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Abstract: Generation of distributions, by composition of cumulativedistribution functions (CDFs), compounding or mixing, leads the
population distribution to be more flexible to analyzing data. On the other hand, heavy-tailed skewed distributions canbe generated by
compounding. Different generating methods are surveyed. Such methods include generation by composition, compounding and mixing
(countable or finite). Relationships of some of the generated distributions to other distributions, or functions are presented.
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1 Introduction

New distribution functions can be generated by using different generating methods. For example, composition of CDFH
with another CDFG, generates a new CDF that performs better than the base line CDF G, in the setting. In this article,
the following generating methods will be surveyed in Sections 2-4, followed by some concluding remarks in Section 5.

2. Generation by Composition
2.1 Composition of a CDF with another CDF on the support(0,1)
2.2 Composition of a CDF with a function of another CDF, in thegeneral case
2.3 Composition of a symmetric probability density function (PDF) with a transformation of scale

3. Generation by Compounding
4. Generation by Mixing

4.1 Generation by countable mixtures
4.2 Generation by finite mixtures

5. Conclusion

2 Generation by Composition

2.1 Composition of a CDF with another CDF on the support(0,1)

Suppose thatH(.) andG(.) are two absolutely continuous CDFs whose corresponding PDFs areh(.) andg(.), respectively.
Suppose also that the composition ofH(.) andG(.) yields a CDF given by

F(x) = H[G(x)] =
∫ G(x)

0
h(y)dy, (1)

with PDF f (.). In this composition,H(.) is assumed to have support the unit interval(0,1), while G(.) is an arbitrary
CDF, defined on the whole real line. Two choices for the PDFh(.) are known in literature:

–whenh(.) is the beta PDF,
–whenh(.) is the Kumaraswamy (Kw) PDF.
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2.1.1 The beta-G family

In this case,h(y) is chosen to be the beta PDF, given by

h(y) =
1

B(a,b)
ya−1(1− y)b−1, 0< y< 1.

Therefore, Equation (1) becomes

F(x) = H[G(x)] =
1

B(a,b)

∫ G(x)

0
ya−1(1− y)b−1 dy, (2)

whereB(a,b) is the beta function. The CDF, given by (2), is known as the beta-G distribution.
Eugene et al [1] studied the beta-normal distribution. Jones [2] generalized the beta-normal distribution to include an

arbitraryG instead of specifyingG to be normal.

Remark 1 F(x), given by (2), is the incomplete beta ratio, denoted by IG(a,b). So, we can write

F(x) = IG(a,b), (3)

where IG(a,b) is given by (2).

Remark 2 An important special case of (2) is the case of exponentiated-distributions which can be obtained by taking
b= 1, in (2), so that

F(x) = [G(x)]a. (4)

For more details on exponentiated distributions, see AL-Hussaini and Ahsanullah [3]. Nadarajah [4] and Nadarajah et al
[5] surveyed the exponentiated Weibull and exponentiated exponential distributions, respectively.

By specifyingG, some of the beta-G distributions were obtained and studied by the following researchers (Table 1).

2.1.2 Kumaraswamy-G (Kw-G) Family

Kw [6] suggested the use of a CDF of the form

H(y) = 1− (1− ya)b, 0< y< 1, (a,b> 0),

as a model in hydrology processes. The corresponding PDF is given by

h(y) = abya−1(1− ya)b−1.

So that, for arbitraryG, composite function (1) becomes

F(x) = H[G(x)] = 1− (1− [G(x)]a)b, (5)

and the corresponding PDF takes the form

f (x) = ab[G(x)]a−1(1− [G(x)]a)b−1. (6)

The Kw-G distribution was used by some researchers whenG is arbitrary and whenG has specific form. A list of such
researchers is given in Table 2.

