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Abstract: In this paper, we introduce a new class of generalized Hermite-Euler and Hermite-Genocchi polynomials and derive
some symmetric identities by applying the generating functions. Also, we obtain some potentially useful relations forthe Bernoulli
polynomials, Euler polynomials, power sum, alternating sum and Genocchi numbers. These results extend some known summations
and identities of generalized Hermite-Euler and Hermite-Genocchi polynomials studied by Dattoli et al. [3], Pathan and Khan [9] and
Khan [5].
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1 Introduction

The 2-variable Hermite Kampé de Fériet polynomials
(2VHKdFP)Hn(x,y) [1,3] are defined as:

Hn(x,y) = n!
[ n
2 ]

∑
r=0

yrxn−2r

r!(n−2r)!
, (1.1)

with the following generating function:

ext+yt2 =
∞

∑
n=0

Hn(x,y)
tn

n!
. (1.2)

On replacingx by 2x and settingy = −1, equation (1.2)
reduces to the classical Hermite polynomialsHn(x) (see
[2]).

The generalized Bernoulli, Euler and Genocchi
polynomials of (real or complex) orderα are usually
defined by means of the following generating functions
(see [5]-[11]):
(

t
et −1

)α
ext =

∞

∑
n=0

B(α)
n (x)

tn

n!
,(| t |< 2π ;1α =1), (1.3)

(

2
et +1

)α
ext =

∞

∑
n=0

E(α)
n (x)

tn

n!
,(| t |< π ;1α = 1) (1.4)

and
(

2t
et +1

)α
ext =

∞

∑
n=0

G(α)
n (x)

tn

n!
,(| t |< π ;1α = 1). (1.5)

so that obviously

Bn(x) = B1
n(x),En(x) = E1

n (x) andGn(x) =G1
n(x),(n ∈N),

whereN0 = N∪{0}(N= 1,2,3, · · ·).

For each integerk ∈ N0, Sk(n) is defined by

Sk(n) =
n

∑
i=0

ik, (1.6)

is called sum of integer powers or simply power sum.

The exponential generating function forSk(n) is given
by [4]:

∞

∑
k=0

Sk(n)
tk

k!
= 1+et +e2t + · · ·+ent =

e(n+1)t −1
et −1

. (1.7)

For k ∈ N0 andn ∈ N, Tk(n) is defined by

Tk(n) =
n

∑
i=0

(−1)iik, (1.8)
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is called the alternating sum of integer powers.

The exponential generating functionTk(n) is defined
by

∞

∑
k=0

Tk(n)
tk

k!
=

1− (−1)ne(n+1)t

1+ et . (1.9)

Due to great importance and applications of
Hermite-Euler and Hermite-Genocchi polynomials in
several diverse fields (for example, number theory,
combinatorics, classical and numerical analysis etc.), a
number of authors have introduced and investigated
several generalizations of these polynomials. In sequel of
such type of works, in this paper, we introduce a new
generalization of Hermite-Euler and Hermite-Genocchi
polynomials. We also establish some elementary
properties (for example, symmetric identities connection
and summation formulae) for the polynomials introduced
here by the approach given in the recent works of Yang et
al. [11], Khan et al. [6] and Pathan and Khan [9].

2 Some symmetry identities for the
generalized Hermite-Euler polynomials

In this section, we introduce the generalized

Hermite-Euler polynomialsHE(α)
n (x,y) for a real or

complex parameterα defined by means of the following
generating function defined in a suitable neighborhood of
t = 0:

(

2
et +1

)α
ext+yt2 =

∞

∑
n=0

HE(α)
n (x,y)

tn

n!
, (2.1)

so that

HE(α)
n (x,y) =

n

∑
s=0

(

n
s

)

E(α)
n−sHs(x,y).

Notice that (2.1) is the generalization of the following
function defined by Dattoli et al. [3, p.386(1.6)]:

(

2
et +1

)

ext+yt2 =
∞

∑
n=0

HEn(x,y)
tn

n!
. (2.2)

Theorem 2.1. Let a andb be positive integers with same
parity, then

a−1

∑
i=0

(−1)ian
HE(α)

n (bx+
b
a

i,b2y)

=
b−1

∑
i=0

(−1)ibn
HE(α)

n (ax+
a
b

i,a2y). (2.3)

Proof. Let us consider

f (t) =

(

2
eat +1

)α
eabxt+a2b2yt2 1+(−1)a+1

ebt +1
eabt (2.4)

