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Abstract: Samarskii-Ionkin type problems are known classes of problems that represent a generalization of classical ones. At thesame
time they are obtained in a natural way by constructing mathematical models of real processes and phenomena in physics, engineering,
sociology, ecology, etc. Here we investigate the ability tosolve non-local problems of its type in 2D using the Fourier method of the
separation of variables. We study the completeness of the root functions of the corresponding spectral problems inL2(0< x,y < 1),
when they are defined as products of two systems of functions,where one of them is an orthonormal basis, and another is a Riesz basis.
Using the properties of biorthogonal systems, we also studythe problem of identifying the source function in the spatial domain.
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1 Introduction and Problem Statement

The interest in the study of problems of the Samarskii-Ionkin type began after the well-known classical work of N.I.
Ionkin [1]. Such problems differ from the classical ones, as corresponding spatial differential operator is nonself-adjoint
and hence the system of eigenfunctions is not complete. Fromthis arise the problems of studying completeness and
basicity of such systems, which play an important role in research of boundary value problems. At the present time there
is an extensive list of scientific papers pertaining to studyof such problems and all of the works relate mainly to partial
differential equations of the second order ([2]- [6]).

We study similar problems for fourth-order partial differential equations with three variables. Direct problem is
addressed with a time-dependent source term, while a time-independent one is used to address an inverse problem; the
two problems are solved in non-local 2D fractional parabolic equations of the following form:

CDα
0tu+

∂ 4u
∂x4 +

∂ 4u
∂y4 = f (x,y, t), (1)

and

CDα
0tu+

∂ 4u
∂x4 +

∂ 4u
∂y4 = f (x,y), (2)
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respectively.
HereCDα

0tu = I1−α
0t (ut) , α ∈ (0,1] is the derivative of orderα in the sense of Caputo [7] and for any integral functiong,

the left-sided Riemann-Liouville fractional integralIβ
0t of orderβ > 0 is defined by

Iβ
0 g(t) = 1

Γ (β )
∫ t

0
g(τ)

(t−τ)1−β dτ, whereΓ (β ) is the Euler Gamma function.

Let

Ωxy = {(x,y) : 0< x,y < 1}, Ωxt = {(x, t) : 0< x < 1;0< t < T},
Ωyt = {(y, t) : 0< y < 1;0< t < T}, Ω = Ωxy × (0,T),T > 0.

The direct and inverse methods are analyzed as stated below.

Direct problem. Given f (x,y, t) andϕ(x,y), we find a functionu(x,y, t) such that:

(1)u is continuous inΩ̄ , together with its derivatives, they appear in the boundaryconditions,
(2)u satisfies equation (1) in Ω ,
(3)u also satisfies the following boundary conditions

u(x,y,0) = ϕ(x,y), (x,y) ∈ Ω̄xy, (3)

∂ ku
∂xk |x=0 = 0,

∂ ℓu
∂xℓ

|x=0 =
∂ ℓu
∂xℓ

|x=1, (y, t) ∈ Ω̄y,t , k = 1,3, ℓ= 0,2, (4)

∂ ku
∂yk

∣

∣

y=0 =
∂ ku
∂yk

∣

∣

y=1, (x, t) ∈ Ω̄x,t , k = 0,2, (5)

whereΩ̄ denotes the closure ofΩ .

Inverse problem. Givenϕ andψ , we find a pair of functions{u(x,y, t), f (x,y)} with the following properties:

(1)u is continuous inΩ̄ , its derivatives alongside itself also appear in the boundary conditions andf (x,y) ∈C(Ωxy),
(2)u satisfies equation (2) in Ω ,
(3)u also satisfies boundary conditions (3)-(5) and the following terminal condition

u(x,y,T ) = ψ(x,y), (x,y) ∈ Ω̄xy. (6)

Before we tackle our stated problems, we recall that the theory of boundary value problems for fractional differential
equations has grown for the past years in two directions: on one hand, for its applications in real-life problems including
viscoelasticity, dynamical processes, biosciences, signal processing, system control theory, electrochemistry, diffusion
processes, and many others ([7]-[13]) and on the other hand for its intensive contribution in thegeneral theory of
differential equations. For our knowledge, very few papershave been devoted to initial-boundary value problems
governed by fractional partial differential equations of fourth or higher order ([14]-[16]). In addition to the work devoted
to direct problems involving fractional differential equations, driven and motivated by their applications, parallel studies
investigated inverse problems for these equations that appear in different fields, for instance in quantum physics (inverse
problems in quantum theory of scattering), geophysics (inverse problems of electric prospecting, seismology, and theory
of potentials), biology, medicine, quality checking programs, and others ([17]-[23]).

The organisation of the manuscript is as follows. Section 2 deals with the investigation of the direct problem. The
uniqueness and existence of a solution of this problem can beseen in Section 3. The investigation of the inverse problem
is given in Section 4. The conclusion part is depicted in Section 5.

