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Abstract: The aim of the paper is to classify the real quadratic number fields Q(
√

d) having specific form of continued fraction
expansions of algebraic integerwd and is to determine the general explicit parametric representation of the fundamental unitεd for
such real quadratic number fields whered ≡ 2,3(mod4) is a square free positive integer. Also, Yokoi’sd-invariantsnd andmd will be
calculated in the relation to continued fraction expansionof wd for such real quadratic fields.
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1 Introduction

In Number Theory, real quadratic number fields have
great importance. Many researchers have obtained their
results on the real quadratic number fields ([1]-[22]). The
author ([7]-[12]) considered some types of real quadratic
fields and determined their fundamental unit as well as
Yokoi’s invariants. The purpose of this paper is to study
on a particular real quadratic field and determine to
classification of real quadratic fields including the
continued fraction expansion which has got the partial
quotients are equal to 8 in the symmetric part of period
length by considering ([7]-[12]). Also, Yokoi’s invariants
are calculated and presented in tables.
In any k = Q(

√
d) real quadratic number field, integral

basis element of algebraic integers ring in real quadratic
fields is determined by
wd =

√
d = [a0;a1,a2, . . . ,aℓ(d)−1,2a0] in the case of

d ≡ 2,3(mod4) where ℓ = ℓ(d) is the period length of
continued fraction expansion. The fundamental unitεd of
real quadratic number field is also denoted by
εd = (td + ud

√
d)/2 > 1. Also, Yokoi’s invariants are

expressed bynd =

[[
td
u2

d

]]

andmd =

[[
u2

d

td

]]

where[[x]]

represents the greatest integer less than or equal tox.

2 Preliminaries

Definition 1.{Ri} sequence is defined by recurrence
relation as follows:

Ri = 8Ri−1+Ri−2

for i ≥ 2 with initial values R0 = 0 and R1 = 1.

Definition 2.Let cn = acn−1 + bcn−2 recurrence relation
of {cn} sequence where a,b are real numbers. The
polynomial is called as a characteristic equation if it is
written in the form:

x2−ax−b= 0

For our sequence, it can be written for each element of
sequence as follows:

Rk =
1

2
√

17

[

(4+
√

17)k− (4−
√

17)k
]

for k≥ 1

Remark.Let {Rn} be the sequence defined as in Definition
1. Then, we state the following:

Rn =

{
0(mod 4), n≡ 0(mod2);
1(mod 4), n≡ 1(mod2).

for n≥ 0.
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Lemma 1.For a square-free positive integer d congruent
to 2,3 modulo 4, we put
wd =

√
d, a0 = [wd], wR = a0+wd. Then wd /∈ R(d), but

wR ∈ R(d) holds. Moreover for the periodℓ = ℓ(d) of wR,
we get wR = [2a0,a1, . . . ,aℓ−1] and
wd = [a0,a1, . . . ,aℓ−1,2a0]. Furthermore, let

wR =
(PℓwR+Pℓ−1)

QℓwR+Qℓ−1
= [2a0,a1, · · · ,aℓ−1,wR] be a

modular automorphism of wR, then the fundamental unit
εd of Q(

√
d) is given by the following formula:

εd =
td +ud

√
d

2
= (a0+

√
d)Qℓ(d)+Qℓ(d−1) > 1

and
td = 2a0.Qℓ(d)+2Qℓ(d)−1, ud = 2Qℓ(d).

where Qi is determined by Q0 = 0, Q1 = 1 and Qi+1 =
aiQi +Qi−1,(i ≥ 1).

Proof.Proof is omitted in [[16], Lemma 1]

Lemma 2.Let d be the square free positive integer
congruent to 2,3 modulo 4. We will consider wd which
has got partial constant elements repeated 8s in the case
of periodℓ = ℓ(d). If we let a0 denote the a0 = [[

√
d]] the

integer part of wd for d congruent to 2,3(mod 4), then we
have continued fration expansions

wd =
√

d = [a0;a1,a2, . . . ,aℓ(d)−1,aℓ(d)] = [a0;8,8, · · · ,8,2a0]

for quadratic irrational numbers and
wR = a0 +

√
d = [2a0,8, . . . ,8] for reduced quadratic

irrational numbers.
In the continued fraction wR = a0 +

√
d =

[b1,b2, . . . ,bn, . . .] = [2a0,8, . . . ,8, . . .],Pk = 2a0Rk +Rk−1
and Qk = Rk are determined in the continued fraction
expansion where Pk and Qk are two sequences defined by:

P−1 = 0,P0 = 1,Pj+1 = b j+1.Pj +Pj−1,

Q−1 = 1,Q0 = 0,Q j+1 = b j+1.Q j +Q j−1,

for j ≥ 0

Proof.It can be proved easily by considering references
([7]-[12]).

