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Abstract: The arithmetic nature of values of some functions such as sinz, cosz, sinhz, coshz, ez, and lnz, is a relevant topic in number
theory. For instance, all those functions return transcendental values for non-zero algebraic values ofz (z 6= 1 in the case of lnz). On the
other hand, not even an irrationality proof is known for somenumbers like lnπ, π +e andπ e, though it is well-known that at least one
of the last two numbers is irrational. In this note, we first generalize the last result, showing that at least one of the sumand product of
any two transcendental numbers is transcendental. We then use this to show that, given any non-null complex numberz 6= 1/e, at least
two of the numbers lnz, z+e and zeare transcendental. It is also shown that coshz, sinhz and tanhz return transcendental values for
all z= r ln t, r ∈Q, r 6= 0, t being any transcendental number. The analogue for common trigonometric functions is also proved.
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1 Introduction

As usual, letQ denote the set of all rational numbers,
i.e. the numbers which can be written asp/q, p and q
being integers,q 6= 0. Also, let A denote the set of all
algebraic numbers (overQ), i.e. the complex numbersz
which are roots of some polynomial equation inZ[z]. All
other complex numbers — i.e.z 6∈ A — are called
transcendental numbers.1 Though the existence of
irrational numbers such as

√
2 remounts to the ancient

Greeks, no example of a transcendental number was
known at the beginning of the 19th century, which reflects
the difficulty of showing that a given number is
transcendental. The existence of ‘non-algebraic’ numbers
was conjectured by Euler in 1744, in hisIntroductio in
analysin infinitorum, where he claims, without a proof,
that “the logarithms of (rational) numbers which are not
powers of the base are neither rational nor (algebraic)
irrational, so they should be calledtranscendental.” A
such proof appeared only in 1844, when Liouville showed
that any number that has a rapidly converging sequence of
distinct rational approximations must be
transcendental [10]. In particular, he used his
approximation theorem to show that the series

1 All rational numbers are roots ofqz− p= 0, thus algebraic.
Hence all transcendental numbers are irrational.

∑∞
k=01/(2k!) converges to a transcendental number. From

the work of Cantor on set theory in 1874, one knows that
the set A is countable whereas the setR of all real
numbers is uncountable, so‘almost all’ real numbers are
transcendental. However, it remained an important
unsolved problem to prove the transcendence of naturally
occurring numbers, such ase (the natural logarithm base)
andπ (the Archimedes’ constant). Then, in 1873 Hermite
proved thater is transcendental for all rationalr 6= 0 (in
particular,e is transcendental) [5]. In 1882, Lindemann
proved the following extension of Hermite’s result [9].

Lemma 1 (Hermite-Lindemann) The number eα is
transcendental for all algebraicα 6= 0.

This implies the transcendence ofπ , as follows from
Euler’s identity ei π = −1, which is equivalent to the
impossibility of squaring the circle with only ruler and
compass, a problem that remained open by more than two
thousand years. Lemma1 is equivalent to the
transcendence of lnα for all α ∈ A , α 6= 0,1.2 Based
upon these first results, in 1885 Weierstrass succeeded in
proving a much more general result.

2 We are interpreting the complex function lnz as its principal
value, with the argument lying in the interval(−π,π].
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Lemma 2 (Lindemann-Weierstrass) Given an integer
n > 0, whenever α0, . . . ,αn are distinct algebraic
numbers, the numbers eα0, . . . ,eαn are linearly
independent overA . That is, for anyβ0, . . . ,βn ∈ A not
all zero,

n

∑
k=0

βk eαk 6= 0.

For a proof, see, e.g., Theorem 1.4 of Ref. [1] or
Theorem 1.8 of Ref. [2]. As an immediate consequence,
when one takesα0 = 0 andβ0 6= 0, one concludes that

Corollary 1 Given an integer n> 0, being α1, . . . ,αn
distinct non-zero algebraic numbers andβ1, . . . ,βn ∈ A

not all zero,∑n
k=1 βk eαk is a transcendental number.