=

(

2
eat +1

)α
eabxt+a2b2yt2 1− (−e−bt)a

ebt +1

=

(

2
eat +1

)α
eabxt+a2b2yt2

a−1

∑
i=0

(−ebt)i

=

(

2
eat +1

)α
ea2b2yt2

a−1

∑
i=0

(−1)ie(bx+ b
a i)at

f (t) =
∞

∑
n=0

a−1

∑
i=0

(−1)ian
HE(α)

n (bx+
b
a

i,b2y)
tn

n!
. (2.5)

Since (−1)a+1 = (−1)b+1, the expression for

f (t) =
(

2
eat+1

)α
eabxt+a2b2yt2 1+(−1)a+1

ebt+1
eabt Therefore, we

obtain the following power series expansion for f(t) by
symmetry

f (t) =
∞

∑
n=0

b−1

∑
i=0

(−1)ibn
HEα

n (ax+
a
b

i,a2y)
tn

n!
. (2.6)

Equating the coefficients oft
n

n! in (2.5) and (2.6), we
get the desired result (2.3).

Remark 2.1. On setting α = 1, y = 0, Theorem 2.1
reduces to the known result of Yang et al. [11, p.459(17)].

Corollary 2.1. For α = 1 in Theorem 2.1, we obtain the
following result:

a−1

∑
i=0

(−1)ian
H En(bx+

b
a

i,b2y) =
b−1

∑
i=0

(−1)ibn
HEn(ax+

a
b

i,a2y).

(2.7)
Theorem 2.2. Let a andb be positive integers with same
parity, then the following identity holds true:

n

∑
k=0

(

n
k

)

akbn−k
HE(α)

k (bx,b2y)Tn−k(a)

=
n

∑
k=0

(

n
k

)

an−kbk
HE(α)

k (ax,a2y)Tn−k(b). (2.8)

Proof. Let us consider

f (t) =

(

2
eat +1

)α
eabxt+a2b2yt2 1+(−1)a+1

ebt +1
eabt (2.9)

=

(

2
eat +1

)α
eabxt+a2b2yt2 1− (−e−bt)a

et +1
eat

=
∞

∑
k=0

HE(α)
k (bx,b2y)

(at)k

k!

∞

∑
n=0

Tn(a)
(bt)n

n!

Now replacingn by n− k in the R.H.S. of above equation,
we get

f (t) =
∞

∑
n=0

n

∑
k=0

(

n
k

)

HE(α)
k (bx,b2y)akbn−kTn−k(a)

(t)n

n!
.

(2.10)
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Since (−1)a+1 = (−1)b+1, the expression for

f (t) =
(

2
eat+1

)α
eabxt+a2b2yt2 1+(−1)a+1

ebt+1
eabt Therefore, we

obtain the following power series expansion for f(t) by
symmetry

f (t) =
∞

∑
n=0

n

∑
k=0

(

n
k

)

HE(α)
k (ax,a2y)bkan−kTn−k(b)

(t)n

n!
.

(2.11)
Now equating the coefficients oft

n

n! in the last two
expression for f(t), we get our desired result.

Remark 2.2. For α = 1,y = 0, Theorem 2.2 reduces to
the known result of Yang et al. [[11],p.460(18)].

Corollary 2.2. Takingα = 1 in Theorem 2.2, we deduce
the following result:

n

∑
k=0

(

n
k

)

HEk(bx,b2y)akbn−kTn−k(a)

=
n

∑
k=0

(

n
k

)

HEk(ax,a2y)bkan−kTn−k(b). (2.12)

Theorem 2.3. Let a andb be positive integers anda be
even, then the following identity holds true:

b−1

∑
i=0

HEn(ax+
a
b

i,a2y)bn

=
a−1

∑
i=0

(−1)i+1 2
n+1HBn+1(bx++

b
a

i,b2y)an
. (2.13)

Proof. Let us consider

g(t) =

(

2
ebt +1

)

eabxt+a2b2yt2 1− eabt

1− eat

=

(

2
ebt +1

)

eabxt+a2b2yt2
b−1

∑
i=0

eait

=

(

2
ebt +1

)

ea2b2yt2
b−1

∑
i=0

e(ax+ a
b i)bt

g(t) =
∞

∑
n=0

b−1

∑
i=0

HEn(ax+
a
b

i,a2y)
bntn

n!
. (2.14)

On the other hand, consideringa is even, we have

g(t) =

(

2
ebt +1

)

eabxt+a2b2yt2 1− eabt

1− eat

=−

(

2
eat −1

)

eabxt+a2b2yt2 1− (−ebt)a

1− (−ebt)

=−
at
at

(

2
eat −1

)

eabxt+a2b2yt2
a−1

∑
i=0

(−ebit)

=−
1
at

(

2
eat −1

)

ea2b2yt2
a−1

∑
i=0

(−1)ie(bx+ b
a )at

=−
2
at

a−1

∑
i=0

(−1)i
∞

∑
n=0

HBn(bx+
b
a

i,b2y)
antn

n!

