tox respectively.

However, the integrable
Calogero-Bogoyavlenskii-Schiff (CBS) equation

ut + uxxy +4uuy+2ux∂−1
x (uy) = 0, (4)

is obtained by using the following hierarchy of evolution
equations

ut +Φ(u)uy = 0, (5)

whereΦ(u) has the same form (3) as that for the KdV
equation with argumentx. Note thatux in (3) is replaced
by uy to give a (2+1)-dimensional CBS equation. In a like
manner, we can replaceux in (3) by uy + uz to develop
(3+1)-dimensional CBS equation. The CBS equation (4)
was studied thoroughly in the literature due to its variety
of solutions and significant scientific features.

Verosky [8] extended the Olver work in [4], and
admitted the use of the negative direction to obtain a
sequence of equations of increasingly negative orders.
Verosky [8] elaborated that the hierarchy of evolution
equation (1)

ut =−Φ(ux), (6)

can be used in the negative order hierarchy in the form

ut =−Φ−1ux, (7)

where the power ofΦ goes to the opposite direction [7–9]
In other words, the negative order equation can be reported
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as
Φ(ut) =−ux. (8)

The goals of this work are two fold. We aim first to
combine the sense of the CBS recursion operator (3) and
the sense of the negative-order recursion operator (8) to
establish a new integrable equation. We will show that
this newly developed equation nicely passes the Painlevé
property to emphasize its complete integrability. Second,
we plan to derive multiple soliton solutions for the newly
developed integrable equation. More travelling wave
solutions of distinct physical structures will be
determined as well.

2 Formulation of the new integrable
combined equation

We will combine the sense of the CBS recursion operator
(1), used earlier for the derivation of the KdV and the
CBS equations, and the sense of the negative-order
recursion operator (3) to construct a new integrable
equation. In other words, we introduce

vt +Φ(v(x,y, t))vy +Φ(v(x,y, t))vt = 0, (9)

or equivalently

vt +Φ(v(x,y, t))(vy + vt) = 0. (10)

Using the recursion operator as defined in (3) gives the
combined CBS equation with it negative-order form as

vt + vxxy + vxxt +4vvy+4vvt +2vx∂−1
x (vy + vt) = 0, (11)

which will be termed the combined CBS-negative-order
CBS equation (CBS-nCBS).

To eliminate the integral operator, the potential

v(x,y, t) = ux(x,y, t), (12)

will transform (11) to

uxt + uxxxy + uxxxt +4ux(uxy + uxt)+2uxx(uy + ut) = 0.
(13)

The combined CBS-nCBS equation includes four
nonlinear terms and two linear dispersive terms. The
complete integrability of the combined CBS-nCBS
equation (13) will be investigated in the following
section, by showing it nicely passes the Painlevé test.

3 The Painlev́e test

To prove the integrability of the combined CBS-nCBS
equation (13), we use the Painlevé test in the sense of the
Weiss–Tabor–Carnevale (WTC) method [5]. The
Painlev e analysis is a powerful method for identifying the
integrable properties of nonlinear partial differential

equations [1]- [25]. The WTC method [5] and Kruskal’s
simplification method are the most widely tools used to
examine the Painlevé property [5]. The WTC-Kruskal
algorithm [5] is employed in three steps:
(i) leading-order analysis,
(ii) finding resonances, and
(iii) determining compatibility conditions. More details
about these three steps are given in Refs. [5]- [10].

The combined CBS–nCBS equation (13) is said to
possess the Painlevé property if its solutions are
single-valued about arbitrary non characteristic, movable
singularity manifolds. In other words, this means that its
solutions can be expressed as Laurent series in the form

u(x,y, t) =
∞

∑
j=0

u j(x,y, t)φ j+α
, (14)

with a sufficient number of arbitrary functions among
u j(x,y, t) in addition toφ(x,y, t). The Painlevé property is
characterized by the fact thatα is a negative integer and
all resonances occur at positive integer values ofj and are
compatible.

First, the leading orderα and the leading coefficient
u0(x,y, t) should be determined. To obtain this, we
substitute

u(x,y, t) = u0(x,y, t)φα
, (15)

into Eq. (13). Balancing the nonlinear and dispersive
terms, we get

α = −1, u0(x,y, t) = 2φx. (16)

It is well known that the resonance atj =−1 corresponds
to the arbitrariness of the singular manifoldφ(x,y, t) = 0.