From Euler’s formulae± i θ = cosθ ± i sinθ , it follows
that cosθ = (eiθ +e−iθ )/2 and sinθ = (eiθ −e−iθ )/(2i).
Analogously, the basic hyperbolic functions are defined as
coshθ := (eθ +e−θ )/2 and sinhθ := (eθ −e−θ)/2. From
Corollary1, it follows that

Corollary 2 For any algebraic α 6= 0, all numbers
cosα, sinα, coshα, and sinhα are transcendental.

The relevance of investigating the transcendence of
powers and logarithms of algebraic numbers was
acknowledged by Hilbert in his famous lecture
“Mathematical Problems” in 1900, at the 2nd
International Congress of Mathematicians [6], being the
content of his 7th problem, in which he questioned the
arithmetic nature ofeiπz for z∈ A .3 Of course, forz= r
a rational it was already known that both cos(rπ) and
sin(rπ) are algebraic, soeiπr is algebraic,4 but the case
of irrational algebraic values ofz remained unsolved
until 1934, when Gelfond and Schneider, working
independently, showed that [4,15]

Lemma 3 (Gelfond-Schneider) If α 6= 0,1 and β 6∈Q

are algebraic numbers, then any value ofα β is
transcendental.

For a proof, see e.g. Theorem 2.1 of Ref. [2] or
Theorem 10.1 (and Sec. 4 of Chap. 10) of Ref. [13]. This
lemma promptly implies the transcendence of 2

√
2 and

eπ = i −2i, two real numbers mentioned by Hilbert [6]. It

also follows that eiπβ =
(
eiπ)β

= (−1)β is a
transcendental number for everyβ ∈ A \Q , which solves
Hilbert’s 7th problem.5

3 Hilbert himself remarked that he expected this problem to be
harder than showing the Riemann hypothesis!

4 It was proved by Lehmer in 1933 that, for rationalr = k/n,
n > 2, the numbers 2cos(2πr) and 2sin(2πr) are algebraic
integers(i.e., roots of monic polynomial equations inZ[x] ) [7].

5 Indeed, givena,b ∈ A
⋂
R, if either a = 0 and b 6∈ Q or

a 6= 0, thene(a+bi)π = e(b−ia) iπ = (−1)b−ia is transcendental.

2 Further transcendence results

Lemma3 has a logarithmic version, namely

Lemma 4 (Log version) logβ α = lnα/ lnβ is a
transcendental number wheneverα and β are non-zero
algebraic numbers,β 6= 1, and logβ α 6∈Q.

This form appears, e.g., in Theorem 10.2 of Ref. [13].
It has a consequence for tangent arcs, as noted by
Margolius in Ref. [11].

Corollary 3 (Margolius) If x is rational and x6= 0,±1,

then the number
arctanx

π
is transcendental.

Proof. Write x= tanθ , x∈Q, x 6= 0,±1. Then

arctanx
π

=
θ
π
=

1/i · ln(z/|z|)
1/i · ln(−1)

=
ln
(
±1/

√
1+ x2+ x i/

√
1+ x2

)

ln(−1)
, (1)

which follows by takingz= ±1+ x i in ln(z/|z|) = i θ ,
which in turn comes from the exponential representation
z= |z|ei θ . Clearly, the last expression in Eq. (1) is a ratio
of two logs with algebraic arguments,6 so Lemma4
applies and θ/π has to be either rational or
transcendental. However, it is irrational because, being
r ∈ Q, x = tanθ = tan(r π) is rational only when
x= 0,±1, as proved in Corollary 3.12 of Ref. [13].7

�

In particular, it follows that the Plouffe’s constant
arctan

(
1
2

)
/π is transcendental [11]. Let us extend

Margolius’ result to all basic trigonometric arcs.
Hereafter, the word ‘trig’ will stand for any of
{cos,sin, tan,cot,sec,csc}.

Theorem 1 (Extension of Margolius’ result) If x is a

real algebraic number, then
arctrig(x)

π
is either a rational

or transcendental number.