=−
2
at

∞

∑
n=0

a−1

∑
i=0

(−1)i
HBn(bx+

b
a

i,b2y)
antn

n!

=−2
∞

∑
n=0

a−1

∑
i=0

(−1)i
HBn(bx+

b
a

i,b2y)
an−1tn−1

n!
.

Replacingn by n+1 in the above equation, we get

g(t) =−2
∞

∑
n=0

a−1

∑
i=0

(−1)i 1
n+1HBn+1(bx+

b
a

i,b2y)
antn

n!
.

(2.15)
On equating the coefficients oftn

n! in (2.14) and (2.15), we
get our required result (2.13).

Remark 2.3. For y = 0, Theorem 2.3 reduces to the
known result of Yang et al. [[11],p.460(19)].

Theorem 2.4. Let a andb be positive integers with same
parity, then

n

∑
k=0

(

n
k

)

E(α−1)
n−k (ay)akbn−k

a−1

∑
i=0

(−1)i
HE(α)

k (bx+
b
a

i,b2z)

=
n

∑
k=0

(

n
k

)

E(α−1)
n−k (by)bkan−k

b−1

∑
i=0

(−1)i
HE(α)

k (ax+
a
b

i,a2z).

(2.16)
Proof. Let us consider

h(t) =
22α−1eab(x+y)t+a2b2zt2(1+(−1)a+1)eabt

(eat +1)α(ebt +1)α (2.17)

=

(

2
eat +1

)α
eabxt+a2b2zt2 1− (−ebt)a

ebt +1

(

2
ebt +1

)α−1

eabyt

=

(

2
eat +1

)α
eabxt+a2b2zt2

a−1

∑
i=0

(−ebt)i
∞

∑
n=0

E(α−1)
n (ay)

bntn

n!

=

(

2
eat +1

)α
ea2b2zt2

a−1

∑
i=0

(−1)ie(bx+ b
a i)at

∞

∑
n=0

E(α−1)
n (ay)

bntn

n!

=
a−1

∑
i=0

(−1)i
∞

∑
k=0

HE(α)
k (bx+

b
a

i,b2z)
aktk

k!

∞

∑
n=0

E(α−1)
n (ay)

bntn

n!

=
∞

∑
k=0

a−1

∑
i=0

(−1)i
HE(α)

k (bx+
b
a

i,b2z)
ak

k!

∞

∑
n=0

E(α−1)
n (ay)

bntn+k

n!
.

On replacingn by n− k in the above equation, we have

h(t) =
∞

∑
n=0

n

∑
k=0

(

n
k

)

E(α−1)
n−k (ay)akbn−k

a−1

∑
i=0

(−1)i
H E(α)

k (bx+
b
a

i,b2z)
tn

n!
. (2.18)
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We may also expand h(t) as:

h(t)=

(

2
ebt +1

)α
eabxt+a2b2zt2 1− (−eat)b

eat +1

(

2
eat +1

)α−1

eabyt
,

=

(

2
ebt +1

)α
eabxt+a2b2zt2

b−1

∑
i=0

(−eat )i
∞

∑
n=0

E(α−1)
n (by)

antn

n!

=

(

2
ebt +1

)α
ea2b2zt2

b−1

∑
i=0

(−1)ie(ax+ a
b i)bt

∞

∑
n=0

E(α−1)
n (by)

antn

n!

=
b−1

∑
i=0

(−1)i
∞

∑
k=0

HE(α)
k (ax+

a
b

i,a2z)
bktk

k!

∞

∑
n=0

E(α−1)
n (by)

antn

n!

=
∞

∑
k=0

b−1

∑
i=0

(−1)i
HE(α)

k (ax+
a
b

i,a2z)
bk

k!

∞

∑
n=0

E(α−1)
n (by)

antn+k

n!
.

