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Abstract: This work deals with the initial value problem for the multi-term fractional differential equation. The fractional derivative
is defined in the Caputo sense. Firstly the initial value problem is transformed into an equivalent Volterra-type integral equation under
appropriate assumptions. Then, new existence results for smooth solutions are established by using the Schauder fixed point theorem.
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1 Introduction

Let’s consider multi-term Caputo-type fractional differential equations of the form

Dαnu(t) = f (t,Dα1u(t), ...,Dαn−1u(t)) (1)

subject to initial conditions

u(i)(0) = u(i)0 , i = 0,1, ...,⌈αn⌉−1, (2)

whereαn > αn−1 > ... > α1 ≥ 0 and the symbolDβ denotes the Caputo-type fractional differential operatordefined by
([1,2])

Dβ u= J⌈β ⌉−β u(⌈β ⌉).

HereJγ is the Riemann-Liouville integral operator of orderγ ≥ 0 defined byJ0 being the identity operator and

Jγ u(t) =
1

Γ (γ)

∫ t

0
(t − s)γ−1u(s)ds

for γ > 0.
Fractional differential equations have boosted a great deal of interest in areas such as porous media, plasma dynamics,

thermodynamics, cosmic rays, continuum mechanics, biological systems, electrodynamics, quantum mechanics [2,3,4,5,
6,7,8]. In particular, the relaxation modulus and creep compliance of the multi-term fractional constitutive model which
describe the linear viscoelastic behaviour are obtained from multi-term fractional differential equations [4,9].

In general, it is very difficult to obtain analytical solutions of fractional differential equations. Although an analytical
expression of solutions of initial value problems of lineardifferential equations with constant coefficients and Caputo
derivative was studied before [10], it is quite cumbersome to be handled. The predictor-corrector method is one of powerful
tools for obtaining numerical solutions of fractional differential equations [11,12,13,14]. It was proved that the initial
value problem (1)-(2) is equivalent to a fractional differential system when thesolutionu is in C⌈αn⌉[0,L] [12,14]. Based
on the equivalence theorems, the studies used the predictor-corrector method to obtain numerical solutions of the initial
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value problem (1)-(2). Thus it is significant to study the existence of⌈αn⌉ times continuously differentiable solutions of
the initial value problem (1)-(2).

Analytical properties of fractional differential equations can be investigated by considering equivalent Volterra-type
integral equations [1,2,11,15,16,17]. The smoothness of solutions of single-term Caputo-type differential equations was
already studied [15]. The existence of⌈α2⌉ times continuously differentiable solutions to two-term fractional differential
equations of the form

Dα2u(t) = f (t,Dα1u(t)) (3)

subject to initial conditions

u(i)(0) = u(i)0 , i = 0,1, ...,⌈α2⌉−1 (4)

was also handled before [16]. The following lemmas are essential in [16].

Lemma 1([16]). Letα1,α2 /∈ N and⌈α1⌉< ⌈α2⌉. Suppose that f(0,0) = 0, f (t,0) 6= 0 on a compact subinterval of(0,1]
and f : [0,1]×R→R is continuously differentiable. Then a function u∈C⌈α2⌉[0,1] is a solution of the initial value problem
(3)-(4) if and only if

u(t) =
⌈α1⌉−1

∑
i=0

t i

i!
u(i)0 +

∫ t

0

(t − s)⌈α1⌉−1

(⌈α1⌉−1)!
v(s)ds, t ∈ [0,1], (5)

where v∈C[0,1] is a solution of the integral equation

v(t) =
⌈α2⌉−⌈α1⌉−1

∑
i=0

t i

i!
u(i+⌈α1⌉)

0 +

∫ t

0

(t − s)α2−⌈α1⌉−1

Γ (α2−⌈α1⌉)
f

(

s,
1

Γ (⌈α1⌉−α1)

∫ s

0
(s−w)⌈α1⌉−α1−1v(w)dw

)

ds. (6)