2 Investigation of the Direct Problem

The solution of the direct problem can be expressed as the sumof a solution for the homogeneous equation

CDα
0tu+

∂ 4u
∂x4 +

∂ 4u
∂y4 = 0, (7)

with the boundary conditions (3)-(5), and a solution of the nonhomogeneous equation(1) subject to the boundary
conditions (4)-(5), and the homogeneous initial conditionu(x,y,0) = 0.
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We seek a nontrivial particular solution of the homogeneousequation (7) in the separate form

u(x,y, t) = Z(x,y)C(t).

Using separation of variables and considering the boundaryconditions (3)-(5), we obtain the spectral problem:

∂ 4Z
∂x4 +

∂ 4Z
∂y4 = σZ, (x,y) ∈ Ωxy, (8)

∂ kZ
∂xk |x=0 = 0,

∂ ℓZ
∂xℓ

|x=0 =
∂ ℓZ
∂xℓ

|x=1, y ∈ [0,1], k = 1,3, ℓ= 0,2, (9)

∂ kZ
∂yk

∣

∣y=0 =
∂ kZ
∂yk

∣

∣y=1 = 0, x ∈ [0,1], k = 0,2; (10)

its corresponding adjoint problem is
∂ 4W
∂x4 +

∂ 4W
∂y4 = σW, (x,y) ∈ Ωxy, (11)

∂ kW
∂xk |x=1 = 0,

∂ ℓW
∂xℓ

|x=0 =
∂ ℓW
∂xℓ

|x=1, y ∈ [0,1], k = 0,2, ℓ= 1,3, (12)

∂ kW
∂yk

∣

∣

y=0 =
∂ kW
∂yk

∣

∣

y=1 = 0, x ∈ [0,1], k = 0,2, (13)

whereσ is the separation parameter.
In the last decade, there were several types of new non-classical mathematical-physical problems that are devoted to the
study of the spectral properties of a non-self-adjoint differential operators, where the eigenfunctions are generally not
orthogonal and complete [2,3,5,17].

Now, we look for a solution to the problem (8)-(10) in the form

Z(x,y) = X(x)Y (y). (14)

Similarly as in the previous problem, using separation of variables and the boundary conditions (9)-(10), the problem
(8)-(10) is split into two spectral problems governed by ordinary differential equations:

X
′′′′
(x) = λ X(x), 0< x < 1, (15)

X ′(0) = X ′′′(0) = 0, X(0) = X(1), X ′′(0) = X ′′(1), (16)

and
Y

′′′′
(y)− µY (y) = 0, Y (0) = Y ′′(0) = Y (1) = Y ′′(1) = 0, 0< y < 1, (17)

whereµ = σ −λ and
′
denotes the classical derivative of order one.

The eigenvalues and eigenfunctions of the problem (17) have the form

µk = (kπ)4, and Yk(y) =
√

2sin(kπy), k ∈ N. (18)

The characteristic equation of the problem (15)-(16) is given by

k4−λ = 0 ⇔ k4 = λ .

We now investigate three cases for the values ofλ and determine their corresponding eigenfunctions.

For λ = 0, the corresponding solution has the form

X(x) =C1x3+C2x2+C3x+C4.
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Substituting the obtained expression in equation (16), we obtainC1 =C2 =C3 = 0, whileC4 is an arbitrary real number.
Thus, the eigenfunction associated to the eigenvalueλ0 = 0 can be chosen asX0(x) = 1.

For λ < 0, sayλ =−4µ4,(µ > 0), the characteristic equationk4 =−4µ4 has the roots

k1 = (1+ i)µ , k2 = (−1+ i)µ , k3 = (1− i)µ , k4 = (−1− i)µ

and the corresponding solution is of the form

X(x) =C1ch(µx)cos(µx)+C2ch(µx)sin(µx)+C3sh(µx)cos(µx)+C4sh(µx)sin(µx).

Substituting this expression into the boundary conditions(16), we obtainC1 =C2 =C3 =C4 = 0 and hence the problem
(15)-(16) has only a trivial solution for allλ < 0.

Finally, for λ > 0, sayλ = µ4,(µ > 0); the characteristic equationk4 = µ4 has the rootsk1,2 = ±µ ,k3,4 = ±µ i, and
consequently, the corresponding solution can be written as

X(x) =C1eµx +C2e−µx +C3cos(µx)+C4sin(µx).

