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Abstract: This work deals with the initial value problem for the mukirm fractional differential equation. The fractional igative
is defined in the Caputo sense. Firstly the initial value [ewbis transformed into an equivalent Volterra-type inéégquation under
appropriate assumptions. Then, new existence resultsifooth solutions are established by using the Schauder foied fheorem.
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1 Introduction

Let’s consider multi-term Caputo-type fractional diffetial equations of the form
D%u(t) = f(t,D%u(t),...,DM-1u(t)) 1)

subject to initial conditions .
uD©) =u),i=01,..,[an] - 1, )

wherea, > an_1 > ... > a1 > 0 and the symbdDP denotes the Caputo-type fractional differential operdefined by

([1.2)
DBy = JIB1-B(IBD).

HereJ" is the Riemann-Liouville integral operator of order 0 defined by® being the identity operator and

Mut) = % /O ‘(-9 u(9ds

fory> 0.

Fractional differential equations have boosted a gredtaféaterest in areas such as porous media, plasma dynamics,
thermodynamics, cosmic rays, continuum mechanics, bichbgystems, electrodynamics, quantum mechai2i&4, 5,
6,7,8]. In particular, the relaxation modulus and creep comkéaof the multi-term fractional constitutive model which
describe the linear viscoelastic behaviour are obtaingud fnulti-term fractional differential equations, p].

In general, it is very difficult to obtain analytical soluti® of fractional differential equations. Although an ariakl
expression of solutions of initial value problems of linelifferential equations with constant coefficients and Gapu
derivative was studied beforg(), it is quite cumbersome to be handled. The predictor-aboranethod is one of powerful
tools for obtaining numerical solutions of fractional @iféntial equationslfl,12,13 14]. It was proved that the initial
value problem1)-(2) is equivalent to a fractional differential system when $oéutionu is in Cln] [0,L] [12,14]. Based
on the equivalence theorems, the studies used the predmteactor method to obtain numerical solutions of theahit
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value problem1)-(2). Thus it is significant to study the existence[of,] times continuously differentiable solutions of
the initial value problem)-(2).

Analytical properties of fractional differential equat®can be investigated by considering equivalent Voltgpa-
integral equationsl];2,11,15,16,17]. The smoothness of solutions of single-term Caputo-tyfferéntial equations was
already studiedl5]. The existence ofa.] times continuously differentiable solutions to two-temadtional differential
equations of the form

D%u(t) = f(t,D%u(t)) 3)

subject to initial conditions _
uD) =uli=01,.. [as] -1 @)
was also handled befor&€)]. The following lemmas are essential ibg).

Lemma 1([16]). Letas, a2 ¢ N and[a1] < [a2]. Suppose that(D,0) =0, f(t,0) # 0 on a compact subinterval ¢0, 1|

and f:[0,1] x R— R s continuously differentiable. Then a functioa G/?2![0, 1] is a solution of the initial value problem
(3)-(4) if and only if
[al]fl ti

i, [t
aw=y + | o vedste(0.) )
where ve C[0, 1] is a solution of the integral equation
B [az]—[a1]-1 rar) (t—s 1 . S
Vo= i;) +/ 012— aﬂ f(s’ I (Ta1] —0!1)/0 (s—w) V(W)dW)dS (6)

Lemma 2([16]). Letay, a2 ¢ N and[a1] = [a2]. Suppose that(D,0) = 0, f(t,0) # 0 on a compact subinterval ¢0, 1]
[

and f: [0,1] x R— R is continuously differentiable. Then a functioa G/?2![0, 1] is a solution of the initial value problem
(3)-(4) if and only if

[al]*lti (i) 1 t a1
ut) = —Uy + /t—s 17 v(s)dst € [0,1], 7
() Z il 0 I—(al) O( ) ()Sv [ ] ()
where ve C[0, 1] is a solution of the integral equation
1 t ar—a1—1
V0= Franan /0 (t—9) f(sV(s)). ®)

Based on lemma and lemma2, different studies18,19] established the existence and uniqueness of solutiorseto t
initial value problem 8)-(4) on the interval [0,1].