The Kw - Weibull model was used in accelerated life testing byRezk [27], Rezk et al [28] and AL-Dayan et al [29].
Jones [30] compared the beta distribution with Kw distribution. He summarized pros, cons and equivalences for the

two distributions and concluded by saying that: “The Kw is certainly not superior to the beta distribution in any way, but
it might be worth consideration from time to time by researchers who wish to utilize one or more of its simple properties”.
In addition to its “simple properties”, Cordeiro et al [11] noticed that the Kw(a,b) distribution has a physical interpretation
whena andb are positive integers. They explain their remark as follows:
Suppose that a system is made ofb independent components and that each component is made up ofa independent
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Table 1: Beta-G family whenG is specified as given and reference.
G(x) Reference
Normal Eugene et al [1]
Fréchet Nadarajah and Gupta [7]
Gumble Nadarajah and Kotz [8], Jonsson [9]
Weibull Famoye et al [10], Cordeiro et al [11]
Exponential Nadarajah and Kotz [12]
Gamma Kong et al [13]
Extreme value type III Zafar and Aleem [14]
Pareto type I Akinsete et al [15]
Exponentiated Exponential Barreto-Souza et al [16]
Laplace Condeiro and Lemonte [17]
Burr type XII Paranoı́ba et al [18]
Exponentiated Weibull Singla et al [19]
Power Cordeiro and Brito [20]
Exponentiated logistic Nassar and El-Masry [21]

Table 2: Kw-G family whenG is specified as given and reference.
G(x) Reference
Weibull Cordeiro et al [11]
Modified Weibull Mateas-Salvadero et al [22]
Arbitrary Nadarajah et al [23]
Pareto Bourguignon et al [24]
Log-logistic De-Santana et al [25]
Generalized gamma De-Pascoa et al [26]

sub-components. Suppose that the system fails if any of theb components fail and that each component of all of thea
sub-components fail. LetX be the lifetime of the entire system. Cordeiro et al [11] showed that the CDF ofX is given by

P[X ≤ x] = 1− (1− [G(x)]a)b.

So that the Kw-G distribution represents the time distribution of the entire system.
Nadarajah [31] pointed out that the Kw distribution is a special case of McDonald’s [32] distribution whose PDF is

given by

f (x) =
βxβ a−1[1− ( x

γ )
β a]b−1

B(a,b)γβ a
, x> 0, (α,β ,γ > 0).

In fact, if a= 1 andγ = 1, then

f (x) = bβxβ−1[1− xβ ]b−1,

which is the PDF of Kw(β ,b) distribution. It can be shown that the Kw-G distribution is the same as a beta-exponentiated
G (EG) distribution, when the beta distribution has parameters(1,b) and the exponent of the EG distribution isc.

2.1.3 Relation of the beta- family to the hyper-geometric function and other CDFs

(i) Relation to the hyper-geometric function:

By expanding(1− y)b−1 in the integral
∫G(x)

0 ya−1(1− y)b−1dy, it follows that:

IG(a,b) =
[G(x)]a

aB(a,b) 2F1(a,1−b,a+1;G(x)),

2F1(a,b,c;z) =
∞

∑
j=0

(a) j(b) jz j

(c) j j!
and(d) j = d(d+1) . . .(d+ j −1).
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(ii) Relation to the binomial distribution:
By repeated integration by parts,

IG(a,n−a+1)=
n

∑
j=a

(n
j )[G(x)] j [1−G(x)]n− j .

(iii) Relation to the negative binomial distribution:

I1−G(a,n) =
n

∑
j=a

(
n+ j−1

j )[G(x)]n[1−G(x)] j .

(iv) Relation to theχ2-distribution:
If X1 andX2 are two independent random variables (RVs) such thatXi ∼ χ2(νi), i = 1,2, then

Z =
X1

X1+X2
∼ beta(ν1,ν2)⇒ FZ(z) = P(Z ≤ z) = IG(ν1/2,ν2/2).

(v) Relation to thet- distribution:

IG(ν/2,1/2) = 1−A(t),

where

A(t) =
∫ t

−t

1√
2π

e−u2/2du, x=
ν

ν + t2 .

(vi) Relation to thef - distribution:

Ix(ν2/2,ν1/2) = Q(x),

where

Q(t) =
∫ ∞

t

1√
2π

e−u2/2du, x=
ν1

ν2+ν1t
.

See Abramowitz and Stegun ([33], p. 945).

