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Abstract: In this work we construct a new integrable equation via cavinigi the recursion operator of the Calogero-Bogoyavlenski
Schiff (CBS) equation and its inverse recursion operat@.s\bw that this equation nicely passes the Painlevé grofmeemphasize
its complete integrability. We formally derive multiplelgon solutions by using the simplified Hirota’s direct meth We also use
other techniques to obtain more solutions of distinct ptglsstructures.
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1 Introduction However, the integrable
Calogero-Bogoyavlenskii-Schiff (CBS) equation

The recursion operator, an integro-differential operator

which connects two consecutive symmetrie§- [[9], Ut + Uxxy + 4UUy + 2Ux Oy l(uy) =0, 4)

plays an important role in constructing integrable

systems. It also supports constructing families ofis obtgined by using the following hierarchy of evolution

symmetries for equations, which admit recursion €quations

operators 3], and in giving insight into the features of the U+ ®@(u)uy =0, (5)

integrable equatjons3I. .The recursion'operator' of a where ®(u) has the same form8J as that for the KdV
nonlinear equation indicates that this equation hassquation with argument Note thatuy in (3) is replaced
infinitely many higher-order symmetries, which is a py, to give a (2+1)-dimensional CBS equation. In a like
strong feature of its complete integrability as discoveredmanner. we can replaag in (3) by u, + U, to develop
by Olver 4. _ , (3+1)-dimensional CBS equation. The CBS equatién (
The hereditary symmetryp(u(x,t)) is a recursion s studied thoroughly in the literature due to its variety
operator of the following hierarchy of evolution equations ¢ sojutions and significant scientific features.
_ Verosky [B] extended the Olver work in4], and
@ = 1 ) . R )
Ut P(U =0, @) admitted the use of the negative direction to obtain a
which gives rise to a variety of (1+1)-dimensional sequence of equations of increasingly negative orders.

equations. The KdV equation Verosky B] elaborated that the hierarchy of evolution
equation {)
Ut + BUL + Uyex = O, 2) U = — P (Ux), (6)
is obtained by using the KdV recursion operada(u) can be used in the negative order hierarchy in the form
®(u) = 02 +4u+ 2uxdy 1, 3) u = —® luy, 7)

where d¢ and d; ! denote the total derivative and its where the power of® goes to the opposite directioftHo]
integration operator with respectxaespectively. In other words, the negative order equation can be reported
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as equations IJ- [25. The WTC method [5] and Kruskal's
d(w) = —uy. (8) simplification method are the most widely tools used to

examine the Painlevé propert$]] The WTC-Kruskal

algorithm [p] is employed in three steps:

(i) leading-order analysis,

(ii) finding resonances, and

iii) determining compatibility conditions. More details
bout these three steps are given in Réfs.[[L0].

The combined CBS—nCBS equatioh3) is said to
possess the Painlevé property if its solutions are
single-valued about arbitrary non characteristic, mowabl
singularity manifolds. In other words, this means that its
solutions can be expressed as Laurent series in the form

The goals of this work are two fold. We aim first to
combine the sense of the CBS recursion oper&pafd
the sense of the negative-order recursion operafoto(
establish a new integrable equation. We will show that
this newly developed equation nicely passes the Painlev
property to emphasize its complete integrability. Second,
we plan to derive multiple soliton solutions for the newly
developed integrable equation. More travelling wave
solutions of distinct physical structures will be
determined as well.