Further, on replacingn by n− k in the above equation, we
have

h(t) =
∞

∑
n=0

n

∑
k=0

(

n
k

)

E(α−1)
n−k (by)bkan−k

×
b−1

∑
i=0

(−1)i
HE(α)

k (ax+
a
b

i,a2z)
tn

n!
. (2.19)

After, equating the coefficients oft
n

n! from (2.18) and
(2.19), we get (2.16).

Remark 2.4. On puttingz = 0, Theorem 2.4 reduces to a
the known result of Yang et al. [[11],p.461(21)].

Corollary 2.4. On settingα = 1 andy= 0 in Theorem 2.4,
we get the following result:

n

∑
k=0

(

n
k

)

akbn−k
a−1

∑
i=0

(−1)i
HEk(bx+

b
a

i,b2z)

=
n

∑
k=0

(

n
k

)

bkan−k
b−1

∑
i=0

(−1)i
HEk(ax+

a
b

i,a2z). (2.20)

3 Some symmetry identities for the
generalized Hermite-Genocchi polynomials

In this section, we introduce the generalized

Hermite-Genocchi polynomialsHG(α)
n (x,y) (for a real or

complex parameterα) by means of the following
generating function defined in a suitable neighborhood of
t = 0:

(

2t
et +1

)α
ext+yt2 =

∞

∑
n=0

HG(α)
n (x,y)

tn

n!
, (3.1)

so that

HG(α)
n (x,y) =

n

∑
s=0

(

n
s

)

G(α)
n−sHs(x,y).

On settingy = 0, equation (3.1) immediately reduces
to (1.5).

For α = 1, equation (3.1) reduces to
(

2t
et +1

)

ext+yt2 =
∞

∑
n=0

HGn(x,y)
tn

n!
. (3.2)

If we set α = 0 in (3.1) then we get the generating
function given by (1.2).

Theorem 3.1. Let a andb be positive integers with same
parity, then the following identity holds true:

n

∑
k=0

(

n
k

)

G(α−1)
n−k (ay)akbn−k

a−1

∑
i=0

(−1)i
HG(α)

k (bx+
b
a

i,b2z)

=
n

∑
k=0

(

n
k

)

G(α−1)
n−k (by)bkan−k

b−1

∑
i=0

(−1)i
HG(α)

k (ax+
a
b

i,a2z).

(3.3)
Proof. Let us consider

f (t) =
(2t)2α−1eab(x+y)t+a2b2zt2(1+(−1)a+1)eabt

(eat +1)α(ebt +1)α . (3.4)

We can expand f(t) as:

f (t)=

(

2t
eat +1

)α
eabxt+a2b2zt2 1− (−ebt)a

ebt +1

(

2t

ebt +1

)α−1

eabyt

=

(

2t
eat +1

)α
eabxt+a2b2zt2

a−1

∑
i=0

(−ebt)i
∞

∑
n=0

G(α−1)
n (ay)

bntn

n!

=

(

2t
eat +1

)α
ea2b2zt2

a−1

∑
i=0

(−1)ie(bx+ b
a i)at

∞

∑
n=0

G(α−1)
n (ay)

bntn

n!

=
a−1

∑
i=0

(−1)i
∞

∑
k=0

HG(α)
k (bx+

b
a

i,b2z)
aktk

k!

∞

∑
n=0

G(α−1)
n (ay)

bntn

n!

=
∞

∑
k=0

a−1

∑
i=0

(−1)i
HG(α)

k (bx+
b
a

i,b2z)
ak

k!

∞

∑
n=0

G(α−1)
n (ay)

bntn+k

n!
.

On replacingn by n− k in the above equation, we have

f (t) =
∞

∑
n=0

n

∑
k=0

(

n
k

)

G(α−1)
n−k (ay)akbn−k

×
a−1

∑
i=0

(−1)i
HG(α)

k (bx+
b
a

i,b2z)
tn

n!
. (3.5)

We may also expandf (t) as:

f (t)=

(

2t

ebt +1

)α
eabxt+a2b2zt2 1− (−eat)b

eat +1

(

2t
eat +1

)α−1

eabyt

=

(

2t

ebt +1

)α
eabxt+a2b2zt2

b−1

∑
i=0

(−eat)i
∞

∑
n=0

G(α−1)
n (by)

antn

n!