Lemma 2([16]). Letα1,α2 /∈ N and⌈α1⌉= ⌈α2⌉. Suppose that f(0,0) = 0, f (t,0) 6= 0 on a compact subinterval of(0,1]
and f : [0,1]×R→R is continuously differentiable. Then a function u∈C⌈α2⌉[0,1] is a solution of the initial value problem
(3)-(4) if and only if

u(t) =
⌈α1⌉−1

∑
i=0

t i

i!
u(i)0 +

1
Γ (α1)

∫ t

0
(t − s)α1−1v(s)ds, t ∈ [0,1], (7)

where v∈C[0,1] is a solution of the integral equation

v(t) =
1

Γ (α2−α1)

∫ t

0
(t − s)α2−α1−1 f (s,v(s)). (8)

Based on lemma1 and lemma2, different studies [18,19] established the existence and uniqueness of solutions to the
initial value problem (3)-(4) on the interval [0,1].

Our present paper is organized as follows. In Section 2, we transform the initial value problem (1)- (2) into an
equivalent Volterra-type integral equation under proper assumptions. In particular, it is proved that lemma1 and lemma2
are incomplete. With the help of Section 2, the correct existence results for smooth solutions to the initial value problem
(1)- (2) are established in Section 3. We conclude the paper on Section 4.

2 Equivalent Integral Equations

In this section it is proved that the solvability of the initial value problem (1)- (2) is equivalent to that of a Volterra-type
integral equation.

Lemma 3([20]). Let I > 0 and assume that u∈ Cm[0, I ] and m− 1 < β < ρ < m. Then, for all k∈ {1, ...,m− 1},
Dρ−m+ku(m−k)(t) = Dρu(t) and Dρ−β Dβ u(t) = Dρu(t).

The following lemma plays an important role in our consideration.

Lemma 4.Let I > 0, 0< β < 1, g∈C1[0, I ] and the function F: [0, I ]→ R is defined by

F(t) =
∫ t

0
(t − s)−β g(s)ds.

Then F(t) ∈C1[0, I ] if and only if g(0) = 0.
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Proof.

F(t) =
t1−β

1−β
g(0)+

1
1−β

∫ t

0
(t − s)1−β g′(s)ds, t ∈ [0, I ].

F ′(t) = t−β g(0)+
∫ t

0
(t − s)−β g′(s)ds, t ∈ (0, I ].

Thus,F ′(t) is continuous in[0, I ] if and only if g(0) = 0.

Theorem 1.Let I> 0, αn,αn−1 /∈N and⌈αn−1⌉+1<αn. Suppose that f(0, ...,0) = 0,u(⌈αn−1⌉)
0 = 0 and f : [0, I ]×Rn−1 →

R is continuously differentiable. Then a function u∈ C⌈αn⌉[0, I ] is a solution of the initial value problem (1)- (2) if and
only if

u(t) =
⌈αn−1⌉−1

∑
i=0

t i

i!
u(i)0 +

∫ t

0

(t − s)⌈αn−1⌉−1

(⌈αn−1⌉−1)!
v(s)ds, t ∈ [0, I ], (9)

where v∈C[0, I ] is a solution of the integral equation

v(t) =
⌈αn⌉−⌈αn−1⌉−1

∑
i=0

t i

i!
u(i+⌈αn−1⌉)

0 +
1

Γ (αn−⌈αn−1⌉)

∫ t

0
(t − s)αn−⌈αn−1⌉−1

f

(

s,
∫ s

0

(s−w)⌈αn−1⌉−α1−1

Γ (⌈αn−1⌉−α1)
v(w)dw, , · · · ,

∫ s

0

(s−w)⌈αn−1⌉−αn−1−1

Γ (⌈αn−1⌉−αn−1)
v(w)dw

)

ds. (10)