[ee]

2 Formulation of the new integrable u(x,y.t) = zouj(x,y,t)fp”“, (14)
combined equation =

) . . with a sufficient number of arbitrary functions among
We will combine the sense of the CBS recursion operatoly; (x,y,t) in addition to@(x,y,t). The Painlevé property is
(1), used earlier for the derivation of the KdV and the characterized by the fact thatis a negative integer and

CBS equations, and the sense of the negative-ordegll resonances occur at positive integer valuegarfid are
recursion operator 3] to construct a new integrable compatible.

equation. In other words, we introduce First, the leading ordesr and the leading coefficient

Uo(X,y,t) should be determined. To obtain this, we
Vit + GJ(V(X, Y7t))vy+ (D(V(X, Yat))Vt =0, (9) substitute
_ a

or equivalently U(X7y7t) = UO(X,yat)GU ’ (15)

into Eg. @3). Balancing the nonlinear and dispersive
Ve + @(V(X,Yit)) (W +Ww) = 0. (10)  terms, we get
Using the recursion operator as defined 3 gives the a = -1 u(xyt) =2¢. (16)

combined CBS equation with it negative-order form as
It is well known that the resonance pt= —1 corresponds
WVt + Vaoy + Voot + AWy + 4wy + 2vxc9x‘1(vy +w) =0, (11) to the arbitrariness of the singular manifax,y,t) = 0.
The next step is to check the existence of a sufficient
which will be termed the combined CBS-negative-ordernumber of arbitrary functions and to find the resonance

CBS equation (CBS-nCBS). points. To achieve this goal we insert the Laurent series
To eliminate the integral operator, the potential ) -
u(x,t) = U@~ +uj@ ) > 1, (17)
V(Xa yat) = uX(X7 yvt)a (12)
. into Eq. @3), together with 16), to obtain the following
will transform (1) to characteristic equation for resonances
Unt + Uy + Uood + AU(Uxy + Uxt ) + 2Ux (Uy + Ut ) = 0. (J+1)(j—-1)(j—4(j—6)=0. (18)
(13)

The combined CBS-nCBS equation includes four The solutions (resonancgsof the characteristic equation
nonlinear terms and two linear dispersive terms. Theoccuratj =-1, 1, 4, and 6. Recall that the resonancg-at
complete integrability of the combined CBS-nCBS —1 corresponds to the to the arbitrariness of the singular
equation {3) will be investigated in the following manifoldg(x,y,t) =0.
section, by showing it nicely passes the Painlevé test. To check the existence of sufficient number of

arbitrary functions at the other resonanceg at 1,4, 6,
we substitute the Laurent series

3 The Painle\é test 6
. N . u=2u ¢ (19)

To prove the integrability of the combined CBS-nCBS =

equation 13), we use the Painlevé test in the sense of the

Weiss—Tabor—Carnevale (WTC) method5].[ The in (13), and collect the coefficients gf ", where:

Painlev e analysis is a powerful method for identifying the (i) From the coefficients ofp—>, we find up(x,t) = 2,

integrable properties of nonlinear partial differential which corresponds to the resonarjce —1.
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(i) From the coefficients ofp4, @1, and @', we find s given by
equations that do not includeg, us, and ug respectively.

K2r

This absence ofiy, us, andug proves thats, us, and us, kixtriy— L5t
which correspond to the ?esonancej:s: 1,4,6 are fxyt)=1+e T (25)
arbitrary constants. Substituting 24) and @5) in (20), and solving forR, we
(i) Otherwise, we find explicit expressions fog, us, Us. find that single soliton solution exists only if

This shows that the combined CBS-nCBS equation R_2 (26)
(13) justifies the three criteria presented before. This leads -
to the conclusion that the combined CBS-nCBS equatiorwhich gives the following soliton solution
(13) admits sufficient number of arbitrary functions and 2
hence integrable in the sense of possessing the Painlevé ok ek1><+r1y—ﬁk1§t
property. | . U(X Y ) = e (27)

It is worth noting that the CBS equation gives only klxﬂly,kl;lzt

three resonances, namehi, 4,6, whereas the combined !

CBS-nCBS equationl@) gives four resonances, namely The single soliton solution(x,y,t) is obtained by using
—1,1,4,6. In addition, we will show later that the the potential {2).

dispersion relation of the interaction of solitons of the For the two soliton solutions, we set the auxiliary
combined CBS-nCBS equatiornld) is not the same functionf (x,t) as

dispersion relation of the CBS equation.
f(xy,t) =1+e% +e% 4 ae%78%, (28)

. ) . where the wave variable§,i = 1,2 are given above in
4 Multiple soliton solutions (23), anday, is the phase shift that will be determined.