Our present paper is organized as follows. In Section 2, aesform the initial value problent)- (2) into an
equivalent \Volterra-type integral equation under progsuanptions. In particular, it is proved that lemfnand lemma
are incomplete. With the help of Section 2, the correct eris¢ results for smooth solutions to the initial value peabl
(1)- (2) are established in Section 3. We conclude the paper onodetti

2 Equivalent Integral Equations

In this section it is proved that the solvability of the initivalue problemX)- (2) is equivalent to that of a \olterra-type
integral equation.

Lemma 3([20]). Let | > 0 and assume that & C™[0,1] and m—1 < 8 < p < m. Then, for all ke {1,....m— 1},
DP—mtky(m-K) (t) = DPu(t) and D°~BDAu(t) = DPu(t).

The following lemma plays an important role in our considiera
Lemmad4.Letl>0,0< 3 < 1,gc Cl0,1] and the function F [0,1] — R is defined by

FO) = [ -9 Pgds

Then Ht) € C[0,1] if and only if g 0) =
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Proof.
ti-p

1-B
F'(t) =t"Pg(0)+ /Ot (t—s)Pg(s)dst e (0,1].

Thus,F’(t) is continuous irf[0, 1] if and only if g(0) = 0.

F(t)= 9(0) + 1}5 /Ot (t —s)lfﬁg/(s)ds,t € [0,1].

Theorem 1.Letl >0, an,a,-1 ¢ N and[an_1]+1 < an. Suppose that(D,...,0) =0, ug"”*ﬂ) =0and f:[0,1] xR —
R is continuously differentiable. Then a functior /! [0,1] is a solution of the initial value probleni)- (2) if and
only if
[ 11 ltl . Gn 1=
ut) = u +/ v(s)dst € [0,1], 9
M="3 Fk anﬂ ()s 0.1] ©)

where ve C[0,1] is a solution of the integral equation

(an—mn—ﬂ—lti . 1 t
_ (i+lan-11) / On—[an_1]—1
V(t) = —Uu + = t—s
W= 2 i Flan fan ) Jo 17
s (S_W)fan—ﬂ*"rl s (S_W)[an,l]—an,rl )
f s,/ vwdvv,,---,/ v(w)dw |ds 10
< o ([an-1]—a1) () o F([an-1] —an-1) W) (10)

ProofUsing lemma3, we have
Do~ lan-aly(fan-1l)(t) = DOy(t) = f(t,u(t),Du(t),--- ,D%1u(t)). (11)

Applying the Riemann-Liouville integral® -1l for both sides of {1) and making the substitutiorit) = u(l-1D)(t),
we obtain 0) and (0). In order to prove the converse, ket C[0, 1] be a solution of 10). By (9), it is clear to see that
u(fan-11) (t) = v(t) andu) (0) = ul)) for j =0,1, .., [an_1].

Since[an_1]+ 1< an, by (10), we can easily prove thatt) € C[0,1]. Differentiating (L0), we have

_ [an]—Tan-1]-j-1 t(t—g)0n [an-1]-1-]j
Div(t) = J+'+f0!n 11) + la / (
® i;) r! -2 =) o TI(an—T[an-1])

s(s_W)famﬂ a1—1 (S_W)[an—l]—an—l—l
O Rt e e e R

andDIv(0) = DI+an-11y(0) = u{ *1* D for j = 0,1, ., [an] — [an_1] — 1.

o] [an_1]-1 (Tan]—1) [an]—Tan-1]-1 O(n [an]
D=1yt =uy " 7 + [a /
( ) 0 lI:! ( n— 1-| ,— an an l"l)

S (s—w) [ap-1]-a1-1 S (s—w) [ap-1]-an-1-1
O R B e L

Sincev(t) € C1[0,1] andv(0) = ugo’"fﬂ) =0, and by using lemmé4, we have

S(a__ [an-1]—an-1—1
/0 (Sr ((\Zr)nﬂ o Wawe o ]

and thus

S(s—w) [on-1]—a1-1 S (s—w) [an-1]—0an-1-1
f(s’/o Fllan ] —ay) " Waw. g/ F(fan 1] = an ) "(W)dw> eco.l.