=

(

2t

ebt +1

)α
ea2b2zt2

b−1

∑
i=0

(−1)ie(ax+ a
b i)bt

∞

∑
n=0

G(α−1)
n (by)

antn

n!
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=
b−1

∑
i=0

(−1)i
∞

∑
k=0

HG(α)
k (ax+

a
b

i,a2z)
bktk

k!

∞

∑
n=0

G(α−1)
n (by)

antn

n!

=
∞

∑
k=0

b−1

∑
i=0

(−1)i
HG(α)

k (ax+
a
b

i,a2z)
bk

k!

∞

∑
n=0

G(α−1)
n (by)

antn+k

n!
.

Replacingn by n− k in the above equation, we have

f (t) =
∞

∑
n=0

n

∑
k=0

(

n
k

)

G(α−1)
n−k (by)bkan−k

×
b−1

∑
i=0

(−1)i
HG(α)

k (ax+
a
b

i,a2z)
tn

n!
. (3.6)

By comparing the coefficients oft
n

n! in (3.5) and (3.6), we
obtain our desired result (3.3).

Corollary 3.1. If we put α = 1 in Theorem 3.1, then we
get the following result:

n

∑
k=0

(

n
k

)

akbn−k
a−1

∑
i=0

(−1)i
HGk(bx+

b
a

i,b2z)

=
n

∑
k=0

(

n
k

)

bkan−k
b−1

∑
i=0

(−1)i
HGk(ax+

a
b

i,a2z). (3.7)

Theorem 3.2. Let a andb be positive integers with same
parity, then the following identity holds true:

n

∑
k=0

(

n
k

)

HGk(bx,b2y)akbn−k+1Tn−k(a)

=
n

∑
k=0

(

n
k

)

HGk(ax,a2y)bkan−k+1Tn−k(b). (3.8)

Proof. Let us consider

f (t) =

(

2abt
eat +1

)

eabxt+a2b2yt2 1+(−1)a+1eabt

ebt +1
(3.9)

=

(

2abt
eat +1

)

eabxt+a2b2yt2 1− (−ebt)a

ebt +1

=

(

2abt
eat +1

)

eabxt+a2b2yt2
a−1

∑
i=0

(−ebt)i

=
a−1

∑
i=0

(−1)ib

(

2at
eat +1

)

eabxt+a2b2yt2ebit

=
a−1

∑
i=0

(−1)ib
∞

∑
k=0

HGk(bx,b2y)
aktk

k!

∞

∑
n=0

(bi)n tn

n!
.

Replacingn by n− k in the above equation, we have

f (t) =
∞

∑
n=0

(

n

∑
k=0

(

n
k

)

HGk(bx,b2y)akbn−k+1
a−1

∑
i=0

(−1)iin−k

)

tn

n!

f (t) =
∞

∑
n=0

(

n

∑
k=0

(

n
k

)

HGk(bx,b2y)akbn−k+1Tn−k(a)

)

tn

n!
.

(3.10)

Since (−1)a+1 = (−1)b+1, the expression for

f (t) =
(

2abt
eat+1

)α
eabxt+a2b2yt2 1+(−1)a+1

ebt+1
eabt Therefore, we

obtain the following power series expansion for f(t) by
symmetry

f (t)=
∞

∑
n=0

(

n

∑
k=0

(

n
k

)

HGk(ax,a2y)bkan−k+1Tn−k(b)

)

(t)n

n!
.

(3.11)
By equating the coefficients oft

n

n! in the last two
expression forf (t), we arrive at our desired result (3.8).

Remark 3.1. For x,y = 0, Theorem 3.2 reduces to the
known result of Yang et al. [[11],p.462(22)].

Theorem 3.3. Let m andn be positive integers, then the
following identity holds true:

m

∑
k=0

(

m
k

)

Bk(n,x)Tm−k(n)= 2m−1
(

Bm[
n
2
,

x
2
]+(−1)n+1Bm(n,

x
2
)
)

;

(3.12)
m

∑
k=0

(

m
k

)

Ek(n,x)Sm−k(n)=
2m+2

m+1

(

Bm+1(n,
x
2
)−Bm+1(

n
2
,

x
2
)
)

.

(3.13)
Proof. Let us consider

f (t) =

(

t
et −1

)

ent+xt 1+(−1)n+1

et +1
ent (3.14)

=
∞

∑
k=0

Bk(n,x)
tk

k!

∞

∑
m=0

Tm(n)
tm

m!
.