Proof.Using lemma3, we have

Dαn−⌈αn−1⌉u(⌈αn−1⌉)(t) = Dαnu(t) = f (t,u(t),Dα1u(t), · · · ,Dαn−1u(t)). (11)

Applying the Riemann-Liouville integralJαn−⌈αn−1⌉ for both sides of (11) and making the substitutionv(t) = u(⌈αn−1⌉)(t),
we obtain (9) and (10). In order to prove the converse, letv ∈ C[0, I ] be a solution of (10). By (9), it is clear to see that

u(⌈αn−1⌉)(t) = v(t) andu( j)(0) = u( j)
0 for j = 0,1, ...,⌈αn−1⌉.

Since⌈αn−1⌉+1< αn, by (10), we can easily prove thatv(t) ∈C1[0, I ]. Differentiating (10), we have

D jv(t) =
⌈αn⌉−⌈αn−1⌉− j−1

∑
i=0

t i

i!
u( j+i+⌈αn−1⌉)

0 +
j

∏
l=1

(αn−⌈αn−1⌉− l)
∫ t

0

(t − s)αn−⌈αn−1⌉−1− j

Γ (αn−⌈αn−1⌉)

f

(

s,
∫ s

0

(s−w)⌈αn−1⌉−α1−1

Γ (⌈αn−1⌉−α1)
v(w)dw, · · · ,

∫ s

0

(s−w)⌈αn−1⌉−αn−1−1

Γ (⌈αn−1⌉−αn−1)
v(w)dw

)

ds

andD jv(0) = D j+⌈αn−1⌉u(0) = u( j+⌈αn−1⌉)
0 for j = 0,1, ...,⌈αn⌉−⌈αn−1⌉−1.

D⌈αn⌉−⌈αn−1⌉−1v(t) = u(⌈αn⌉−1)
0 +

⌈αn⌉−⌈αn−1⌉−1

∏
l=1

(αn−⌈αn−1⌉− l)
∫ t

0

(t − s)αn−⌈αn⌉

Γ (αn−⌈αn−1⌉)

f

(

s,
∫ s

0

(s−w)⌈αn−1⌉−α1−1

Γ (⌈αn−1⌉−α1)
v(w)dw, , · · · ,

∫ s

0

(s−w)⌈αn−1⌉−αn−1−1

Γ (⌈αn−1⌉−αn−1)
v(w)dw

)

ds.

Sincev(t) ∈C1[0, I ] andv(0) = u(⌈αn−1⌉)
0 = 0, and by using lemma4, we have

∫ s

0

(s−w)⌈αn−1⌉−αn−1−1

Γ (⌈αn−1⌉−αn−1)
v(w)dw∈C1[0, I ].

and thus

f

(

s,
∫ s

0

(s−w)⌈αn−1⌉−α1−1

Γ (⌈αn−1⌉−α1)
v(w)dw, , · · · ,

∫ s

0

(s−w)⌈αn−1⌉−αn−1−1

Γ (⌈αn−1⌉−αn−1)
v(w)dw

)

∈C1[0, I ].

Since f (0, ...,0) = 0, and using by Lemma4, D⌈αn⌉−⌈αn−1⌉−1v(t) ∈ C1[0, I ]. Thereforev ∈ C⌈αn⌉−⌈αn−1⌉[0, I ] and u ∈

C⌈αn⌉[0, I ].
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Theorem 2.Let I > 0,αn−1 ∈ N,αn /∈ N andαn−1+1< αn. Suppose that f(0, ...,0,u(αn−1)
0 ) = 0, f : [0, I ]×Rn−1 → R is

continuously differentiable. If n> 2 andαn−1−αn−2 < 1, then we suppose that u(αn−1)
0 = 0. Then a function u∈C⌈αn⌉[0, I ]

is a solution of the initial value problem (1)-(2) if and only if

u(t) =
αn−1−1

∑
i=0

t i

i!
u(i)0 +

∫ t

0

(t − s)αn−1−1

(αn−1−1)!
v(s)ds, t ∈ [0, I ], (12)

where v∈C[0, I ] is a solution of the integral equation

v(t) =
⌈αn⌉−αn−1−1

∑
i=0

t i

i!
u(i+αn−1)