Substituting this solution into equation (16), we obtain the following set of eigenvalues and eigenfunctions of the problem
(15)-(16)

λn = (2πn)4, Xn(x) = cos(2πnx), n ∈ N∪{0}.
Thereby, according to the representation of the solution given by equation (14), the eigenvalues and the corresponding
eigenfunctions of the problem (8)-(10) have the form

σnk = λn + µk = (2nπ)4+(kπ)4,

and
Znk(x,y) = Xn(x)Yk(y), n ∈ N∪{0},k ∈N

respectively. Note that the problem (8)-(10) is not self-adjoint and the set of eigenfunctionsZnk(x,y) is not complete in
the spaceL2(Ωxy) in the sense of the inner product< ξ ,η >=

∫∫

Ωxy

ξ (x,y)η(x,y)dxdy .

Following [5], we supplement the problem with the associated functionsZ̃nk(x,y),n ∈ N∪{0},k ∈ N, to make the set
complete onL2(Ωxy).

The associated functions̃Znk(x,y),n ∈N∪{0},k ∈ N, are solutions of the following problem

∂ 4Z̃nk

∂x4 +
∂ 4Z̃nk

∂y4 −σnkZ̃nk =−4(2nπ)3Znk, (x,y) ∈ Ωxy,

∂ kZ̃
∂xk |x=0 = 0,

∂ ℓZ̃
∂xℓ

|x=0 =
∂ ℓZ̃
∂xℓ

|x=1, y ∈ [0,1], k = 1,3, ℓ= 0,2,

∂ kZ̃
∂yk

∣

∣

y=0 =
∂ kZ̃
∂yk

∣

∣

y=1 = 0, x ∈ [0,1], k = 0,2.

Note that forn = 0, k ∈ N, corresponding to the eigenvaluesσ0k = µk, the above problem has no solution, while for
n,k ∈ N, we obtain the following expression of the associated functions

Z̃nk(x,y) = xsin(2nπx)
√

2sin(kπy).

For a notation convenience, the system of eigenfunctions and the corresponding associated functions of problem (8)-(10)
are respectively expressed as follows

Z0k(x,y) = Yk(y), Z2n−1k(x,y) = X2n−1(x)Yk(y),

and
Z2nk(x,y) = X2n(x)Yk(y), n,k ∈ N, (19)

c© 2018 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl.4, No. 3, 147-160 (2018) /www.naturalspublishing.com/Journals.asp 151

where
X0(x) = 1, X2n−1(x) = cos(2πnx), X2n(x) = xsin(2πnx), n ∈ N. (20)

(For further methods on spectral problems, check Refs. [1,4,5,17,24,25]). Here, we are using the scheme of [1] to
construct a system of eigenfunctions and associated functions to problems under consideration.

The problem (11)-(13) has eigenvaluesλ0 = 0, λn = (2πn)4, n ∈ N; the corresponding eigenfunctions and associated
functions are given by

W0k(x,y) = X∗
0 (x)Yk(y), W2n−1k(x,y) = X∗

2n−1(x)Yk(y),

and
W2nk(x,y) = X∗

2n(x)Yk(y), n,k ∈N, (21)

respectively.
Here

X∗
0 (x) = 2(1− x), X∗

2n−1(x) = 4(1− x)cos(2πnx), X∗
2n(x) = 4sin(2πnx). (22)

It follows from [2] that the system of functions (20) and (22) are complete and forms a Riesz’ basis inL2(0,1); the
similar statement applies to systems (19) and (21).

Prior to the statement of our results, we recall the following lemma.

Lemma 1 ([26]). For any fixed number, letn = 0,1,2, ..., {ϕk
n(x)}k≥0 be a complete orthonormal system of functions in

[0,π ] and the system of functionsψn(y) forms a Riesz basis inL2[0, 2π ]. Then the system of functions
unk(x,y) = ϕk

n(x)ψn(y), n,k = 0,1,2, ... forms a Riesz basis inL2([0, π ]× [0, 2π ]).

Now, we are ready to state the following lemmas.

Lemma 2. The systems of functions (19) and (21) are bi-orthogonal.

The proof of Lemma 2 can be achieved by direct calculations ofappropriate integrals.

Lemma 3. The systems of functions (19) and (21) form a Riesz basis inL2(Ωxy).

The proof of Lemma 3 follows from the basis property of the setof functions (20) and (22), and lemma 1.

3 Uniqueness and Existence of a Solution for the Direct Problem

Since the set of functions (19) and (21) is complete and forms a Riesz basis inL2(Ωxy), then the solution for equation (7)
subject to the boundary conditions (3)-(5), can be represented by the bi-orthogonal series

u(x,y, t) =
∞

∑
k=1

C0k(t)Z0k(x,y)+
∞

∑
n,k=1

C2n−1k(t)Z2n−1k(x,y)

+
∞

∑
n,k=1

C2nk(t)Z2nk(x,y), (23)

whereC0k(t),C2n−1k(t),C2nk(t) are unknown functions.