The next step is to check the existence of a sufficient
number of arbitrary functions and to find the resonance
points. To achieve this goal we insert the Laurent series

u(x, t) = u0φ−1+ u jφ j−1
, j ≥ 1, (17)

into Eq. (13), together with (16), to obtain the following
characteristic equation for resonances

( j+1)( j−1)( j−4)( j−6) = 0. (18)

The solutions (resonancesj) of the characteristic equation
occur atj =-1, 1, 4, and 6. Recall that the resonance atj =
−1 corresponds to the to the arbitrariness of the singular
manifoldφ(x,y, t) = 0.

To check the existence of sufficient number of
arbitrary functions at the other resonances atj = 1,4,6,
we substitute the Laurent series

u =
6

∑
j=0

u j φ j−1
. (19)

in (13), and collect the coefficients ofφ−n, where:
(i) From the coefficients ofφ−5, we find u0(x, t) = 2φx,
which corresponds to the resonancej =−1.
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(ii) From the coefficients ofφ−4,φ−1, and φ1, we find
equations that do not includeu1,u4, andu6 respectively.
This absence ofu1,u4, andu6 proves thatu1,u4, andu6,
which correspond to the resonancesj = 1,4,6 are
arbitrary constants.
(iii) Otherwise, we find explicit expressions foru2,u3,u5.

This shows that the combined CBS-nCBS equation
(13) justifies the three criteria presented before. This leads
to the conclusion that the combined CBS-nCBS equation
(13) admits sufficient number of arbitrary functions and
hence integrable in the sense of possessing the Painlevé
property.

It is worth noting that the CBS equation gives only
three resonances, namely−1,4,6, whereas the combined
CBS-nCBS equation (13) gives four resonances, namely
−1,1,4,6. In addition, we will show later that the
dispersion relation of the interaction of solitons of the
combined CBS-nCBS equation (13) is not the same
dispersion relation of the CBS equation.

4 Multiple soliton solutions

It is well known that integrable equations describe some
nonlinear phenomena in science, technology, and
engineering, such as plasmas, solid state materials, fluid
dynamics, and many others. Among the intriguing
features of these equations are the multiple soliton
solutions and an infinite number of conserved quantities
they possess. In this section we will concern ourselves
with finding multiple soliton solutions for this new
equation.

In the previous section, we showed that the combined
KdV-nKdV equation (13)

uxt + uxxxy + uxxxt +4ux(uxy + uxt)+2uxx(uy + ut) = 0,
(20)

is completely integrable in the sense of possessing the
Painlevé property.

Substituting

u(x,y, t) = eθi = ekix+riy−cit , (21)

into the linear terms of (20) gives the dispersion relation
as

ci =
k2

i ri

1+ k2
i

. (22)

Consequently, the dispersion variable becomes

θi = kix+ riy−
k2

i ri

1+ k2
i

t. (23)

We next use the transformation

u(x,y, t) = R(ln f (x,y, t))x , (24)

where R is a constant that will be determined. The
auxiliary function f (x,y, t) for the single soliton solution

is given by

f (x,y, t) = 1+ e
k1x+r1y−

k2
1r1

1+k2
1

t
. (25)

Substituting (24) and (25) in (20), and solving forR, we
find that single soliton solution exists only if

R = 2. (26)

which gives the following soliton solution

u(x,y, t) =
2k1e

k1x+r1y−
k2
1r1

1+k2
1

t

1+ e
k1x+r1y−

k2
1r1

1+k2
1

t
. (27)

The single soliton solutionv(x,y, t) is obtained by using
the potential (12).

For the two soliton solutions, we set the auxiliary
function f (x, t) as

f (x,y, t) = 1+ eθ1 + eθ2 + a12eθ1+θ2, (28)

where the wave variablesθi, i = 1,2 are given above in
(23), anda12 is the phase shift that will be determined.
Using (28) in (20), and solving, we find that the phase shift
is given by the Hirota type as

a12=
(k1− k2)

2

(k1+ k2)2 , (29)

and this can be generalized to

ai j =
(ki − k j)

2

(ki + k j)2 ,1≤ i < j ≤ 3, (30)

which is the same phase shift of the standard CBS
equation. The obtained results will give the two-soliton
solutions for (20). It is to be noted that the phase shiftsai j
do not depend on the coefficientsri of the space variable
y.

For the three soliton solutions, the auxiliary function is
given by

f (x,y, t) = 1+ eθ1 + eθ2 + eθ3 + a12eθ1+θ2 + a13eθ1+θ3 + a23eθ2+θ3 + b123eθ1+θ2+θ3,

(31)
where the wave variableθi is given above in (23), anda12
is the phase shift. Proceeding as before, we find

b123= a12a23a13, (32)

and this gives three soliton solutions (20).
It is interesting to point out that the dispersion

relations of the standard CBS equation and the combined

CBS-nCBS equation (13) are derived ask3
i and

k2
i ri

1+k2
i

respectively, for 1≤ i ≤ N,N is finite. However, the phase
shifts remain the same for both the CBS and the
combined CBS-nCBS equations.