2.2 Composition of a CDF with a function of another CDF, in thegeneral case

2.2.1 Composition ofH with η1(x) =− lnG(x)

F(x) = H[η1(x)] =
∫ η1(x)

−∞
h(y)dy=

∫ − lnG(x)

−∞
h(y)dy, (7)

whereG(x) = 1−G(x) andH is a CDF over the whole real line.
If H is gamma(δ ,1) with PDF

h(y) =
1

Γ (δ )
yδ−1e−y, y> 0, (δ > 0), (8)

a generatedF is then given by

F(x) = H[η1(x)] =
1

Γ (δ )

∫ − lnG(x)

0
yδ−1e−ydy

=
γ[δ ,− lnG(x)]

Γ (δ )
,

(9)

whereγ(δ ,z) is the incomplete gamma function, given by

γ(δ ,z) =
∫ z

0
yδ−1e−y dy. (10)
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The corresponding PDF is given by

f (x) =
1

Γ (δ )
[− lnG(x)]δ−1g(x), x> 0. (11)

The functiong is the PDF corresponding toG.
Abdel-Hamid and Albasuoni [34] applied this technique to obtain a new distribution by composing a log-logistic

distribution with a Weibull distribution.
Zografos and Balakrishnan [35], showed that if in (11), δ = n is a positive integer, then (11) is the PDF of the upper

record value from a sequence of independently identically distributed (iid) RVs, drawn from a population with PDFg.
They also showed that if a RVX follows a distribution with PDF (11), thenZ = − lnG(x) ∼ gamma(δ ,1), given by (8)
and ifZ ∼ gamma(δ ,1), thenX = G−1(1−e−Z)∼ f , given by (11).

2.2.2 Composition ofH with η2(x) =− lnG(x)

F(x) = H[η2(x)] =
∫ η2(x)

−∞
h(y)dy

=
1

Γ (δ )

∫ − lnG(x)

0
yδ−1e−y dy

=
γ(δ ,− lnG(x))

Γ (δ )
,

(12)

whereγ(δ ,z) is the incomplete gamma function, given by (11) with z=− lnG(x).
The corresponding PDF is given by

f (x) =
1

Γ (δ )
[− lnG(x)]δ−1g(x), x∈ ℜ, δ > 0. (13)

Ristić and Balakrishnan [36] studied this “dual” case whose population survival function (SF) is given by (12). They
showed that ifδ is a positive integer, then (12) represents the SF of the lower record from a sequence of iid RVs from a
population with PDFg(x). Similarly, they showed that ifX ∼ f , given by (13), thenZ =− lnG(x) ∼ gamma(δ ,1) and if
Z ∼ gamma(δ ,1), thenX = G−1(e−Z)∼ f given by (13).

If G(x) is chosen to be exponentiated exponential distribution (EED), given byG(x) = [1−e−β x]α , then Equation (13)
becomes

F(x) =
1

Γ (δ )

∫ −α ln (1−e−βx)

0
yδ−1e−y dy. (14)

Some properties and inferences, in this case were studied byRistić and Balakrishnan [36].

(i) Relation ofF(x) to the confluent hyper-geometric function
It can be shown that

F(x) =
1

Γ (δ )

[

(−α ln(1−e−β x))δ

δ

]

M[δ ,1+ δ , ln(1−e−β x)], (15)

whereM[a,b;z] is the confluent hyper-geometric function, defined by

M[a,b;z] = 1+
az
b
+

(a)2z2

(b)22!
+ · · ·+ (a)nzn

(b)nn!
+ . . . , (16)

where(d) j = d(d+1) . . .(d+ j −1), j = 1,2, . . . .
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(ii) Relation ofF(x) to the Poisson distribution
Assuming thatδ = k is a non-negative integer and−α ln(1−e−β x) = z, it follows, from (13) that

F(x) =
γ(k,z)
Γ (k)

=
1

Γ (k)

[

(k−1)!
∞

∑
j=k

zj

j!
e−z

]

=(1−e−β x)α
∞

∑
j=k

[− ln(1−e−β x)] j

j!
.

(17)

(iii) A simple series for the incomplete gamma integral, suggested by Lau [37], can be used to write the SF as follows

F(x) =
γ(k,z)
Γ (δ )

=
1

Γ (δ )

∫ z

0
yδ−1e−ydy

=A
∞

∑
j=0

Cj (δ ,z),
(18)

where

z=− lnG(x), A=
zδ e−δ

Γ (δ +1)
, C0 = 1 and Cj(δ ,z) =

z
δ + j

Cj−1(δ ,z), j = 1,2, . . . .

For proof of (18), see [37].

2.3 Composition of a symmetric PDF with a transformation of scale

Jones [38] generated a PDFf by composing a symmetric PDFg with transformation of scalet(x), in such a way that

f (x) = 2g[t(x)], −∞ < x< ∞. (19)

Two of such transformations were suggested by Baker [39]:

t1(x) = x− b
x
, x> 0, b> 0,

and

t2(x) =
1
a

ln(eax−1), x> 0, a> 0.