Using properties of the bi-orthogonal set of functions (19) and (21), we obtain from (23) the following representation
of these unknowns

C0k(t) =< u(x,y, t),W0k(x,y)>, C2n−1k(t) =< u(x,y, t),W2n−1k(x,y)>,

C2nk(t) =< u(x,y, t),W2nk(x,y)> .
(24)

Acting the operatorCDα
0t on both sides of each equation in (24), considering equation (7) and boundary condition (3), we

obtain the following time fractional differential equations forC0k(t),C2nk(t) andC2n−1k(t):
{

CDα
0tC0k(t)+ µkC0k(t) = 0,

C0k(0) = ϕ0k,

c© 2018 NSP
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{

CDα
0tC2n k +σnkC2n k(t) = 0,

C2n k(0) = ϕ2n k,

and
{

CDα
0tC2n−1k +σnkC2n−1k(t) = 4(2πn)3C2n k(t),

C2n−1k(0) = ϕ2n−1 k.

The solutions of the above initial value problems are given (Check [27] [p. 231] for details) by

C0k(t) = ϕ0kEα(−µktα), (25)

C2n k(t) = ϕ2n kEα(−σnktα), (26)

and
C2n−1k(t) = ϕ2n−1kEα(−σnktα)

+4(2πn)3

t
∫

0

(t − τ)α−1Eα ,α(−σnk(t − τ)α)C2n k(τ)dτ , (27)

respectively, where
ϕ0k =< ϕ(x,y),W0k(x,y)>, ϕ2n−1k =< ϕ(x,y),W2n−1k(x,y)>,

ϕ2nk =< ϕ(x,y),W2nk(x,y)> . (28)

HereEα ,β (z) is the Mittag-Leffler function [7,?] defined by

Eα ,β (z) =
∞

∑
k=0

zk

Γ (α k+β )
, Eα ,1(z) = Eα(z), z,α,β ∈ C, Re(α)> 0

and satisfies the following properties

1) for µ > 0,α,β ∈ (0,1],α ≤ β the function tα−1Eα ,β (−µtα) is completely monotone, i.e.

(−1)n[tβ−1Eα ,β (−µtα)
](n) ≥ 0, n ∈ N∪{0}. (See [6] and [27] [p. 118, 120 ] for details).

2) for α ∈ (0,2), γ ≤ |argz| ≤ π ,β ∈ R, γ ∈ (πα/2;min{π ;πα})
∣

∣Eα ,β (z)
∣

∣≤ M
1+ |z| , (29)

whereM is a constant that is independent ofz;

3)Eα ,µ(z) =
1

Γ (µ)
+ zEα ,α+µ(z),

z
∫

0

tµ−1Eα ,µ(λ tα)dt = zµEα ,µ+1(λ zα ). (30)

Plugging the expressions of the functionsC0k(t),C2nk(t) and C2n−1k(t) in equation (23), the solution of problem (7)
subject to the boundary conditions (3)-(5) can be represented by the series

u(x,y, t) =
∞

∑
k=1

u0k(x,y, t)+
∞

∑
n,k=1

(u2n−1k(x,y, t)+ u2n k(x,y, t)), (31)

where
u0k(x,y, t) = ϕ0kEα(−µktα)Z0k(x,y), (32)

u2n−1k(x,y, t) =
(

ϕ2n−1kEα(−σnktα)+4(2πn)3ϕ2nkFnk(t)
)

Z2n−1k(t), (33)

u2n k(x,y, t) = ϕ2n kEα(−σnktα)Z2n k(x,y), (34)
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Fnk(t) =

t
∫

0

(t − τ)α−1Eα ,α(−σnk(t − τ)α)Eα(−σnkτα )dτ. (35)

Afterwards, we prove the uniqueness and the existence of a solution to the problem (7) subject to the boundary
conditions (3)-(5).

Theorem 1. Assume thatϕ ∈C4,1
x,y (Ω̄xy)∩C1,4

x,y (Ω̄xy) satisfying the following conditions:

ϕ(0,y) = ϕ(1,y), ϕxx(0,y) = ϕxx(1,y), ϕx(0,y) = ϕxxx(0,y) = 0, y ∈ [0,1],

ϕ(x,0) = ϕ(x,1) = ϕyy(x,0) = ϕyy(x,1) = 0, x ∈ [0,1].

Then, the problem (7) subject to the boundary conditions (3)-(5) has a unique solution and it is represented by the
series (31).

Proof.

• Uniqueness of the solution:
Let u1 andu2 be two solutions of the problem (7), (3)-(5) in the domainΩ . The functionu = u1− u2 satisfies equation
(7), conditions (4), (5), andu(x,y,0) = 0, (x,y) ∈ Ω̄ . Taking (25), (26) and (27) into account, we have

C0k(t) = 0, C2n−1k(t) = 0, C2nk(t) = 0,

or
(u(x,y, t),W0k(x,y)) = 0, (u(x,y, t),W2n−1k(x,y)) = 0,

(u(x,y, t),W2nk(x,y)) = 0.