3 Main Results

Theorem 1.Let d be a square free positive integer andℓ
be a positive integer satisfying thatℓ ≥ 2. Suppose that
parameterizations of d is

d = µ2R2
ℓ + µ(8Rℓ+Rℓ−1)+17

for µ ≥ 1 integer. Ifµ is odd positive integer, we have d≡
2,3(mod4) and

wd =

[

µRℓ+4;8,8, . . . ,8
︸ ︷︷ ︸

ℓ−1

,8+2µRℓ

]

with ℓ = ℓ(d). Moreover, we can get fundamental unitεd,
coefficients of fundamental unit td, ud as follows:

εd = (µRℓ+4)Rℓ+Rℓ−1+Rℓ

√
d,

td = 2(µRℓ+4)Rℓ+2Rℓ−1 andµd = 2Rℓ.

Proof.Let ℓ≥ 2 be the positive integer. Using Remark, we
getRℓ ≡ 1(mod4) andRℓ−1 ≡ 0(mod4) for ℓ ≡ 1(mod4)
and ℓ ≡ 3(mod4). By consideringµ is odd positive
integer and substituting these equalities into the
d = µ2R2

ℓ + µ(8Rℓ+Rℓ−1)+17, we getd ≡ 2(mod4).
Also, we have thatRℓ ≡ 0(mod4) and Rℓ−1 ≡ 1(mod4)
for bothℓ≡ 0(mod4) andℓ≡ 2(mod4). By consideringµ
is odd positive integer and substituting these equalities
into thed = µ2R2

ℓ + µ(8Rℓ+Rℓ−1)+17, sod ≡ 3(mod4)
holds.
On substitutingwd into thewR, we get

wR = (µRℓ+4)+

[

µRℓ+4;8,8, . . . ,8
︸ ︷︷ ︸

ℓ−1

,8+2µRℓ

]

and we have

wR = (2µRℓ+8)+
1

8+ 1
8+ 1

... 1
8+ 1

wR

= (2µRℓ+8)+
1
8+...+

1
wR

Using Lemma1. and Lemma2. about the properties of
continued fraction expansion, we get

wR = (2µRℓ+8)+
Rℓ−1wR+Rℓ−2

RℓwR+Rℓ−1

and by using Definition1 into the above equality, we
obtain,

w2
R− (2µRℓ+8)wR− (1+2µRℓ−1) = 0

This requires thatwR = (µRℓ + 4) +
√

d sincewR > 0.
Also, using Lemma2, we get

wd =
√

d =

[

µRℓ+4;8,8, . . . ,8
︸ ︷︷ ︸

ℓ−1

,2µRℓ+8

]

andℓ= ℓ(d). This completes the first part of theorem.
Now, to determineεd, td andud using Lemma, we get

Q1 = 1= R1,Q2 = a1.Q1+Q0 ⇒ Q2 = 8= R2

Q3 = a2Q2+Q1 = 8R2+R1 = 65=R3,Q4 = 528=R4, · · ·
So, this implies thatQi = Ri by using mathematical
induction ∀ i ≥ 0. If we substitute these values of the
sequence into the
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εd =
td +ud

√
d

2
= (a0 +

√
d)Qℓ(d) + Qℓ(d)−1 > 1 and

rearranging, we will get

εd = (µRℓ+4)Rℓ+Rℓ−1+Rℓ

√
d,

td = 2(µRℓ+4)Rℓ+2Rℓ−1 andud = 2Rℓ.

Corollary 1.If d is a square free positive integer andℓ is
a positive integer satisfying thatℓ ≥ 2 as well as
parametrization of d as follows:

d = R2
ℓ +2(4Rℓ+Rℓ−1)+17

then, we have d≡ 2,3(mod4) and

wd =

[

Rℓ+4;8,8, . . . ,8
︸ ︷︷ ︸

ℓ−1

,2µRℓ+8

]

with ℓ = ℓ(d). Also, fundamental unitεd, coefficients of
fundamental unit td,ud and Yokoi invariant as follows:

εd = (Rℓ+4)Rℓ+Rℓ−1+Rℓ

√
d,

td = 2(Rℓ+4)Rℓ+2Rℓ−1 and ud = 2Rℓ

Also, we have value of Yokoi’s d-invariant md = 1.