In the forth coming sections, we will use a set of
distinct ansatze to determine other exact solutions, with
distinct physical features. The techniques which we will
use are mostly used in the literature, where detailed
description can be found in [11]- [13].
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5 Other solutions

In this section, we will use some of the well known
techniques to determine other solutions of the newly
developed equation (20)

5.1 Using the tanh/coth method

The tanh method admits the use of the the solution as

u(x,y, t) = a0+ a1 tanh(kx+ ry− ct). (33)

Substituting this assumption into Eq. (20), collecting the
coefficients of tanhi(kx+ ry− ct), i = 0,2,4, and solving
the resulting system we find the following set of solutions

a0 = a, a is any nonzero constant,

a1 = 2k,

c = 4k2r
1+4k2 .

(34)

wherea0 = a is left as a free parameter. This in turn gives
the soliton solution

u(x,y, t) = a+2k tanh(kx+ ry−
4k2r

1+4k2 t). (35)

In a like manner, we can show that

u(x,y, t) = a+2k coth(kx+ ry−
4k2r

1+4k2 t), (36)

is a singular solution of the same equation.

5.2 Using the tan/cot method

Using the tan method and the balance scheme, we set the
solution as

u(x, t) = a0+ a1 tan(kx+ ry− ct), (37)

Substituting this assumption into the reduced equation
(20), collecting the coefficients of tani(kx− ct), i = 0,2,4,
and solving the resulting system we find the following set
of solutions

a0 = a, a is any nonzero constant,

a1 = −2k,

c = − 4k2r
1−4k2 .

(38)

wherea0 = a is left as a free parameter. This in turn gives
the soliton solution

u(x,y, t) = a−2k tan(kx+ ry+
4k2r

1−4k2 t). (39)

In a similar manner, we can obtain the exact solution

u(x,y, t) = a+2k cot(kx+ ry+
4k2r

1−4k2 t). (40)

5.3 Using the rational tanh/coth method

Using the rational tanh method, we set the solution as

u(x,y.t) =
1

a0+ a1 tanh(kx+ ry− ct)
. (41)

Substituting this assumption into Eq. (20), collecting the
coefficients of tanhi(kx+ ry− ct),0 ≤ i ≤ 5, and solving
the resulting system we find the following set of solutions

a1 = b, b is any nonzero constant,

a0 = ±

√

b(2bk−1)
2k ,

c = 4k2r
1+4k2 .

(42)

wherea1 = b is left as a free parameter. This in turn gives
the soliton solution

u(x,y, t) =
1

±

√

b(2bk−1)
2k + b tanh(kx+ ry− 4k2r

1+4k2 t)
. (43)

In a like manner we can obtain the singular solution

u(x,y, t) =
1

±

√

b(2bk−1)
2k + bcoth(kx+ ry− 4k2r

1+4k2 t)
. (44)

5.4 Using the rational tan/cot method

Using the rational tan method, we set the solution as

u(x,y, t) =
1

a0+ a1 tan(kx− ct)
. (45)

Substituting this assumption into Eq. (20), collecting the
coefficients of tanhi(kx+ ry− ct),0 ≤ i ≤ 5, and solving
the resulting system we find the following set of solutions

a1 = b, b is any nonzero constant,

a0 = ±

√

b(1−2bk)
2k ,

c = 4k3

4k2−1
.

(46)

wherea1 = b is left as a free parameter. This in turn gives
the soliton solution

u(x,y, t) =
1

±

√

b(1−2bk)
2k + b tan(kx+ ry− 4k2r

4k2−1
t)
. (47)

In a like manner we can obtain the singular solution

u(x,y, t) =
1

±

√

b(1−2bk)
2k − bcot(kx+ ry− 4k2r

4k2−1
t)
. (48)
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6 Discussion

We used the recursion operator for the
Calogero-Bogoyavlenskii-Schiff (CBS) equation and the
inverse recursion operator to formally establish a
combined CBS equation with its negative-order form.
Using the MACSYMA package, we showed that the
newly established equation passes nicely the Painlevé
test, and this confirms its complete integrability in the
Painlevé sense. Multiple soliton solutions were obtained
for this equation. Moreover, we showed that this equation
gives a variety of travelling wave solutions.
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