This shows that the functionu is orthogonal to the set of functions (21) which is complete and forms a basis inL2(Ωxy).
Hence,u(x,y, t) = 0 in the domainΩ . Sinceu ∈C(Ω̄), we haveu = 0 in Ω̄ .

• Existence of the solution:
By constructionu(x,y, t), the initial and boundary conditions are satisfied. What remains is to prove the validity of the
differentiation of the series. We show thatu ∈C(Ω). The estimates of (19) and (21) can be easily obtained as follows

|Zn k(x,y)| ≤
√

2, |Wn k(x,y)| ≤ 4
√

2,

while estimates for (32) and (34) are obtained by using the boundedness properties of the Mittag-Leffler function

|u0k(x,y, t)| ≤
√

2M1|ϕ0k|, |u2n k(x,y, t)| ≤
√

2M2|ϕ2n k|,

whereM1,M2 are positive constants.

Using the property given by equation (30), we estimate the expression (35) as follows:

|Fnk(t)| ≤
M4

σnk
, M4 = M3(1+M2), t ∈ [0,1],

whereM3 is positive constant.

From the (33), we have

|u2n−1k(x,y, t)| ≤ M5 (|ϕ2n−1k|+ϕ2n k|) , M5 = max{
√

2M2,4
√

2M4}.

Thus,u(x,y, t) can be estimated through (31)-(35) as follows:

|u(x,y, t)| ≤
√

2M1

∞

∑
k=1

|ϕ0k|+M5

∞

∑
n,k=1

|ϕ2n−1k|+(
√

2M2+M5)
∞

∑
k=1

|ϕ0k|.
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Furthermore, applying Cauchy-Schwarz and Bessel’s inequalities to each expression of (28), and taking into account the
conditions imposed on the functionϕ , we obtain the estimations

∞

∑
k=1

|ϕ0k| ≤
√

2
3

∥

∥ϕy
∥

∥

L2(Ωxy)
,

∞

∑
n,k=1

|ϕ2n−1k| ≤
√

2(30+
√

15)
180

∥

∥ϕxy
∥

∥

L2(Ωxy)
,

∞

∑
n,k=1

|ϕ2n k| ≤
√

2
6

∥

∥ϕxy
∥

∥

L2(Ωxy)
. (36)

Consequently, the series (31) is dominated by the convergent series

∞

∑
k=1

|ϕ0k|+
∞

∑
n,k=1

(|ϕ2n−1k|+ |ϕ2n k|)

and hence by the M-test of Weierstrass, the series is absolutely and uniformly convergent.
Similarly, one can prove that

∂ iu
∂xi ∈C(Ω̄),

∂ ju
∂y j ∈C(Ω̄), i = 1,2,3, j = 1,2.

Now, we show that
∂ 4u
∂x4 ∈C(Ω). Acting the operator

∂ 4

∂x4 on (33) and (34), we get

∂ 4u2n−1 k

∂x4 =
(

ϕ2n−1 kEα(−σnktα)+4(2πn)3ϕ2n kFnk(t)
)

λn cos(2πnx)
√

2sin(πny),

and
∂ 4u2n k

∂x4 =
√

2ϕ2n kEα(−σnktα)sin(kπy)
(

λn sin(2πnx)−4(2πn)3cos(2πnx)
)

,

respectively, followed by the estimates
∣

∣

∣

∣

∂ 4u2n−1k

∂x4

∣

∣

∣

∣

≤
√

2M2

εα |ϕ2n−1k|+4
√

2(2πn)3M4|ϕ2nk|,

∣

∣

∣

∣

∂ 4u2nk

∂x4

∣

∣

∣

∣

≤ 2
√

2M2

εα |ϕ2nk|.

The convergence of the series
∞
∑

n,k=1
ϕ2n−1k follows from (36), while of the series

∞
∑

n,k=1
ϕ2nk follows from the estimate

∞

∑
n,k=1

λ 3/4
n |ϕ2n k| ≤

√
2

6

∥

∥

∥

∥

∂ 5ϕ
∂x4∂y

∥

∥

∥

∥

L2(Ωxy)

, (37)

which is obtained by applying Cauchy-Schwartz and Bessel’sinequalities to the integral representation ofϕ2n k given by
equation (28).

Thus, from the above estimates, the series

∞

∑
n,k=1

∂ 4u2n−1 k(x,y, t)
∂x4 ,

∞

∑
n,k=1

∂ 4u2n k(x,y, t)
∂x4

are dominates by a convergent series, and therefore they converge absolutely and uniformly inΩ .
In a similar manner, it can be proved thatCDα

0tu ∈C(Ω). This ends the proof of the Theorem.