Proof.This corollary is obtained by using Theorem1 with
takingµ = 1. So, we should determine value of the Yokoi’s

invariantmd. We know thatmd =

[[
u2

d

td

]]

from H. Yokoi’s

references. If we substitutetd andud into themd, then we
get

md =

[[
u2

d

td

]]

=

[[
4R2

ℓ

2R2
ℓ +8Rℓ+2Rℓ−1

]]

= 1,

since Rl increasing sequence and

1,984<
4R2

ℓ

2R2
ℓ +8Rℓ+2Rℓ−1

< 2 for ℓ ≥ 2. Therefore we

obtain md = 1 for ℓ ≥ 2 owing to definition of md.
Besides, Table1 is given as numerical illustrates. (In this
table, ℓ(d) = 2,3,6,7,8 are ruled out sinced is not a
square free positive integer in these periods).

Corollary 2.If d is a square free positive integer andℓ is
a positive integer satisfying thatℓ ≥ 2 as well as
parametrization of d is

d = 9R2
ℓ +24Rℓ+6Rℓ−1+17

then, we have d≡ 2,3(mod4) and

wd =

[

3Rℓ+4;8,8, . . . ,8,
︸ ︷︷ ︸

ℓ−1

8+6Rℓ

]

with ℓ= ℓ(d). Additionally, we obtain fundamental unitεd,
coefficients of fundamental unit td,ud as follows:

εd = (3Rℓ+4)Rℓ+Rℓ−1+Rℓ

√
d,

td = 2(3Rℓ+4)Rℓ+2Rℓ−1 and ud = 2Rℓ

Also, we have Yokoi’s d-invariant value nd = 1

Proof.This corollary is obtained by using theorem1 for
µ = 3. In the same manner we obtainnd = 1 for ℓ ≥ 2
owing to definition ofnd. Besides, following Table2 gives
an example for this corollary. (In this table, we also rule
outℓ(d) = 3 sinced is not a square free positive integer in
this period).

Theorem 2.Let d be the square free positive integer andℓ
be a positive integer holding thatℓ = 0(mod2) andℓ ≥ 1.
We assume that parametrization of d is

d =
µ2R2

ℓ

4
+(4Rℓ+Rℓ−1)µ +17.

for µ > 0 positive integer. Ifµ ≡ 1(mod4) positive integer
then d≡ 2(mod4) and

wd =

[
µRℓ

2
+4;8,8, . . . ,8,

︸ ︷︷ ︸

ℓ−1

µRℓ+8

]

holds forℓ= ℓ(d). Moreover, the following equalities also
hold:

εd =

(
µR2

ℓ

2
+4Rℓ+Rℓ−1

)

+Rℓ

√
d

td = µR2
ℓ +8Rℓ+2Rℓ−1 and ud = 2Rℓ

for εd, td and ud.

Proof.Let ℓ ≡ 0(mod2) and ℓ > 1 hold. If ℓ ≡ 0(mod2)
holds then we haveRℓ ≡ 0(mod4),Rℓ−1 ≡ 1(mod4).
Considering µ ≡ 1(mod4) positive integer and
substituting these equivalent and equations into the
parameterization ofd then we getd ≡ 2(mod4).
Using Lemma2, we put

wR =
µRℓ

2
+4+

[
µRℓ

2
+4;8,8, . . . ,8

︸ ︷︷ ︸

ℓ−1

,µRℓ+8

]

,

we get

wR = (µRℓ+8)+
1

8+ 1
8+ 1

... 1
8+ 1

wR

= (µRℓ+8)+
1
8+···+

1
8
+

1
wR

Now by using Lemma1 and Lemma2 about the properties
of continued fraction expansion, we get

wR = (µRℓ+8)+
Rℓ−1wR+Rℓ−2

RℓwR+Rℓ−1

by using induction and property of continued fraction
expansion and the Definition1 into the above inequality,
we obtain

w2
R− (µRℓ+8)wR− (1+ µRℓ−1) = 0.
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Table 1: ???
d ℓ(d) md wd εd

283155 4 1 [532,8,8,8,1064] 280961+528
√

283155
18430906 5 1 [4293,8,8,8,8,8586] 18413205+4289

√
18430906

348729821225306 9 1 [18674309,8,8, . . . ,37348618] 348729818926393+18674305
√

348729821225306
23010874291891347 10 1 [151693356,8,8, . . . ,8,303386712] 23010873666443617+151693352