In addition, Jones [38] suggested the following four transformations of scale:

t3(x) = c

(

2

√

x
c
−1

)

I(0< x< c)+ xI(x≥ c), x> 0, c> 0,

t4(x) = d

(

1− x2

d2

)

I(x<−d)+d

(

x
d
+

1
2
+

√

x
d
+

4
5

)

I(x≥−d), −∞ < x< ∞, d > 0,

t5(x) =
2x

1+a
I(x< 0)+

2x
1−a

I(x≥ 0), −1< a< 1, −∞ < x< ∞,

t6(x) =
2x

1+a
I(x<−1

2
(1+a))+

1
a
(1−

√

1−a(4x+a))I(−1
2
(1+a)≤ x<

1
2
(1−a))

+
2x

1−a
I(x≥ 1

2
(1−a)), −∞ < x< ∞, −1< a< 1,

whereI(A) =

{

1, x∈ A,
0, x 6∈ A is the indicator function.
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For example, if the symmetric PDFg is chosen to be the standard normal distributionN(0,1), then the generated PDF
f (x) is given, usingt3(x), by

f (x) = 2g(t3(x)) =
2√
2π



























exp

[

−1
2

[

c

(

2

√

x
c
−1

)]2
]

, 0< x< c,

exp

(

−x2

2

)

, x≥ c.

It can be shown that the generated functionf is a PDF. In fact,
∫ ∞

−∞
f (x)dx=

2√
2π

∫ c

0
e−[c(2

√
x
c−1)]2dx+

2√
2π

∫ ∞

c
e−x2/2dx

=I1+ I2,

where

I1 =
2√
2π

∫ c

0
e−[c(2

√
x
c−1)]2dx,

and

I2 =
2√
2π

∫ ∞

c
e−x2/2dx= 2P[X > c],

whereX ∼ N(0,1).
By applying the substitutionz= c(2

√

x/c−1) to I1, we havex= c[1
2(

z
c +1)]2, so dx= 1

2(
z
c +1)dz,(0,c)→ (−c,c).

It follows that

I1 =
2√
2π

∫ c

−c
e−z2/21

2
(
z
c
+1)dz=

2√
2π

∫ c

−c
e−z2/2dz= P[−c< X < c] = 1−2P[X < c].

Adding upI1 andI2,
∫ ∞
−∞ f (x)dx= 1.

3 Generation by Compounding

Suppose that CDFsG(x|θ ) andH(θ ) have PDFsg(x|θ ) andh(θ ), respectively. A generated CDFF is given by

F(x) =
∫

Θ
G(x|θ )dH(θ ). (20)

Fisher [40] called this generated distribution “compound” distribution. Teicher [41] called it “mixture” of the two
distributionsG andH. If G(x|θ ) andH(θ ) are absolutely continuous, then the corresponding generated PDF is given by

f (x) =
∫

Θ
g(x|θ )h(θ )dθ . (21)

Table 3 displays some generated PDFsf (x) =
∫ ∞

0 g(x|θ )h(θ )dθ for giveng(x|θ ) andh(θ ).

Remark 3 If, in the Poisson-gamma case (first in Table 3),α = r and β = (1− p)/p, where r is a positive integer and
0< p< 1, then

f (x) =
(r+x−1

r−1

)

pr(1− p)x, x= 0,1,2, . . . ,

which is the probability mass function (PMF) of the negativebinomial(r, p) distribution.

Remark 4 If, in the normal-gamma case (fourth in Table 3),α = r/2 andβ = 2/r, where r is a positive integer, then X
has the student’s t-distribution with r degrees of freedom.

Remark 5 Heavy-tailed skewed distributions can be obtained by compounding. For example, in the gamma-gamma case,
(third in Table 3), the resulting distribution, is also known as the“generalized Pareto distribution”. Both of the compound
PDFs have their tails thicker than (conditional) gamma distribution.

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


98 E. K. AL-Hussaini, A. H. Abdel-Hamid: Generation of distribution functions

Table 3: Generated PDFsf (x) =
∫ ∞
0 g(x|θ )h(θ )dθ for giveng(x|θ ) andh(θ )

g(x|θ ) h(θ ) f (x)
1. Poisson Gamma(α,β ) Poisson-gamma

e−θ θ k

x!
1

Γ (α)β α θ α−1e−
θ
β β xΓ (x+α)

Γ (α)x!(β+1)α+x , x= 0,1, . . .