Remark. The solution of the direct problem can be represented as well(23), where the functions
C0k(t),C2n−1k(t),C2n k(t) have the form

C0k(t) = ϕ0kEα(−µktα)+

t
∫

0

(t − τ)α−1Eα ,α(−σ0k(t − τ)α) f0 k(τ)dτ ,
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C2n k(t) = ϕ2n kEα(−σnktα)+

t
∫

0

(t − τ)α−1Eα ,α(−σnk(t − τ)α) f2n k(τ)dτ ,

C2n−1k(t) = ϕ2n−1kEα(−σnktα)

+

t
∫

0

(t − τ)α−1Eα ,α(−σnk(t − τ)α)
(

4(2πn)3C2n k(τ)+ f2n k(τ)
)

dτ .

Here
f0k(t) = 〈 f (x,y, t),W0k(x,y)〉 , f2n−1k(t) = 〈 f (x,y, t),W2n−1k(x,y)〉 ,

f2nk(t) = 〈 f (x,y, t),W2nk(x,y)〉 ,
and the coefficientsϕ0k, ϕ2n−1k, ϕ2nk are defined by (28).

4 Investigation of the Inverse Problem

The source termf (x,y) can be expanded by the series

f (x,y) =
∞

∑
k=1

f0kZ0k(x,y)+
∞

∑
n,k=1

f2n−1kZ2n−1k(x,y)

+
∞

∑
n,k=1

f2nkZ2nk(x,y), (38)

and the corresponding solutionu(x,y, t) is represented by the bi-orthogonal series (23).
Together, equation (23) and (38) involve three unknown functionsC2n−1k(t), C2nk(t), C0k(t) and three unknown constants
f0k, f2n−1k, f2nk.
Substituting (23) and (38) into (2), and using conditions(3)-(6), these unknowns satisfy the following problems

{

CDα
0tC0k(t)+ µkC0k(t) = f0k,

C0k(0) = ϕ0k,C0k(T ) = ψ0k,
(39)

{

CDα
0tC2n k +σnkC2n k(t) = f2nk,

C2n k(0) = ϕ2n k,C2nk(T ) = ψ2nk,
(40)

and
{

CDα
0tC2n−1k +σnkC2n−1k(t) = 4(2πn)3C2n k(t)+ f2nk,

C2n−1k(0) = ϕ2n−1 k,C2n−1k(T ) = ψ2n−1 k,
(41)

whereϕ0k, ϕ2n−1k, ϕ2nk, ψ0k, ψ2n−1k, ψ2nk are the coefficients determined by (28), and

ψ0k(t) = (ψ(x,y),W0k(x,y)) , ψ2n−1k = (ψ(x,y),W2n−1k(x,y)) ,

ψ2nk = (ψ(x,y),W2nk(x,y)) . (42)

The solution of the equation (39), satisfying the first condition, has the form

C0k(t) = ϕ0kEα(−µktα)+

t
∫

0

(t − τ)α−1Eα ,α(−µk(t − τ)α) f0kdτ

or
C0k(t) = ϕ0kEα(−µktα)+ f0ktαEα ,α+1(−µktα).

Now, using the second condition of (39), we obtain

ϕ0kEα(−µkT α)+ f0kT α Eα ,α+1(−µkT α) = ψ0k.
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It follows, from the last equation and the Mittag-Leffler function properties given in (30), that

f0k =
µk

1−Eα(−µkT α)
(ψ0k −Eα(−µkT α)ϕ0k). (43)

Substituting the obtained values off0k into the representation ofC0k(t) yields

C0k(t) = ϕ0kEα(−µktα)+
µk(ψ0k −ϕ0kEα(−µkT α))

1−Eα(−µkT α)
tα Eα ,α+1(−µktα),

or equivalently

C0k(t) =
Eα(−µktα)−Eα(−µkT α)

1−Eα(−µkT α)
ϕ0k +

1−Eα(−µktα)

1−Eα(−µkT α)
ψ0k. (44)

The expressions of the functionC2nk(t) and the value off2nk can be obtained from (40) by following the same approach
used in solving problem (39):

C2nk(t) =
Eα(−σnktα)−Eα(−σnkT α)

1−Eα(−σnkT α)
ϕ2nk +

1−Eα(−σnktα)

1−Eα(−σnkT α)
ψ2nk, (45)

and
f2nk =

σnk

1−Eα(−σnkT α)
(ψ2nk −Eα(−σnkT α)ϕ2nk). (46)

The solution of the problem (41) is given by the equation

C2n−1k(t) = ϕ2n−1kEα(−σnktα)

+

t
∫

0

(t − τ)α−1Eα ,α(−σnk(t − τ)α)
(

4(2πn)3C2nk + f2n−1k
)

dτ

or explicitly by
C2n−1k(t) = ϕ2n−1kEα(−σnktα)+ f2n−1kt

αEα ,α+1(−σnkt
α)

+4 (2πn)3

t
∫

0

(t − τ)α−1Eα ,α(−σnk(t − τ)α)C2nkdτ .