√
23010874291891347

1518368901199652330 11 1 [1232221125,8,8, . . . ,2464442250] 1518368806119074477+1232221121
√

1518368901199652330

Table 2: ???
d ℓ(d) nd wd εd

791 2 1 [28,8,56] 225+8
√

791
2522135 4 1 [1588,8,8,8,8,3176] 838529+528

√
2522135

165665810 5 1 [12871,8,8, . . . ,8,209048] 55204247+4289
√

165665810
10925292311 6 1 [104524,8,8, . . . ,8,209048] 3641620449+34840

√
10925292311

720853848002 7 1 [849031,8,8, . . . ,8,1698062] 240283449119+283009
√

720853848002
47565024325655 8 1 [6896740,8,8, . . . ,8,13793480] 15854998629889+2298912

√
47565024325655

3138567467074034 9 1 [56022919,8,8, . . . ,8,112045838] 1046189078695207+18674305
√

3138567467074034
207097861121649431 10 1 [455080060,8,8, . . . ,8,910160120] 69032619748435425+151693352

√
207097861121649431

Table 3: ???
d ℓ(d) md wd εd

66 2 1 [8;8,16] 65+8
√

66
71890 4 3 [268;8,8,8,536] 141569+528

√
66

303600066 6 3 [17424;8,8,8,8,8,34848] 607056449+34840
√

303600066
25047334025145016018 12 3 [5004731164;8,8, . . . ,8,10009462328] 50094668009019961601+10009462320

√
25047334025145016018

This requires thatwR =
µRℓ

2
+ 4+

√
d since wR > 0.

Considering Lemma2, we get

wd =
√

d =

[
µRℓ

2
+4;8,8, · · · ,8

︸ ︷︷ ︸

ℓ−1

,µRℓ+8

]

andℓ= ℓ(d). This completes the first part of theorem. Now
we should dettermineεd, td and ud using Lemma1, we
have

Q1 = 1= R1,Q2 = a1.Q1+Q0 ⇒ Q2 = 8= R2,

Q3 = a2Q2+Q1 = 8R2+R1 = 65=R3,Q4 = 528=R4, · · ·
This implies that Qi = Ri by using mathematical
induction∀i ≥ 0. On substituting these values of sequence

into theεd =
td +ud

√
d

2
= (a0+

√
d)Qℓ(d)+Qℓ(d)−1 > 1

and rearranged, we get

εd = (
µR2

ℓ

2
+4Rℓ+Rℓ−1)+Rℓ

√
d

td = R2
ℓ +8Rℓ+2Rℓ−1 andµd = 2Rℓ

for εd, td andud.

Corollary 3.Let d be the square free positive integer andℓ
be a positive integer holding thatℓ ≡ 0(mod2) andℓ > 1.

We assume that parameterizations of d is

d =
R2
ℓ

4
+4Rℓ+Rℓ−1+17

Then we get d≡ 2(mod4) and

wd =

[
Rℓ+8

2
;8,8, . . . ,8
︸ ︷︷ ︸

ℓ−1

,Rℓ+8

]

andℓ= ℓ(d). Moreover, we have following equalities:

εd =

(
R2
ℓ

2
+4Rℓ+Rℓ−1

)

+Rℓ

√
d

td = R2
ℓ +8Rℓ+2Rℓ−1 and ud = 2Rℓ

and

md =

{
1, if ℓ= 2;
3, if ℓ≥ 2.

Proof.We obtain this corollary by takingµ = 1 in Theorem
2. In a similar way, we get,

4> 4.

(

1+
8
Rℓ

+
2Rℓ−1

R2
ℓ

)−1

> 3,938

for l ≥ 4. Therefore, we obtain

md =

[[
4R2

ℓ

R2
ℓ +8Rℓ+2Rℓ−1

]]

= 3
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for ℓ ≥ 4. Table3 shows some numerical examples for
Corollary3. (In this table we rule outℓ(d) = 8,10 sinced
is not a square free positive integer in these periods).

4 conclusion

In this paper, we introduced the notion of real quadratic
field structures such as continued fraction expansions,
fundamental unit and Yokoi invariants in the terms of
special sequence. We established a practical method so as
to rapidly determine continued fraction ofwd,
fundamental unitεd and Yokoi invariantsnd,md for
classified such real quadratic number fields.
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