2. Binomial Beta(α,β ) Binomial-beta

(nx)θ x(1−θ )n−x 1
B(α ,β )θ α−1(1−θ )β−1 (nx)

B(α+x,n−x+β )
B(α ,β ) , x= 0,1, . . . ,n

3. Gamma(k, 1
θ ) Gamma(α,β ) Gamma-gamma

θ k

Γ (k)x
k−1e−θx 1

Γ (α)β α θ α−1e−
θ
β β kxk−1

B(α ,k)(1+βx)k+α , x> 0

4. Normal(0, 1
θ ) Gamma(α,β ) Normal-gamma

√

θ
2π e−θx2/2 1

Γ (α)β α θ α−1e−
θ
β Γ [α+1/2]

β α
√

2πΓ [α ]
( 2β

2+βx2 )
α+1/2, −∞ < x< ∞

5. Weibull(b, 1
θ ) Gamma(α,β ) Weibull-gamma

θbxb−1e−θxb 1
Γ (α)β α θ α−1e−

θ
β αbβ (1+βxb)−α−1, x> 0

Also known as Burr type XII(α,b,β ).
6. Exp(α) Marshall-Olkin

eθ [1−e−(λx)β ] αe−αθ G(x) = αe−(λx)β

1−(1−α)e−(λx)β
, x> 0.

Remark 6 Relation between Pareto type II and Burr type XII.
When k= 1, so that X|θ ∼ Exp(θ ), then the gamma-exponential case leads to

h(x) = αβ (1+βx)−α−1, x> 0, (α, β > 0). (22)

This is the PDF of Pareto type II(α,β ) distribution (also known as Lomax(α,β ) or compound exponential(α,β )
distribution).

The CDF corresponding to (6) is given by

H(x) = 1− (1+βx)−α, x> 0. (23)

If X =Yc, whereX ∼ gamma-gamma(α,β ,k= 1) andc> 0, thenY ∼ Burr type XII (α,β ,c). This is so because

FY(y) = FX(y
c) = 1− (1+βyc)−α , y> 0. (24)

This is the three-parameter Burr type XII(α,β ,c), which is useful in modeling thicker tailed distributions.
The three-parameter Burr type XII distribution can be obtained by compounding the Weibull with the gamma

distributions, as given in the fifth case of Table 3, see [42].
Following the approach of Marshall and Olkin [43], Abdel-Hamid [44] obtained a new distribution by compounding

the half-logistic distribution with the Poisson distribution.

4 Generation by Mixing

4.1 Generation by countable mixtures

If, in (20), the entire mass of the corresponding measure ofH is confined to a countable number of pointsθ1,θ2, . . . , and
the masses atθ j , j = 1,2, . . . , areH(θ j), then

F(x) =
∞

∑
j=1

G(x|θ j)H(θ j ) =
∞

∑
j=1

p jG j(x), (25)

p j ≡ H(θ j) ⇒ 0≤ p j ≤ 1 and∑∞
j=1 p j = 1, G j(x)≡ G(x|θ j ).

Similarly, (21) becomes

f (x) =
∞

∑
j=1

g(x|θ j)H(θ j ) =
∞

∑
j=1

p jg j(x), (26)

g j(x)≡ g(x|θ j).
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Remark 7 A related but slightly different concept of compounding is as follows: A RV Y is said to have a compound
distribution if Y= ∑N

i=1Xi , where the number of terms N is random. It is assumed that the RVs X1,X2, . . . ,XN are iid and
each is independent of N. The CDF of Y is given by

FY(y) =
∞

∑
n=0

pnGn(y),

where pn = P[N = n],Gn(y) is the CDF of the sum of X1,X2, . . . ,XN and G0(y) is the point mass at y= 0, (degenerate
case).

Remark 8 Non-central distributions are obtained as countable mixtures of Poisson mixing proportions and (central)
distributions such as theχ2, f , Fisher and beta PDFs are given as follows:

(a)Non-centralχ2(ν,λ ) PDF is obtained as a countable mixture of Poisson(λ ) mass function and centralχ2(ν +2 j)
distributions, whereν represents the degrees of freedom andλ is the non centrality parameter.

f (x) =
∞

∑
j=0

e−λ λ jx(ν+2 j)/2e−x/2

j!Γ [(ν +2 j)/2]2(ν+2 j)/2
.