Now, using the second condition of (41), we have

ϕ2n−1kEα(−σnkT α)+ f2n−1kT α Eα ,α+1(−σnkT α)

+4 (2πn)3

T
∫

0

(T − τ)α−1Eα ,α(−σnk(T − τ)α)C2nkdτ = ψ2n−1k,

or

f2n−1k =
1

T α Eα ,α+1(−σnkT α)
[ψ2n−1k −ϕ2n−1kEα(−σnkT α)

−4 (2πn)3

T
∫

0

(T − τ)α−1Eα ,α(−σnk(T − τ)α)C2nk dτ.

Using properties of the Mittag-Leffler functions given by (32) and (30), it follows from (45) thatC2n−1k(t) and f2n−1k can
be expressed respectively by the equations

C2n−1k(t) =
Eα(−σnktα)−Eα(−σnkT α)

1−Eα(−σnkT α)
ϕ2n−1+

1−Eα(−σnktα)

1−Eα(−σnkT α)
ψ2n−1k

+
4(2πn)3

1−Eα(−σnkT α)
[(1−Eα(−σnkT α)Fnk(t)
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−(1−Eα(−σnktα))Fnk(T )](ϕ2nk −ψ2nk), (47)

and
f2n−1k =

σnk

1−Eα(−σnkT α)
(ψ2n−1k −Eα(−σnkT α)ϕ2n−1k)

− 4(2πn)3σnkFnk(T )

(1−Eα(−σnkT α))2 (ϕ2nk −ψ2nk)

−4(2πn)3σnkFnk(T )
1−Eα(−σnkT α)

(ψ2nk −Eα(−σnkT α)ϕ2nk) . (48)

Thus, the solution pair{u(x,y, t), f (x,y)} of the inverse problem is represented by (23) and (38), where the functions
C0k(t),C2n−1k(t),C2nk(t) and the coefficientsf0k, f2n−1k, f2nk are determined by (44), (45), (47), and (43), (48), (46).

Theorem 2. Let the functionsϕ andψ satisfy the conditions:

ϕ ∈C4,1
x,y (Ω̄xy)∩C1,4

x,y (Ω̄xy), ψ ∈C5,1
x,y (Ω̄xy)∩C1,5

x,y (Ω̄xy),

∂ 2iϕ
∂x2i |x=0 =

∂ 2iϕ
∂x2i |x=1 = 0,

∂ϕ
∂x

|x=0 =
∂ 3ϕ
∂x3 |x=0 = 0, i = 0,1, y ∈ [0,1],

∂ 2 jϕ
∂y2 j

∣

∣

y=0 =
∂ 2 jϕ
∂y2 j

∣

∣

y=1 = 0, j = 0,1, x ∈ [0,1],

∂ψ
∂x

|x=0 =
∂ 3ψ
∂x3 |x=0 = 0,

∂ 2iψ
∂x2i |x=0 =

∂ 2iψ
∂x2i |x=1, i = 0,2, y ∈ [0,1],

and
∂ 2 jψ
∂y2 j

∣

∣y=0 =
∂ 2 jψ
∂y2 j

∣

∣y=1 = 0, j = 0,1,2, x ∈ [0,1].

Then the solution of the problem (2), (3)-(6) exists, it is unique and can be represented by the sum of series (23)), (38).

Proof. The uniqueness of the problem easily follows from the representations (23) and (38), and from the completeness
of the system (19).

By construction,u(x,y, t) and f (x,y) satisfy equation (2) and conditions (3) and (6). One can similarly prove (as in
direct problem) thatu ∈ C3,2,0

x,y,t

(

Ω
)

∩C4,4,0
x,y,t (Ω), CDα

0tu ∈ C(Ω) (see formulation of inverse problem). Hence, we have to
show thatf (x,y) ∈C (Ωxy).
The series represented by (38) is bounded by the expression

∞

∑
k=1

| f0k|+
∞

∑
n,k=1

| f2n−1k|+
∞

∑
n,k=1

| f2nk|. (49)

Let us consider the first series of (49). Let∆0k = 1−Eα(−µk pα). Since∆0k 6= 0, there existsδ > 0 such that|∆0k| ≥ δ > 0.
Then from (29) and (43) we have

| f0k| ≤C1(|ϕ0k|+ µk|ψ0k|), C1 = max

{

M1

δ pα ,
1
δ

}

.