0 +
∫ t

0

(t − s)αn−αn−1−1

Γ (αn−αn−1)
(13)

f

(

s,
∫ s

0

(s−w)αn−1−α1−1

Γ (αn−1−α1)
v(w)dw, · · · ,

∫ s

0

(s−w)αn−1−αn−2−1

Γ (αn−1−αn−2)
v(w)dw,v(s)

)

ds.

Proof.Using lemma3, we have

Dαn−αn−1u(αn−1)(t) = Dαnu(t) = f (t,u(t),Dα1u(t), · · · ,Dαn−1u(t)). (14)

Applying the Riemann-Liouville integralJαn−αn−1 for both sides of (14) and making the substitutionv(t) = u(αn−1)(t),
we obtain (12) and (13). In order to prove the converse, letv∈C[0, I ] be a solution of (13). By (12), it is easy to see that

u(αn−1)(t) = v(t) andu( j)(0) = u( j)
0 for j = 0,1, ...,αn−1.

Sinceαn−1+1< αn, by (13), we can easily prove thatv(t) ∈C1[0, I ]. Differentiating (13), we have

D jv(t) =
⌈αn⌉−αn−1− j−1

∑
i=0

t i

i!
u( j+i+αn−1)

0 +
j

∏
l=1

(αn−αn−1− l)
∫ t

0

(t − s)αn−αn−1−1− j

Γ (αn−αn−1)

f

(

s,
∫ s

0

(s−w)αn−1−α1−1

Γ (αn−1−α1)
v(w)dw, · · · ,

∫ s

0

(s−w)αn−1−αn−2−1

Γ (αn−1−αn−2)
v(w)dw,v(s)

)

ds

andD jv(0) = D j+αn−1u(0) = u( j+αn−1)
0 for j = 0,1, ...,⌈αn⌉−αn−1−1.

D⌈αn⌉−αn−1−1v(t) = u(⌈αn⌉−1)
0 +

⌈αn⌉−αn−1−1

∏
l=1

(αn−αn−1− l)
∫ t

0

(t − s)αn−⌈αn⌉

Γ (αn−αn−1)

f

(

s,
∫ s

0

(s−w)αn−1−α1−1

Γ (αn−1−α1)
v(w)dw, , · · · ,

∫ s

0

(s−w)αn−1−αn−2−1

Γ (αn−1−αn−2)
v(w)dw,v(s)

)

ds.

Sincev(t) ∈C1[0, I ] and if n> 2,αn−1−αn−2 < 1, thenu(αn−1)
0 = 0, by Lemma4, we have

∫ s

0

(s−w)αn−1−αn−2−1

Γ (αn−1−αn−2)
v(w)dw∈C1[0, I ].

and thus

f

(

s,
∫ s

0

(s−w)αn−1−α1−1

Γ (αn−1−α1)
v(w)dw, , · · · ,

∫ s

0

(s−w)αn−1−αn−2−1

Γ (αn−1−αn−2)
v(w)dw,v(s)

)

∈C1[0, I ].

Since f (0, ...,0,u(αn−1)
0 ) = 0, and using lemma4, D⌈αn⌉−αn−1−1v(t) ∈ C1[0, I ]. Thereforev ∈ C⌈αn⌉−αn−1[0, I ] and u ∈

C⌈αn⌉[0, I ].