Proof. The proof is similar to the previous one, being
enough to takex= trig(θ ), x∈ A

⋂
R, and write

arctrig(x)
π

=
θ
π
=

ln(z/|z|)
ln(−1)

, (2)

6 Since A is a field, then, given anyα,β ∈ A , all the
numbersα ±β , α β , and α/β (β 6= 0) are also algebraic (see,
e.g., Sec. 6.6 and Theorem 6.12 of Ref. [3]). More generally,
given r ∈ Q and α ∈ A , α 6= 0, if z is any complex algebraic
(respectively, transcendental) number then all numbersz±α, αz,
z/α, andzr are also algebraic (respectively, transcendental), the
only exception beingz0 = 1 for z 6∈ A .

7 The irrationality ofθ/π is also nicely proved by Margolius
in Theorem 3 of Ref. [11] by exploring the properties of
sequences of primitive Pythagorean triples formed on writing
x= a/b, a andb being distinct non-zero integers.
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z 6= 0. The choice ofz now changes accordingly to the
function represented by ‘trig’. For arccosx, choose
z = x ±

√
1− x2 i. For arcsecx, choose

z = ±1 ±
√

x2−1 i. For arcsinx, choose
z = ±

√
1− x2 + x i. For arccscx, choose

z= ±
√

x2−1± i. For arctanx, choosez= ±1+ x i, as in
the previous proof. For arccotx, choosez= x± i. In all
these cases, the ratioz/|z| is an algebraic function ofx,
so it is an algebraic number for allx ∈ A

⋂
R. The last

expression in Eq. (2) is then a ratio of two logs with
algebraic arguments, so Lemma4 applies. �

Conversely, if x ∈ R then it will be transcendental
whenever arctrig(x)/π ∈ A \Q . This implies, e.g., the

transcendence of any trig
(√

2 π
)

.

The following extension of Lemma3 was conjectured
by Gelfond and proved by Baker in 1966, becoming the
definitive result in this area.

Lemma 5 (Baker) Given non-zero algebraic numbers
α1, . . . ,αn such that lnα1, . . . , lnαn are linearly
independent overQ , then the numbers1, lnα1, . . . , lnαn
are linearly independent overA . That is, for any
β0, . . . ,βn ∈ A not all zero, we have

β0+
n

∑
k=1

βk lnαk 6= 0.

For a proof, see Theorem 2.1 of Ref. [1].8 This lemma
has several interesting consequences.

Corollary 4 Given non-zero algebraic numbers
α1, . . . ,αn, for any β1, . . . ,βn ∈ A the number
β1 lnα1+ . . .+βn lnαn is either null or transcendental. It
is transcendental whenlnα1, . . . , lnαn are linearly
independent overQ and β1, . . . ,βn are not all zero.

For a proof, see Theorem 2.2 of Ref. [1].

Corollary 5 Let α1, . . . ,αn,β0,β1, . . . ,βn be non-zero
algebraic numbers. Then the product eβ0 α1

β1 . . . αn
βn is

a transcendental number.

For a proof, see Theorem 2.3 of Ref. [1].

Corollary 6 For any algebraic numbersα1, . . . ,αn
other than0 or 1, let 1,β1, . . . ,βn be algebraic numbers
linearly independent over Q. Then the number
α1

β1 . . . αn
βn is transcendental.

For a proof, see Theorem 2.4 of Ref. [1].

Corollary 7 The number eα+π β is transcendental for
all algebraic values ofα and β , α 6= 0.

8 Baker also gave a quantitative lower bound for these linear
forms in logs, which had profound consequences for diophantine
equations. This work won him a Fields medal in 1970.

For a proof, see Corollary 2 of Ref. [8]. Note that
eα+πβ is transcendental even ifα = 0, as long asi β 6∈Q

(see Footnote5). Note also that Corollary7 implies the
transcendence of (α + lnβ )/π for any non-zero
α,β ∈ A .

All this said, it is embarrassing that the numbers lnπ ,
π +e and π e are still not known to be transcendental. In
fact, not even an irrationality proof is known, though it is
easy to show that at least one ofπ + e and π e must be
irrational. This is proved, e.g., in a nice survey on
irrational numbers by Ross in Ref. [14], but let us present
a short proof for completeness. Let us callquadratic any
algebraic number which is a root of a 2nd-order
polynomial equation with rational coefficients.9 From the
fact thatπ is not a quadratic number (since it is not even
an algebraic number), it follows that

Lemma 6 (Harmless irrationality) At least one of the
numbersπ +e andπ e is irrational.