Since f(0,...,0) = 0, and using by Lemmd, D@ |-[an-11-1y(t) e C[0,1]. Thereforev € Clal-lan-11[0,1] andu e
clanl[o,1].
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Theorem 2.Let | > 0,a,-1 € N,an ¢ N andan_1+ 1 < an. Suppose that(D, ...,0, ué“”*l)) =0, f:[0,]]xR"t = Ris

continuously differentiable. If » 2anday,_1 — an_» < 1, then we suppose tha{ﬁﬂ*” = 0. Then a function & Cln1[0, 1]
is a solution of the initial value probleni)-(2) if and only if

On-1—1 i . t an_1—1
_ S0 / (t-9
u(t) = 2 TUo” o (an1=1) v(s)dst € [0, 1], (12)
where ve C[0,1] is a solution of the integral equation
[an]—an-1— lti t (+ _ \0n—0apn_1—1
_ (i+an-1) / (t S)

V(t) = —Uu + /) - 13
v iZo it o I'(an—an-1) (13)

s (S_W)an—1*‘71*1 s (S_W)an,l—an,zfl
f (S’/O r(an—l — al) V(W)dVV, e 7/0 F(Un—l— an—Z) V(W)dWV(S)> ds

ProofUsing lemma3, we have

D —an-1y(@-1)(t) = Du(t) = f(t,u(t),Du(t),--- ,DI1u(t)). (14)

Applying the Riemann-Liouville integral®—%-1 for both sides of 14) and making the substitutiont) = u(®-1)(t),
we obtain (2) and (L3). In order to prove the converse, ket C[0,1] be a solution 0f13). By (12), it is easy to see that

u(@-1)(t) = v(t) andu(0) = uf’ for j =0,1,.... an_1.
Sincean 1+ 1 < an, by (13), we can easily prove thatt) € C1[0,1]. Differentiating (L3), we have

[an]—an-1—j— 1t| On—0p-1—1-]

Div(t) = iZO UOJ+I+an vy r! —On-1—1) /Ot (t;(sgn_an_l)

s (S_W)anl a1 (S_W)an,l—an,z—l
f (S,/O mV(W)dV\/’ ces 7A r(an_l — an_z) V(W)dV\/7 V(S)) ds

andDIv(0) = Di+an-1u(0) = u ™Y for j =0,1, ..., [atg] — a1 — 1.

planl-an 1 yty = o0 4 T (a1 / gl
I= I (on—an-1)
f(s,/sMV(W)dW,,... ,/S (S_W)anl_anz_lv(w)dw,v(s))ds
o [(tn1—a) 0o I(Anh-1—0an-2)

Sincev(t) € C[0,1] and ifn>2,an 1 —an 2 < 1, thenu<°'n v

s (S_W)an—l—an—Z—l .
v(w)dw e C-[0,1].
} s wewe o

=0, by Lemm&4, we have

and thus

s (S_W)an—l—al—l s (S_W)an,l—an,z—l >
f s,/ —vwdvv,,---,/ viw)dw v(s) | € CY[0,1].
( o IM(an-1—01) W) o M(an-1—0an2) (W)dw(s) 0.1]

Since f(0,...,0, uéanfl)) = 0, and using lemmd, DI l-a-1-1y(t) e C[0,1]. Thereforev € Cll-a-1/0 1] andu €

clanl[o,1].