Using 28) in (20), and solving, we find that the phase shift
It is well known that integrable equations describe somejs given by the Hirota type as
nonlinear phenomena in science, technology, and )
engineering, such as plasmas, solid state materials, fluid ayy = (ks —ko) (29)
dynamics, and many others. Among the intriguing (kg +k2)2’
features of these equations are the multiple soliton

. o .. and this can be generalized to
solutions and an infinite number of conserved quantities

they possess. In this section we will concern ourselves o (ki —kj)2 .
with finding multiple soliton solutions for this new aj = (K +kj)2’1§ I<j=3 (30)
equation. L .
In the previous section, we showed that the combinedVNich i the same phase shift of the standard CBS
KdV-nKd\V equation (3) equation. The obtained results will give the two-soliton
solutions for R0). It is to be noted that the phase shiits
Uxt 4 Usooy + Usooxt + AUx Uy + Ut ) + U (Uy + Ut) = O, do not depend on the coefficiemsof the space variable
(20) ¥ . . -~ -
is completely integrable in the sense of possessing the For the three soliton solutions, the auxiliary function is
Painlevé property. given by
Substituting FO0Y,) = 1+ €8+ €82 4 8 1 g ePi 0 4 ay5e01+0 | apefa s 4 by ,uefi0av0s,
T Rpr— (31)
u(xy,t) = e = exenyat, (21)  where the wave variabl@ is given above inZ3), anday
into the linear terms of20) gives the dispersion relation Is the phase shift. Proceeding as before, we find
as 5 b123 = aoa3a13, (32)
ri L . .
G = 1k‘ '2. (22) and this gives three soliton solutior0j.
+K It is interesting to point out that the dispersion
Consequently, the dispersion variable becomes relations of the standard CBS equation and the combined
2.
k,2r- CBS-nCBS equation1@) are derived a§<i3 and %2
6 = kix+riy — r'zt- (23)  respectively, for K i < N,N is finite. However, the phase
K shifts remain the same for both the CBS and the
We next use the transformation combined CBS-nCBS equations. _
In the forth coming sections, we will use a set of
u(x,y,t) =R(In f(x,y;t)),, (24) distinct ansatze to determine other exact solutions, with

distinct physical features. The techniques which we will
where R is a constant that will be determined. The use are mostly used in the literature, where detailed
auxiliary functionf(x,y,t) for the single soliton solution description can be found ii]]- [13].
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5 Other solutions 5.3 Using the rational tanh/coth method

In this section, we will use some of the well known
techniques to determine other solutions of the newly
developed equatior2() 1

Ui y.t) = ap+agtanh(kx+ry—ct)’

Using the rational tanh method, we set the solution as

(41)

5.1 Using the tanh/coth method Substituting this assumption into EQQ), collecting the
coefficients of tantikx+ry—ct),0 <i < 5, and solving

The tanh method admits the use of the the solution as ¢ resylting system we find the following set of solutions

U y,t) = o+ ag tanttkx+ry — ct). (33) a; = b, bis any nonzero constant
Substituting this assumption into EQQ], collecting the ap = + b(2bk—1) (42)
coefficients of tan'tkx+ry —ct),i = 0,2,4, and solving A Ak
the resulting system we find the following set of solutions C= 1

ap = a, ais any nonzero constant wherea; = b is left as a free parameter. This in turn gives
a; = 2k,2 (34) the soliton solution
_ &K
= 1+41i2' 1
h isleftasaf ter. This in turn gives ") = TSy 49
whereag = ais left as a free parameter. This in turn gives + btanhkx 4 rv — 20
the soliton solution * oy = 14t
4K2r In a like manner we can obtain the singular solution
u(x,y,t) = a4+ 2ktanhkx+ry— ———t). (35)
1+ 4k2
B 1
In a like manner, we can show that ux,y,t) = by e - (44)
s + +bcotr(kx+ ry— l+4k2t)
t) = 2k coth'kx —— 0t
U(x y.t) = at2keothkt ry — ==at). (36)
is a singular solution of the same equation. 5.4 Using the rational tan/cot method
_ Using the rational tan method, we set the solution as
5.2 Using the tan/cot method
t)= = 45
Using the tan method and the balance scheme, we set the uy.t) = ap+agtan(kx—ct)’ (45)
solution as