(b)Non-central f(ν1,ν2,λ ) PDF is obtained as a countable mixture of Poisson(λ ) mass function and central f[(ν1+2 j)/2,ν2]
distributions.

f (x) =
∞

∑
j=0

e−λ λ j [(ν1+2 j)/ν2]
(ν1+2 j)/2x(ν1+2 j)/2−1

j!B[(ν1+2 j)/2,ν2/2][1+(ν1+2 j)x/ν2](ν1+ν2)/2+ j
.

(c)Non-central Fisher(ν1,ν2,λ ) distribution is obtained as a countable mixture of Poisson(λ ) and the central Fisher
(ν1,ν2) distributions.

f (x) =
∞

∑
j=0

e−λ λ j [(ν1+2 j)/ν2]
(ν1+2 j)/2x(ν1+2 j)/2−1

j!B[(ν1+2 j)/2,ν2/2][(ν1+2 j)e2x+ /ν2](ν1+ν2)/2
.

(d)Non-central beta[(ν1+2 j)/2,ν2/2,λ ] distribution is obtained as a countable mixture of Poisson(λ ) and the central
beta(ν1/2,ν2/2) distributions.

f (x) =
∞

∑
j=0

e−λ λ j

j!B[(ν1+2 j)/2,ν2/2]
x(ν1+2 j)/2−1(1− x)(ν2)/2−1.

In general, we can “choose” other mixing proportionsp j and other PDFsg j to generate the PDF of the countable mixture,
given by (25).

Remark 9 It may be noticed that all terms vanish in the above non-central cases, whenλ = 0, except the first term. So
that, whenλ = 0, expressions (a)-(d) reduce to:

(a
′
) f (x) =

xν/2−1e−x/2

Γ [ν/2]2ν/2
, a centralχ2(ν) PDF.

(b
′
) f (x) =

[ν1/ν2]
ν1/2xν1/2−1

B[ν1/2,ν2/2][1+ν1x/ν2](ν1+ν2)/2
, a central f(ν1,ν2) PDF.

(c
′
) f (x) =

[ν1/ν2]
ν1/2xν1/2−1

B[ν1/2,ν2/2][ν1e2x+ν2](ν1+ν2)/2
, a central Fisher(ν1,ν2) PDF.

(d
′
) f (x) = 1

B[ν1/2,ν2/2]x
ν1/2−1(1− x)(ν2)/2−1,0< x< 1, a central beta[ν1/2,ν2/2] PDF.

Remark 10 A countable mixture of SFsF r(x) = ∑∞
j=r p jG j(x) whereG j(x) = [G(x)] j , j = r, r +1, . . . has the form

F r(x) =

[

pG(x)

1−qG(x)

]r

, (27)

if and only if the mixing proportions pj = (
j−1
r−1)p

rqr−1, j = r, r +1, . . . .

For proof, see AL-Hussaini and Ghitany [45]. Notice thatF r(x) is the exponentiated SF ofpG(x)
1−qG(x)

.
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Remark 11 Suppose that Y1:n, . . . ,Yn:n are the order statistics of a random sample of size n from a population whose SF
and PDF are given, respectively, by

F r(x) = [G(x)]r ,

fr(x) = r[G(x)]r−1g(x),







(28)

whereG(x) = pH(x)
1−qH(x)

and g(x) = ph(x)
[1−qH(x)]2

. The PDF of the s−th order statistic Ys:n can be given by

ζ (y) = rg(y)
s−1

∑
i=0

ai[G(y)]rmi−1, (29)

where ai = (−1)in
(

n−1
s−1

)(

s−1
i

)

, mi = n− s+ i +1.

Remark 12 It can be shown that the Marshall-Olkin [43] extended Weibull distribution can be obtained by compounding
the SF

G(x|θ ) = exp[θ (1−e
(λx)β

)], x> 0, (β ,λ ,θ > 0),

with the exponential PDF
h(θ ) = αe−αθ , θ > 0, (α > 0),

as follows

F r(x) =
∫ ∞

0
G(x|θ )h(θ )dθ

=
∫ ∞

0
e
−θ
[

α−1+e−(λx)β
]

dθ

=
α

e−(λ x)β − (1−α)

=
αe−(λ x)β

1−αe−(λ x)β , α = 1−α.