Theorem 3.Let | > 0,an-1 ¢ N,an € N and[an_1] + 1 < an. Suppose thatgf’”*m =0and f:[0,I] xRt = Ris
continuous. Then a functionaiC[0, 1] is a solution of the initial value probleni)-(2) if and only if

(Gn,ﬂ -1 ti

. [an-1]-1
w0 =3+ [ st e o) (15)
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where ve C[0,1] is a solution of the integral equation
an—[an ﬂ_lti

_ Y (i+lana)) [t (=g Tl
o= 3 5% (16)

S (s—w) [an-1]—a1—1 S (s—w) [an-1]—an-1-1
O R B e L

ProofUsing lemma3, we have

pen=in-2lyfen-2l(t) = Du(t) = f(t,u(t), D™u(t), -+, D™ u(t)). (17)
Applying the Riemann-Liouville integral® 1! for both sides 0f17) and making the substitutiorft) = u(l@-1(t),
we obtain (5) and (L6). In order to prove the converse, le€ C[0, 1] be a solution of 16). By (15), it is easy to see that
ufan-11)(t) = v(t) andu(0) = uf for j =0,1, .., [at_1].
Since[an_1]+ 1< an, by (16), we can easily prove thatt) € C[0,1]. Differentiating (L6), we have

an—[an_1]—j— t

Div(t) =

n—[an-1]-1-j
ytHan-) /‘ (t—9)"
+ [a
[ I_l w11=1) o [(an—[an-1])

(_ )fan 1l-o-1 (S_W)(an,ﬂ—an,l—l
O e R A e L e

andDlv(0) = Ditlan-1ly(0) = ué”f"”*m for j=0,1,...,0n— [an_1] —

an—[ap_1]—1 I 1
DITIn-11"2y(t) = uy " T+ an— [an_1] =1
( ) 0 ( n I— n l~| )I—(an_ ’Van—1-|)

|=
t S (s—w) [an-1]-a1-1 S (s—w) [an-1]—0n-1-1
f s,/ vwdw,,---,/ vwdw)ds
/o ( o I([on-1]—a1) (W) o ([on-1]—an-1) W)
Sincev(t) € C1[0,1] andv(0) = ul "/ = 0, by Lemma, we have

S (a_y)lOn-1]-0n-1-1
/0 (7'((\,(\/1),1_11 ~ ) v(w)dwe CH[o,1].

and thus

S (s—w) [an-1]-o1—1 S(s—w) [on-1]—an-1-1
f(s’/o Fllan ] —ay) "W g/ F(fan 1] = an ) "(W)dw> eco.l.

ThenD%~[an-11-1y(t) e C1[0,1]. Thereforev € C~Ia-1l]0,1] andu € C*[0, 1].
We can easily see that lemniaand lemma2 are more general than theoremin the casen = 2. By making

counterexamples, we show that lemfnand lemma2 are incomplete. Firstly we present a counterexample of lathm
Setl =1,01 = 18,0, =22,u)) = 0,i =0,1,2 and

F(L6) 0a [FABOI LB o5

69 =2raa or (1.4)

Then it is easy to see thatt) = t%® is the solution of the equatioB) By the equation%), we have

l'(1.6)t26

Ut =38

Itis clear thatu ¢ C3[0, 1]. Thus lemmal is incomplete. Secondly we give a counterexample of ler@ngetl = 1, a1 =
14,0, =15, UO)—OI—O land

f(t,s) = zrr((li.zl)) (t%489).
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Then we can easily see that) = t%2 is the solution of §). By (7), we have

r2) .6

u(t) = mt

Itis evident thau ¢ C?[0, 1]. Thus lemma is incomplete.

3 Existence of Solutions

In this section, based on the result of Section 2, the exdstefismooth solutions of the two-term Caputo-type fraclon
differential equation3)-(4) is established. In order to avoid the repetition of the ppyocess for our theorems, we state
the following lemma.