Theorem 3.Let I > 0,αn−1 /∈ N,αn ∈ N and⌈αn−1⌉+ 1 ≤ αn. Suppose that u(⌈αn−1⌉)
0 = 0 and f : [0, I ]×Rn−1 → R is

continuous. Then a function u∈Cαn[0, I ] is a solution of the initial value problem (1)-(2) if and only if

u(t) =
⌈αn−1⌉−1

∑
i=0

t i

i!
u(i)0 +

∫ t

0

(t − s)⌈αn−1⌉−1

(⌈αn−1⌉−1)!
v(s)ds, t ∈ [0, I ], (15)
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where v∈C[0, I ] is a solution of the integral equation

v(t) =
αn−⌈αn−1⌉−1

∑
i=0

t i

i!
u(i+⌈αn−1⌉)

0 +

∫ t

0

(t − s)αn−⌈αn−1⌉−1

Γ (αn−⌈αn−1⌉)
(16)

f

(

s,
∫ s

0

(s−w)⌈αn−1⌉−α1−1

Γ (⌈αn−1⌉−α1)
v(w)dw, , · · · ,

∫ s

0

(s−w)⌈αn−1⌉−αn−1−1

Γ (⌈αn−1⌉−αn−1)
v(w)dw

)

ds.

Proof.Using lemma3, we have

Dαn−⌈αn−1⌉u(⌈αn−1⌉)(t) = Dαnu(t) = f (t,u(t),Dα1u(t), · · · ,Dαn−1u(t)). (17)

Applying the Riemann-Liouville integralJαn−⌈αn−1⌉ for both sides of (17) and making the substitutionv(t) = u(⌈αn−1⌉)(t),
we obtain (15) and (16). In order to prove the converse, letv∈C[0, I ] be a solution of (16). By (15), it is easy to see that

u(⌈αn−1⌉)(t) = v(t) andu( j)(0) = u( j)
0 for j = 0,1, ...,⌈αn−1⌉.

Since⌈αn−1⌉+1< αn, by (16), we can easily prove thatv(t) ∈C1[0, I ]. Differentiating (16), we have

D jv(t) =
αn−⌈αn−1⌉− j−1

∑
i=0

t i

i!
u( j+i+⌈αn−1⌉)

0 +
j

∏
l=1

(αn−⌈αn−1⌉− l)
∫ t

0

(t − s)αn−⌈αn−1⌉−1− j

Γ (αn−⌈αn−1⌉)

f

(

s,
∫ s

0

(s−w)⌈αn−1⌉−α1−1

Γ (⌈αn−1⌉−α1)
v(w)dw, · · · ,

∫ s

0

(s−w)⌈αn−1⌉−αn−1−1

Γ (⌈αn−1⌉−αn−1)
v(w)dw

)

ds

andD jv(0) = D j+⌈αn−1⌉u(0) = u( j+⌈αn−1⌉)
0 for j = 0,1, ...,αn−⌈αn−1⌉−1.

Dαn−⌈αn−1⌉−1v(t) = u(αn−1)
0 +

αn−⌈αn−1⌉−1

∏
l=1

(αn−⌈αn−1⌉− l)
1

Γ (αn−⌈αn−1⌉)

∫ t

0
f

(

s,
∫ s

0

(s−w)⌈αn−1⌉−α1−1

Γ (⌈αn−1⌉−α1)
v(w)dw, , · · · ,

∫ s

0

(s−w)⌈αn−1⌉−αn−1−1

Γ (⌈αn−1⌉−αn−1)
v(w)dw

)

ds.

Sincev(t) ∈C1[0, I ] andv(0) = u(⌈αn−1⌉)
0 = 0, by Lemma4, we have

∫ s

0

(s−w)⌈αn−1⌉−αn−1−1

Γ (⌈αn−1⌉−αn−1)
v(w)dw∈C1[0, I ].

and thus

f

(

s,
∫ s

0

(s−w)⌈αn−1⌉−α1−1

Γ (⌈αn−1⌉−α1)
v(w)dw, , · · · ,

∫ s

0

(s−w)⌈αn−1⌉−αn−1−1

Γ (⌈αn−1⌉−αn−1)
v(w)dw

)

∈C1[0, I ].