Replacingm by m− k in the above equation, we have

f (t) =
∞

∑
m=0

m

∑
k=0

(

m
k

)

Bk(n,x)Tm−k(n)
tm

m!
. (3.15)

On the other hand

f (t) =
tent+xt +(−1)n+1te2nt+xt

e2t −1

=

(

t
e2t −1

ent+xt
)

+
(−1)n+1te2nt+xt

e2t −1

=
1
2

∞

∑
m=0

Bm[
n
2
,

x
2
]
(2t)m

m!
+

(−1)n+1

2

∞

∑
m=0

Bm(n,
x
2
)
(2t)m

m!

f (t) =

(

∞

∑
m=0

2m−1
(

Bm[
n
2
,

x
2
]+ (−1)n+1Bm(n,

x
2
)
)

)

tm

m!
.

(3.16)
On comparing the coefficients oftm

m! in (3.15) and (3.16),
we arrive at the desired result (3.12).

Similarly by considering,

g(t) =

(

2
et +1

)

ent+xt ent −1
et −1

(3.17)
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=
∞

∑
k=0

Ek(n,x)
tk

k!

∞

∑
m=0

Sm(n)
tm

m!
.

Replacingm by m− k in the above equation, we have

g(t) =
∞

∑
m=0

m

∑
k=0

(

m
k

)

Ek(n,x)Sm−k(n)
tm

m!
. (3.18)

On the other hand

g(t) =

(

2
et +1

)

ent+xt ent −1
et −1

=
2e2nt+xt −2ent+xt

e2t −1

=
2e2nt+xt

e2t −1
−

2ent+xt

e2t −1

=
2
t

∞

∑
m=0

Bm(n,
x
2
)
(2t)m

m!
−

2
t

∞

∑
m=0

Bm(
n
2
,

x
2
)
(2t)m

m!

=

(

∞

∑
m=0

2m+1
(

Bm(n,
x
2
)−Bm(

n
2
,

x
2
)
)

)

tm−1

m!
.

Replacingm by m+1 in the above equation, we get

g(t) =
∞

∑
m=0

(

2m+2

m+1

(

Bm+1(n,
x
2
)−Bm+1(

n
2
,

x
2
)
)

)

tm

m!
.

(3.19)
On comparing the coefficients oftm

m! in (3.18) and (3.19),
we get the desired result (3.13).

Remark 3.2. For x = 0, Theorem 3.3 reduces to the
known result of Yang et al. [[11],p.463(26)].

Theorem 3.4. Let m andn be positive integers, then the
following identity holds true:

m

∑
k=0

Gk(n,x)Sm−k(n) = 2m+1
(

Bm(n,
x
2
)−Bm(

n
2
,

x
2
)
)

.

(3.20)
Proof. Let us consider

h(t) =

(

2t
et +1

)

ent+xt ent −1
et −1

=
∞

∑
k=0

Gk(n,x)
tk

k!

∞

∑
m=0

Sm(n)
tm

m!

h(t) =
∞

∑
m=0

m

∑
k=0

(

m
k

)

Gk(n,x)Sm−k(n)
tm

m!
. (3.21)

On the other hand

h(t) =

(

2t
et +1

)

ent+xt ent −1
et −1

=
2te2nt+xt −2tent+xt

e2t −1

=
2te2nt+xt

e2t −1
−

2tent+xt

e2t −1

= 2
∞

∑
m=0

Bm(n,
x
2
)
(2t)m

m!
−2

∞

∑
m=0

Bm(
n
2
,

x
2
)
(2t)m

m!

h(t) =
∞

∑
m=0

(

2m+1
(

Bm(n,
x
2
)−Bm(

n
2
,

x
2
)
)) tm

m!
. (3.22)

On comparing the coefficients oft
m

m! in (3.21) and
(3.22), we get the desired result (3.20).

Remark 3.3. For x = 0, Theorem 3.4 reduces to the
known result of Yang et al. [[11],p.463(27)].

4 Conclusion

Recently, many authors namely, Khan [5], Yang et al.
[11], Khan et al. [6] and Pathan and Khan [9], have
introduced and investigated several generalizations of
Hermite-Euler and Hermite-Genocchi polynomials. In a
sequel of such type of works, in this paper, we have
introduced a new generalization of Hermite-Euler and
Hermite-Genocchi polynomials. We have also established
some elementary properties (for example, symmetric
identities, summation formulae, power sum and
alternating sum) for the polynomials introduced here. The
results presented in this paper are more general in nature.
Therefore, by the results established here, we may derive
some other interesting special cases.
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