Proof. Consider the quadratic equation
(x − π) · (x − e) = 0, whose roots areπ and e. By
expanding the product, one hasx2 − (π + e)x+ πe= 0.
Assume, towards a contradiction, that both coefficients
π + e and π e are rational numbers. Then, our quadratic
equation would have rational coefficients and both roots
would be quadratic numbers. However,π is not a
quadratic number.

�

Since this proof does not make use of any property of
e, it is clear that Lemma6 can be generalized.

Lemma 7 (General irrationality) Given any irrational
number u which is not quadratic and any complex number
v, at least one of the numbers u+ v and uv is irrational.

Proof. The proof is identical to the previous one, being
enough to substituteπ by u ande by v.

�

In particular, this lemma applies whenu = t is a
transcendental number, so at least one of the numbers
t + v and t v is irrational. Of course, for any algebraic
v 6= 0 both t+ v and t v aretranscendentalnumbers,10 so
the interesting case is whenv is also a transcendental
number. This leads us to the following result.

Theorem 2 (Transcendence of sums and products)
Given two transcendental numbers t1 and t2, at least one
of the numbers t1+ t2 and t1 t2 is transcendental.

9 All rational numbers are quadratic because they are a root of
x(x− p/q) = 0.
10 This basic transcendence rule is easily proved by

contradiction.
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Proof. Given t1, t2 6∈ A , consider the quadratic equation
(x− t1)(x− t2) = 0, whose roots aret1 and t2. As it is
equivalent tox2− (t1+ t2)x+ t1 t2 = 0, assume, towards a
contradiction, that boths = t1 + t2 and p = t1 t2 are
algebraic numbers. The equation then reads
x2− sx+ p= 0, so, by completing the square, one finds

x2− sx+
s2

4
=

s2

4
− p

=⇒
(

x− s
2

)2
=

s2

4
− p. (3)

This implies that(x− s/2)2 is algebraic (see Footnote6),
which is impossible because, beingx one of the rootst1
andt2, the numberx−s/2 must be transcendental. �

This theorem implies, in particular, that at least one
of π +e and π e is transcendental. However, we are in a
position to prove a stronger result.

Theorem 3 (Transcendence of two numbers) Given
any non-zero complex number z6= 1/e, at least two of the
numbers z+e, ze, andlnz are transcendental.

Proof. If z 6= 0 is an algebraic number, then bothz+e
and ze are transcendental numbers, so let us restrict our
attention to z 6∈ A . If ln z is transcendental then we are
done because we know, from Theorem2, that at least one
of z+ e and ze is transcendental. All that remains is to
check whether lnz∈ A implies that bothz+ e and ze
are transcendental numbers. Since lnz= α =⇒ z= eα ,
then z+ e = eα + e is a transcendental number for all
α ∈ A , α 6= 1, according to Corollary1.11 Also, since
lnz ∈ A , then 1+ lnz = ln(ez) is also algebraic, and
then, according to Lemma1, the numberze has to be
transcendental for allz such that ln(ze) 6= 0, i.e.z 6= 1/e.

�

In particular, this theorem implies that at least two of
π +e, π e, and lnπ are transcendental numbers.

Indeed, we can make suitable choices oft1 and t2 in
Theorem2 in order to get further transcendence results.

Corollary 8 For any transcendental number t and
algebraic numbersα and β not both zero, the numbers
α t +β/ t and t(α − t) are both transcendental.

Proof. For any t 6∈ A and α,β ∈ A , not both zero,
take t1 = α t and t2 = β/ t in Theorem2. If exactly one
of α,β is null, then the proof is immediate. Otherwise,
since t1 t2 = α β ∈ A (see Footnote 6), then
t1 + t2 = α t + β/ t has to be a transcendental number.
Finally, for any α ∈ A , take t1 = t and t2 = α − t in
Theorem2. Since t1 + t2 = α ∈ A , then the number
t1 t2 = t (α − t) has to be transcendental. �

11 Note thatα = 1 implies z= e, a case in which our theorem
also holds since bothz+e= 2e and ze= e2 are transcendental.

Given any transcendental numbert, t r is
transcendental for all rationalr 6= 0, which can be readily
proved by contradiction, writingr = p/q, p and q being
non-zero integers. What aboutt α , α being an irrational
algebraic? On takingt = eπ , we know that t i ∈ A

whereas t
√

2 6∈ A (see Footnote5). The next theorem
sheds some light on this question.