ThenDαn−⌈αn−1⌉−1v(t) ∈C1[0, I ]. Thereforev∈Cαn−⌈αn−1⌉[0, I ] andu∈Cαn[0, I ].

We can easily see that lemma1 and lemma2 are more general than theorem1 in the casen = 2. By making
counterexamples, we show that lemma1 and lemma2 are incomplete. Firstly we present a counterexample of lemma 1.

SetI = 1,α1 = 1.8,α2 = 2.2,u(i)0 = 0, i = 0,1,2 and

f (t,s) =
Γ (1.6)
2Γ (1.4)

t0.4+
[Γ (1.6)Γ (1.8)]0.5

2Γ (1.4)
s0.5.

Then it is easy to see thatv(t) = t0.6 is the solution of the equation(6). By the equation (5), we have

u(t) =
Γ (1.6)
Γ (3.6)

t2.6.

It is clear thatu /∈C3[0,1]. Thus lemma1 is incomplete. Secondly we give a counterexample of lemma2. SetI = 1,α1 =

1.4,α2 = 1.5,u(i)0 = 0, i = 0,1 and

f (t,s) =
Γ (1.2)
2Γ (1.1)

(t0.1+ s0.5).
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Then we can easily see thatv(t) = t0.2 is the solution of (8). By (7), we have

u(t) =
Γ (1.2)
Γ (2.6)

t1.6.

It is evident thatu /∈C2[0,1]. Thus lemma2 is incomplete.

3 Existence of Solutions

In this section, based on the result of Section 2, the existence of smooth solutions of the two-term Caputo-type fractional
differential equation (3)-(4) is established. In order to avoid the repetition of the proof process for our theorems, we state
the following lemma.

Lemma 5.Let I > 0, B be a convex bounded closed subset of C[0, I ] and T : B→C[0, I ] is defined by

Tv(t) = P(t)+
∫ t

0

(t − s)β−1

Γ (β )
f

(

s,
1

Γ (γ)

∫ s

0
(s−w)γ−1v(w)dw

)

ds,

whereβ ,γ > 0 and P(t) ∈C[0, I ], f (t,s) : [0, I ]×R→ R are continuous. If T(B) ⊂ B, then T has at least one fixed point
in B.

Proof.Similar to the proof of theorem 6.1 in [1], we can prove this result by using Schauder fixed point theorem.

With the help of lemma5, the initial value problem (3)-(4) is reduced to the problem for finding a bounded, convex and
closed subsetB in Y such thatT(B)⊂ B.

Theorem 4.Let k, I > 0 and suppose that the hypotheses of theorem1 hold. Define

G=

{

(t,v) : t ∈ [0, I ], |v| ≤
I ⌈α1⌉−α1

Γ (⌈α1⌉−α1+1)

(

k+
⌈α2⌉−⌈α1⌉−1

∑
i=0

I i

i!

∣

∣

∣

∣

u(i+⌈α1⌉)
0

∣

∣

∣

∣

)}

and M:= sup(t,v)∈G f (t,v). Then the initial value problem (3)-(4) has at least one solution in C⌈α2⌉[0,h], where h is defined
by

h :=







I if M = 0

min

{

I ,
(

kΓ (⌈α2⌉−⌈α1⌉+1)/M
)

1
⌈α2⌉−⌈α1⌉

}

else.

Proof.We introduce the functionP and the setB defined by

P(t) :=
⌈α2⌉−⌈α1⌉−1

∑
i=0

t i

i!
u(i+⌈α1⌉)

0

andB := {v∈C[0,h] :‖ P−v ‖≤ k}, where‖ ·‖ is the supremum norm. In order to prove our desired result, using lemma
5 and theorem1, we need to prove thatT(B)⊂ B whereT is defined by

Tv(t) =
⌈α2⌉−⌈α1⌉−1

∑
i=0

t i

i!
u(i+⌈α1⌉)

0 +

∫ t

0

(t − s)α2−⌈α1⌉−1

Γ (α2−⌈α1⌉)
f

(

s,
1

Γ (⌈α1⌉−α1)

∫ s

0
(s−w)⌈α1⌉−α1−1v(w)dw

)

ds.