Lemmab5.Let | > O, B be a convex bounded closed subset[6fiCand T: B — C[0, 1] is defined by

_qB-1 s
Tv(t):P(t)+/ot (t/_(sl)g) f(s,l_(ly)/o (s—w)Vlv(w)dw)ds

wheref3,y > 0and Rt) € C[0,1], f(t,s) : [0,1] x R— R are continuous. If TB) C B, then T has at least one fixed point
in B.

ProofSimilar to the proof of theorem 6.1 ii], we can prove this result by using Schauder fixed point ta@or
closed subsé® in Y such thafl (B) C B.
(i+[aa])
iZO i ‘uo ) }

With the help of lemma, the initial value problem3)-(4) is reduced to the problem for finding a bounded, convex and
Theorem 4.Let k| > 0 and suppose that the hypotheses of thedrdrold. Define
| [or]—a1 [az]—[o1]-1 |i
+ =
and M:= supyy)ec f (t, V). Then the initial value problen8j-(4) has at least one solution inl@21[0,h], where h is defined
by

G= {(t,v):te[O,l],M S ot D)

I ifM=0
h:= 1
min{l , (KM ([az] = [ag] +1)/M) TezT-Te] } else
ProofWe introduce the functioR and the seB defined by
[az]—[a1]—14i

o U (i+[a])
P(t) := i; 7o

andB:= {ve C[0,h] :|| P—V <k}, where|| - || is the supremum norm. In order to prove our desired restittguemma
5 and theoreni, we need to prove thdt(B) C B whereT is defined by

[az]—[a1]-14i

_ (], (=g 0l 1 S fa]aie1
™O= Y +/0 o TarT f<s’l'([aﬂ—a1)/o(s W) v(w)dw)ds

Forv e B andt € [0,h], we obtain

faz]—[a1]-1i
V()| <|I V][ <kt || P[|< k+ Z} =
i=

g ‘ugﬂaﬂ)

Then we have

/t (t—-s) Mﬂ_al_1|v(s)|ds< |faal—a1 Kt fazw—mﬂ—lﬂ‘u(”mﬂ)
o I(far]—ay) T r(Joa] —a1+1) ZO it] o

) |
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t (t_s)aszaﬂfl ds

s (s—w)[ M= y(w)
|Tv(t)—P(t)|§/O m f<s’/o r([o1] —a1) dw)

tM(t —s)%2 a1 Mho2-le1]
/ < <k,
o I(az—Ta1]) I(oz—[o1]+1)

,which implies thafl (B) C B.
Theorem 5.Let k> 0 and suppose that the hypotheses of theddrold. Define

(02]*0171|i
= : < —
G {(t,v) te[0,1],|v] <k+ i; 7|

(i+01)
0

|

and M:=supy e f(t,v). Then the initial value problengj-(4) has at least one solution inl€21 [0, h], where h is defined
by '
I ifM=0

hi= min{l,(kl‘([aﬂ—aﬁ—l)/M)Wlal} else

ProofSimilar to the proof of theorem, we can prove this result.

Theorem 6.Let k> 0 and suppose that the hypotheses of thed@dmold. Define

[[a1]—a1 < ap—[og]-1i

Flar —ai+1) 2 il )}

and M:= supyyec f(t,v). Then the initial value problens}-(4) has at least one solution in%€|0, h, where h is defined
by '

(i+[oa])
0

G= {(t,v) teo,l],|v <

I ifM=0

hi= min{l,(kl‘(az—[aﬂ+1)/M)“2—1W} else

ProofSimilar to the proof of theorem, we can prove this result.
RemarkSimilar to the method of7], the existence of global solutions to the initial valueldeam (3)-(4) can be obtained.

RemarkThe existence results for the two-term fractional difféi@nequation 8)-(4) presented in this section can be
easily generalized to the multi-term fractional diffeiahequation {)-(2).

4 Conclusion

We identified new sufficient conditions for the existence wfosth solutions of multi-term Caputo-type fractional
differential equations which were established by usingaBder fixed point theorem. In particular, by making a
counterexample, it was pointed out that the previous résudxistence of smooth solutions was incomplete.
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