Theorem 4 (Existence of an irrational algebraic exponent)
Given any transcendental number t, there is an

irrational algebraic α such that tα is also
transcendental.

Proof. Given any transcendental numbert, assume,
towards a contradiction, thattα = β is algebraic for all
α ∈ A \Q . From Corollary 8, tr (β − tr) is
transcendental for allr ∈ Q, r 6= 0, which means that
tr+α − t2r = tr+α (1− tr−α) is transcendental. Clearly,
α1,2 := r ± α is an irrational algebraic, so
tα1 (1− tα2) = β1 (1− β2) should also be transcendental,
which is false because it is the product of two algebraic
numbers.

�

Note that the similar proposition “for all transcendental
numbert, there is an irrational algebraicα such thatt α is
algebraic” isfalse, as follows from Lemma1, taking t = e.
For t = π , however, it remains open the question if there
is some algebraicα 6= 0 for which π α is algebraic.12

Another consequence of Corollary8 is as follows.

Theorem 5 (Linear independence of hyperbolic functions)
For any transcendental number t and any rational

r 6= 0, the numbers1, cosh(r ln t), and sinh(r ln t) are
linearly independent overA . In particular, both
cosh(r ln t) and sinh(r ln t) are transcendental numbers.

Proof. Sincet r is transcendental for anyt 6∈ A and any
r ∈Q, r 6= 0, then it follows from Corollary8 that, for any
α,β ∈ A not both zero,

α tr +
β
tr = α tr +β t−r 6∈ A

=⇒ α er ln t +β e−r lnt 6∈ A

=⇒ (α +β ) cosh(r ln t)+ (α −β ) sinh(r ln t) 6∈ A . (4)

Sinceα andβ are arbitrary algebraic numbers, then

α̃ cosh(r ln t)+ β̃ sinh(r ln t) 6∈ A , (5)

where α̃ = α + β and β̃ = α − β are also algebraic
numbers (not both zero), so

α̃ cosh(r ln t)+ β̃ sinh(r lnt) 6= γ , ∀ γ ∈ A . (6)

12 Note that this question is relevant for the transcendence of
lnπ, because, given non-nullα,β ∈ A , β 6= 1, πα = β ⇒
α lnπ = lnβ is transcendental, according to the log-version of
Lemma1.
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Therefore, −γ + α̃ cosh(r ln t) + β̃ sinh(r ln t) 6= 0,
which shows that 1, cosh(r ln t) and sinh(r ln t) are
linearly independent overA .

The transcendence of cosh(r ln t) follows on taking
α̃ 6= 0 and β̃ = 0 in Eq. (6), whereas that of sinh(r ln t)

follows on takingα̃ = 0 andβ̃ 6= 0.

�

In addition, it is easy to prove the transcendence of
tanh(r ln t).

Theorem 6 (Transcendence oftanh(r ln t)) For any
transcendental number t and any r∈ Q, r 6= 0, the
numbertanh(r ln t) is transcendental.

Proof. For any transcendental numbert and anyr ∈ Q,
r 6= 0, we have tanh(r ln t) := sinh(r ln t)/cosh(r ln t) =
(tr − t−r)/(tr + t−r) = (t2r − 1)/(t2r + 1) 6= 1. Now,
assume, towards a contradiction, that tanh(r ln t) = α, for
someα ∈ A , α 6= 0,1. Then

t2r −1
t2r +1

= α

=⇒ t2r −1= α
(
t2r +1

)
= α t2r +α

=⇒ (1−α)t2r = α +1

=⇒ t2r =
1+α
1−α

, (7)

which is impossible since the quotient of two algebraic
numbers is also algebraic, whereast 2r 6∈ A .

�

It follows, in particular, that cosh(lnπ), sinh(lnπ),
and tanh(lnπ) are transcendental numbers. Similar
results can be derived for the basic trigonometric
functions.