Substituting this assumption into EQQ, collecting the
u(x,t) = ao+astan(kx+ry—at), (37)  coefficients of tantfkx+ry — ct),0 < i < 5, and solving

Substituting this assumption into the reduced equatior the resulting system we find the following set of solutions

(20), collecting the coefficients of thfikx — ct),i = 0,2,4,

and solving the resulting system we find the following set 2 = b, bis any nonzero constant

b(1—2bk)

of solutions a =t/ (46)
. _ad
ap = a, ais any nonzero constant C= g2
a = —2k, (38)
C— _ A wherea; = b is left as a free parameter. This in turn gives
1-4i the soliton solution
whereag = a is left as a free parameter. This in turn gives 1
the soliton solution ux,y,t) = . (47)
2r /220 4 tan(ke+ ry — e t)
u(x,y,t) = a— 2ktankx+ry+ = 4k2t) (39)

In a like manner we can obtain the singular solution
In a similar manner, we can obtain the exact solution
1

4k2r U(X7y7t) = b(1_20K) N (48)
u(x,y,t) = a+ 2kcot(kx 4 ry + - 4k2t) (40) + % bcot(kx+ry — —z—4ik 5 )

(@© 2017 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.11, No. 5, 1241-1246 (2017 )www.naturalspublishing.com/Journals.asp NS = 1245

6 Discussion [13] Biswas A. Solitary wave solution for KdV equation with

power-law nonlinearity and time-dependent coefficients,
We used the recursion operator for the Nonlinear Dynamics, 200%8; 345-348.
Calogero-Bogoyavlenskii-Schiff (CBS) equation and the[14] Leblond H, Mihalache D. Models of few optical cycle
inverse recursion operator to formally establish a solitons beyond the slowly varying envelope approximation
combined CBS equation with its negative-order form. _ Phys. Rep., 2013523 61-126. _ _
Using the MACSYMA package, we showed that the [15] LebIgnd H, Mihalache .D. F.ew—optlcal—cycle‘ solitons:
newly established equation passes nicely the Painleve Modified Korteweg-de Vries sine-Gordon equation versus
test, and this confirms its complete integrability in the  Other non-slowly-varying-envelope-approximation medel
Painlevé sense. Multiple soliton solutions were obtaine Phys. Rev. A, 200879 063835.

- ; . . d[16] Khalique CM. Solutions and conservation laws of
fqr this equation. Moreqver, we Showgd that this equation Benjamin-Bona-Mahony-Peregrine equation with power-
gives a variety of travelling wave solutions.

law and dual power-law nonlinearities, Pramana, 2@&[B;

413-427.
[17] Kara AH, Khaligue, CM. Nonlinear evolution-type
Acknowledg ment equations and their exact solutions using inverse vanatio

methods, J. Phys. A, 20088: 4629-4636.
The author sincerely and genuinely thanks Professofl8] Triki H, Wazwaz, A.M. A new trial equation method
Willy Hereman for useful discussions and for using the  for finding exact chirped soliton solutions of the quintic

MACSYMA package to test the Painlev'e property. derivative nonlinear Schrodinger equation with variable
coefficients, Waves In Random and Complex Media, 2016;
27.153-162.
[19] Nakamura A., Hirota, R. Second modified KdV equation
References and its exact multi-soliton solution. J. Phys. Soc. Japan,

_ _ 1980:48: 1755-1762.
[1] Baldwin D, Hereman, W. Symbolic software for the [20] Hirota, R. The Bcklund and inverse scatering transfofm

Painlevé test of nonlinear ordinary and partial differaint the KdV equation with non uniformities, J. Phys. Soc. Japan,

equations, Journal of Nonlinear Mathematical Physics, 1979:46; 1681-1682.