From (36), it follows that the series
∞
∑

k=1
|ϕ0k| converges. Furthermore, by considering the imposed conditions onψ ,

and applying the Cauchy-Schwarz and the Bessel inequalities, from (42) we deduce

ψ0k =
2

µ5/4
k

∫∫

Ωxy

∂ 5ψ
∂y5 (1− x)

√
2cos(kπy)dy,

∞

∑
k=1

µ1/4
k |ψ0k| ≤

√
2

3

∥

∥

∥

∥

∂ 5ψ
∂y5

∥

∥

∥

∥

L2(Ωxy)

.

Hence, the series
∞
∑

k=1
| f0k| is convergent.
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Now, we consider the third series of (49). Since∆nk = 1−Eα(−σnk pα) 6= 0, there existsδ > 0 such that|∆nk| ≥ δ > 0.
Then from (29) and (46) we get

| f2nk| ≤C2(|ϕ2nk|+σnk|ψ2nk|), C2 = max

{

M2

δ pα ,
1
δ

}

.

From (36) it follows that series
∞
∑

n,k=1
|ϕ2n k| converges. Considering the imposed conditions on the function ψ , from

(42) we get

σnkψ2nk =
2
√

2
2π2nk

(

ψ5,1
2nk +ψ1,5

2nk

)

,

ψ5,1
2nk =

∫∫

Ωxy

∂ 6ψ
∂x5∂y

√
2cos(2nπx)

√
2cos(kπy)dxdy,

and

ψ1,5
2nk =

∫∫

Ωxy

∂ 6ψ
∂x∂y5

√
2cos(2nπx)

√
2cos(kπy)dxdy.

We then deduce from applying the Cauchy-Schwartz and the Bessel inequalities that

∞

∑
n,k=1

σnk|ψ2nk| ≤
√

2
6

(

∥

∥

∥

∥

∂ 6ψ
∂x5∂y

∥

∥

∥

∥

L2(Ωxy)

+

∥

∥

∥

∥

∂ 6ψ
∂x∂y5

∥

∥

∥

∥

L2(Ωxy)

)

. (50)

From here, it follows that the series
∞
∑

n,k=1
σnk|ψ2nk| converges as well.

As |∆nk| ≥ δ > 0, from (48) we have

| f2n−1k| ≤C
(

|ϕ2n−1k|+σnk|ψ2n−1k|+(2πn)3(|ϕ2nk|+ |ψ2nk|)
)

.

Thus, the convergence of the second series of (49) follows from the last equation and (36), (37) and (50).
Whereupon, it follows from the M-test of Weierstrass that series (38) converges absolutely and uniformly inΩxy. The
theorem is proved.
In order to illustrate obtained results, we consider some examples below.

Example 1. Let ϕ(x,y) = cos2πxsinπy. Then by virtue of equations (28), we have

ϕ0k = 0, ϕ0k = 0, ϕ2nk = 0, ϕ2n−1k =







0, n 6= 1ork 6= 1
√

2
2

, n = k = 1.

Since
µ1 = π4, λ1 = (2π)4, σ11 = λ1+ µ1 = 17π4,

then by considering equations (25), (26) and (27), we obtain

C0k(t) = 0,C2nk(t) = 0,

C2n−1k(t) =







0, n 6= 1ork 6= 1
√

2
2

Eα(−17π4tα), n = k = 1.

By substituting these expressions of the functionsC0k(t),C2n−1k(t) andC2nk(t) in equation (23) , we have the solution of
problem A in the form

u(x,y, t) = Eα(−17π4tα)cos2πxsinπy.

Example 2. Let α = 1. Then from (25), (26) and (27), it follows that

C0k(t) = ϕ0ke−µkt ,C2nk(t) = ϕ2nke−σnkt ,
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C2n−1k(t) =
(

ϕ2n−1k +4(2πn)3t ·ϕ2nk

)

e−σnkt .

Hence, the solution of the Problem A can be represented as

u(x,y, t) =
∞

∑
k=1

ϕ0ke−µktz0k(x,y)+
∞

∑
n,k=1

ϕ2nke−σnktz2nk(x,y)

+
∞

∑
n,k=1

(

ϕ2n−1k +4(2πn)3t ·ϕ2nk

)

e−σnktz2n−1k(x,y),

which coincides with the solution of the equation

∂u
∂ t

+
∂ 4u
∂x4 +

∂ 4u
∂y4 = 0

together with conditions (3) - (5). Here functionsz0k(x,y), z2n−1k(x,y) andz2nk(x,y) are defined in formula (19).

5 Conclusion

We established the existence and uniqueness of regular solutions of problems for fractional parabolic equations, with
nonlocal conditions given with respect to two spatial variables. Our method to prove that is based on expanding the
solution using a bi-orthogonal set of functions. In addition, we explained the corresponding spectral problems, and we
analyzed the eigenfunctions and associated functions of such problems, and finally, we established their completenessin
L2(0< x,y < 1).
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