For more details, see [46].

4.2 Generation by finite mixtures

If, in (20), the entire mass of the corresponding measure ofH is confined to a finite number of pointsθ1,θ2, . . . ,θk and
the masses atθ j , j = 1,2, . . . ,k areH(θ j), similar expressions of CDF (25) and PDF (26) can be shown to be

F(x) =
k

∑
j=1

p jG j(x), (30)

and

f (x) =
k

∑
j=1

p jg j(x). (31)

A CDF of the form (30) (or PDF of the form (31)) is known as finite mixture ofk components mixed with proportions
p1, . . . , pk, 0≤ p j ≤ 1 and∑k

j=1 p j = 1.
A heterogeneous population consisting ofk sub-populations, mixed with proportionsp j , j = 1, . . . ,k can be represented
by a finite mixture whose generated CDF is given by (30).

The study of homogeneous populations with “single” component distribution was the main concern of statisticians
along history, although Newcomb [47] and Pearson [48] were two pioneers who approached heterogenous populations
with finite mixture of distributions. With the advent of computing facilities the study of heterogeneous populations, which
is the case of many real world populations, attracted the interest of several researchers from about the middle of the
century. Books have collected and organized the results of research published in several articles, see for example [49,50,
51,52,53,54,55].
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Titterington et al [50] listed and gave examples of direct applications of finite mixture models to fisheries research,
economics, medicine, psycology, paleontology, electrophoresis, sedimentology, botany, agriculture, zoology life-testing
and reliability, among others. Indirect applications include outliers, normal mixtures as checks to robustness, Gaussian
sums, cluster analysis, latent structural models, modeling prior densities, empirical Bayes method, non-parametric(kernel)
density estimation, random generation and approximation of mixture models by non-mixture models.

McLachlan and Peel [53] discussed fitting of finite mixtures through use of the EM algorithm, see Dempster et al [56],
the properties of maximum likelihood estimators, the assessment of the number of components to be used in the mixture,
applications in areas such as unsupervised pattern recognition, speech recognition and medical imaging.

Several publications on finite mixtures appeared in the pastyears. We list only a few, as the comprehensive list includes
much more publications in the same period of time. Examples are Aitkin and Tunnicliffe-Wilson [57], AL-Hussaini and
Ahmad [58,59], Aitkin and Rubin [60], Basford and McLachlan [61,62,63], Bernardo and Girón [64], Dean et al [65],
AL-Hussaini and Abdel-Hakim [66,67,68], Evans et al [69], Chen [70], Diebolt and Robert [71], Crawford [72], Escobar
and West [73], AL-Hussaini and Osman [74], Celeux et al [75], AL-Hussaini et al [76], AL-Hussaini [77], Woodward
and Sain [78], McLachlan et al [79], Besbeas and Morgan [80], AL-Hussaini and Abdel-Hamid [81,82], AL-Hussaini
and Ghitany [45], Grün and Leisch [83], Abdel-Hamid and AL-Hussaini [84,85], Al-Jaralla and AL-Hussaini [86], AL-
Hussaini and Hussein [87], among others. AL-Hussaini and Sultan [88] reviewed reliability and hazard functions under
finite mixture models. Finally, Barakat [89] suggested a new distribution family via a mixture of a baseline CDF and its
reverse, after adding and subtracting, respectively, to them the same positive location parameter. He also showed thatthe
suggested family is capable of describing many types of statistical data than many other known families. Moreover, via
mixture, Barakat and Khaled [90] suggested a new method for constructing a family of CDFs, which contains all the
possible types of CDFs and possess very wide range of the indices of skewness and kurtosis.

5 Conclusion

Generation of new distributions may be needed if the new distributions are more flexible to analyzing data in the sense of
having better fit, more shapes of the HRF, etc. These featuresmay render to the more parameters that will be added to the
new distributions. In this article, we have surveyed and discussed three methods of generation of new distributions.
These methods are:

–Generation by composition. This method includes composition of a CDF with another CDF on the support(0,1),
composition of a CDF with a function of another CDF, in the general case, and composition of a symmetric PDF
with a transformation of scale.

–Generation by compounding.

–Generation by mixing. This method includes generation by countable mixtures and generation by finite mixtures ofk
distributions.
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