2006;13(1): 90-110. [21] Wazwaz A.M. Partial Differential Equations and Satjta
[2] Fokas A. Symmetries and integrability. Studies in Apgli Waves Theorem. Springer: Berlin, 2009.

Mathematics, 198777 253-299.  [22] Wazwaz A.M. A fifth-order Korteweg-de Vries equation
[3] Guthrie, G. Recursion operators and non-local symrestri for shallow water with surface tension : Multiple solitons

Proceedings: Mathematical and Physical Sciences, 1994; solutions, Acta Physica Polonica A, 20130 679—682.

446 107-114. . S [23] Wazwaz A.M. (2+1)-dimensional KdV (N) equations
[4] Olver, PJ.: Evolution equations possessing infinitelgny derived by using the KdV recursion operator, Physica

symmetries. Journal of Mathematical Physics, 19816): Scripta, 201286: 065007.

1212-1215. o [24] Wazwaz, A. M. The generalized Kaup-Boussinesq equatio
[5] Weiss J, Tabor, M. Carnevale, G.: The Painlevé propefty for water wave: Multiple soliton solutions, Waves in

partial differential equations, J. Math. Phys. A, 1923; Random and Complex Media, 201%5; 473-481.

522-526 (1983) . . ‘ . [25] Wazwaz, A. M., Gaussian solitary wave solutions
[6] Magri F. Lectures Notes in Physics. Springer: Berling@9 for nonlinear evolution equations with logarithmic
[7] Wazwaz, A.M., Xu, G.Q.: Negative-order mKdV equations: nonlinearities, Nonlinear Dynamics, 83 (2016) 591-596.

multiple soliton and multiple singular soliton solutions,
Mathematical Methods in the Applied Sciences, 2038;
661-667.

[8] Verosky JM. Negative powers of Olver recursion opersitor
Journal of Mathematical Physics, 19RP(7): 1733-1736.

[9] Hereman W, Nuseir A. Symbolic methods to construct
exact solutions of nonlinear partial differential equatip
Mathematics and Computers in Simulation, 19932; 13—
27.

[10] Baldwin D, Hereman W. A symbolic algorithm for
computing recursion operators of nonlinear partial
differential equations. International Journal of Compute
Mathematics, 201087: 1094-1119.

[11] Khoury S. A. Soliton and periodic solutions for higheder
wave equations of KdV type (1), Chaos, Solitons & Fractals,
2005;26: 25-32.

[12] Khoury S. A. Exact solutions for a class of nonlinear
evolution equations: A unified anstze approach, Chaos,
Solitons & Fractals, 20086: 1181-1188.

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1206 S oD

A. Wazwaz: A New integrable equation constructed via...

Abdul-Majid
Wazwaz is a Professor
of Mathematics at Saint
Xavier University in Chicago,
lllinois, USA. He has both
authored and co-authored
more than 450 papers
in applied mathematics
and mathematical physics. He
is the author of five books on
the subjects of discrete mathematics, integral equations
and partial differential equations. Furthermore, he has
contributed extensively to theoretical advances in sglita
waves theory, the Adomian decomposition method and
other computational methods. He is a member of the
editorial board of the journals Nonlinear Dynamics
(Springer) and Physica Scripta (IOP). For these three
years in a row, 2014, 2015, and 2016, Thomas Reuters
granted him three different badges for being a "Highly
Cited Researcher.” For more information, see the web
site: Web site: http://web.sxu.edu/awl/

(@© 2017 NSP
Natural Sciences Publishing Cor.



	Introduction
	Formulation of the new integrable combined equation
	The Painlevé test
	Multiple soliton solutions
	Other solutions
	Discussion