Forv∈ B andt ∈ [0,h], we obtain

|v(t)| ≤‖ v ‖≤ k+ ‖ P ‖≤ k+
⌈α2⌉−⌈α1⌉−1

∑
i=0

I i

i!

∣

∣

∣

∣

u(i+⌈α1⌉)
0

∣

∣

∣

∣

.

Then we have
∫ t

0

(t − s)⌈α1⌉−α1−1|v(s)|
Γ (⌈α1⌉−α1)

ds≤
I ⌈α1⌉−α1

Γ (⌈α1⌉−α1+1)

(

k+
⌈α2⌉−⌈α1⌉−1

∑
i=0

I i

i!

∣

∣

∣

∣

u(i+⌈α1⌉)
0

∣

∣

∣

∣

)

.

c© 2018 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl.4, No. 3, 211-218 (2018) /www.naturalspublishing.com/Journals.asp 217

|Tv(t)−P(t)| ≤
∫ t

0

(t − s)α2−⌈α1⌉−1

Γ (α2−⌈α1⌉)

∣

∣

∣

∣

∣

f

(

s,
∫ s

0

(s−w)⌈α1⌉−α1−1v(w)
Γ (⌈α1⌉−α1)

dw

)

∣

∣

∣

∣

∣

ds

≤
∫ t

0

M(t − s)α2−⌈α1⌉−1

Γ (α2−⌈α1⌉)
≤

Mhα2−⌈α1⌉

Γ (α2−⌈α1⌉+1)
≤ k,

,which implies thatT(B)⊂ B.

Theorem 5.Let k> 0 and suppose that the hypotheses of theorem2 hold. Define

G :=

{

(t,v) : t ∈ [0, I ], |v| ≤ k+
⌈α2⌉−α1−1

∑
i=0

I i

i!

∣

∣

∣

∣

u(i+α1)
0

∣

∣

∣

∣

}

and M:= sup(t,v)∈G f (t,v). Then the initial value problem (3)-(4) has at least one solution in C⌈α2⌉[0,h], where h is defined
by

h :=







I if M = 0

min

{

I ,
(

kΓ (⌈α2⌉−α1+1)/M
)

1
⌈α2⌉−α1

}

else.

Proof.Similar to the proof of theorem4, we can prove this result.

Theorem 6.Let k> 0 and suppose that the hypotheses of theorem3 hold. Define

G=

{

(t,v) : t ∈ [0, I ], |v| ≤
I ⌈α1⌉−α1

Γ (⌈α1⌉−α1+1)

(

k+
α2−⌈α1⌉−1

∑
i=0

I i

i!

∣

∣

∣

∣

u(i+⌈α1⌉)
0

∣

∣

∣

∣

)}

and M := sup(t,v)∈G f (t,v). Then the initial value problem (3)-(4) has at least one solution in Cα2[0,h], where h is defined
by

h :=







I if M = 0

min

{

I ,
(

kΓ (α2−⌈α1⌉+1)/M
)

1
α2−⌈α1⌉

}

else.

Proof.Similar to the proof of theorem4, we can prove this result.

Remark.Similar to the method of [7], the existence of global solutions to the initial value problem (3)-(4) can be obtained.

Remark.The existence results for the two-term fractional differential equation (3)-(4) presented in this section can be
easily generalized to the multi-term fractional differential equation (1)-(2).

4 Conclusion

We identified new sufficient conditions for the existence of smooth solutions of multi-term Caputo-type fractional
differential equations which were established by using Schauder fixed point theorem. In particular, by making a
counterexample, it was pointed out that the previous resultfor existence of smooth solutions was incomplete.
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