Theorem 7 (Linear independence of trig values) For
any algebraic numbersα,β , α 6= 0,1 and iβ 6∈ Q, the
numbers 1, cos(β lnα) and sin(β lnα) are linearly
independent overA . In particular, bothcos(β lnα) and
sin(β lnα) are transcendental numbers.

Proof. Since i β ∈ A \Q, then, from Lemma3, t = α i β

is a transcendental number. From Corollary8, the sum
at + b/t is also transcendental for all algebraica and b
not both zero, so

aα iβ +bα−iβ = aeiβ lnα +be−iβ lnα 6∈ A

=⇒ (a+b) cos(β lnα)+ i (a−b) sin(β lnα) 6∈ A , (8)

which is equivalent tõa cos(β lnα) + b̃ sin(β lnα) 6= c,
for all c∈ A . Therefore, for allã, b̃ ∈ A not both zero,
ã cos(β lnα)+ b̃ sin(β lnα)− c 6= 0, for all c ∈ A . The
transcendence of cos(β lnα) follows by takingã 6= 0, b̃=
0 and that of sin(β lnα) follows by takingã= 0, b̃ 6= 0.

�

Theorem 8 (Transcendence oftan(β lnα)) For any
algebraic numbersα,β , α 6= 0,1 and iβ 6∈ Q, the
numbertan(β lnα) is transcendental.

Proof. Given non-zero algebraic numbersα,β , α 6= 1,
assume, towards a contradiction, that tan(β lnα) = γ for
someγ ∈ A . Then

γ =
sin(β lnα)

cos(β lnα)
=

1
i

eiβ lnα −e−iβ lnα

eiβ lnα +eiβ lnα

=⇒ i γ =
α iβ −α−iβ

α iβ +α−iβ =
α2iβ −1

α2iβ +1
. (9)

The last equality implies thati γ 6= 1. From Lemma3, we
know that t = α i β is transcendental for all algebraic
values ofβ such thati β 6∈Q, therefore

i γ = γ̃ =
t2−1
t2+1

=⇒ γ̃ t2+ γ̃ = t2−1

=⇒ (1− γ̃ )t2 = 1+ γ̃

=⇒ t2 =
1+ γ̃
1− γ̃

=
1+ i γ
1− i γ

, (10)

which should be algebraic since it is a quotient of two
algebraic numbers. However, this is impossible because
t2 is transcendental for allt 6∈ A .

�

Theorems7 and8 imply, for instance, that all numbers

trig(ln2) and trig
(√

2π
)

are transcendental.

3 Conclusion

Summarizing, we reviewed in this note the main
transcendence results presently known involving the basic
trigonometric and hyperbolic functions, as well asez and
lnz. Since not even an irrationality proof is known for
some numbers like lnπ , π + e andπ e,13 we decided to
explore a generalization of a well-known ‘harmless’
irrationality theorem, our Lemma6, towards the
derivation of conditional transcendence results for those
numbers. Hopefully, the results put forward here in this
paper should be useful for those researchers who are
investigating the irrationality and/or transcendence of
such numbers.

13 There is a recent work on modular functions by Nesterenko
(1996) [12], in which he shows thatπ and e

√
n π are

algebraically independent overQ for all integer n > 0. This
implies that, for any rationalr 6= 0, q lnπ 6= √

n p π − ln r for
all non-negative integersp andq (not both zero). Forr = 1, e.g.,
one concludes that lnπ and

√
n π are linearly independent over

Q. In particular, lnπ is not a rational multiple ofπ.
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Fábio M. S. Lima
received the PhD degree
in Physics at University of
Brası́lia in 2003. His research
interests in mathematics
are in analytic number theory,
particularly the properties of
the transcendental functions
related to the Gamma and
Riemann zeta functions, as

well as irrationality and transcendence proofs for
numbers related toe, π , odd zeta values, and Catalan’s
constantG. He has published research articles in reputed
international journals of both theoretical physics and
mathematical sciences. He is referee of a number of
physics and mathematics journals.

c© 2017 NSP
Natural Sciences Publishing Cor.

 http://www.plouffe.fr/simon/articles/plouffe.pdf

	Introduction
	Further transcendence results
	Conclusion

