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Abstract: Samarskii-lonkin type problems are known classes of problhat represent a generalization of classical ones. Az
time they are obtained in a natural way by constructing nragttizal models of real processes and phenomena in physgiseering,
sociology, ecology, etc. Here we investigate the abilitgdbtve non-local problems of its type in 2D using the Fourietimod of the
separation of variables. We study the completeness of ttefunctions of the corresponding spectral problems3(0 < x,y < 1),
when they are defined as products of two systems of functwmste one of them is an orthonormal basis, and another issz Réesis.
Using the properties of biorthogonal systems, we also stinelyproblem of identifying the source function in the spat@main.
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1 Introduction and Problem Statement

The interest in the study of problems of the Samarskii-lortgpe began after the well-known classical work of N.I.
lonkin [1]. Such problems differ from the classical ones, as cornedimy spatial differential operator is nonself-adjoint
and hence the system of eigenfunctions is not complete. Fnisrarise the problems of studying completeness and
basicity of such systems, which play an important role ieaesh of boundary value problems. At the present time there
is an extensive list of scientific papers pertaining to stafiguch problems and all of the works relate mainly to partial
differential equations of the second ord&]{[[ 6]).

We study similar problems for fourth-order partial diffatial equations with three variables. Direct problem is
addressed with a time-dependent source term, while a tiehepiendent one is used to address an inverse problem; the
two problems are solved in non-local 2D fractional parabetjuations of the following form:

d%u 9%
a _ _— = 1
CDOtu+ax4+0y4 f(xy,t), (1)
and
d*u  d*u
o g2 g0 2
CDOtu+ 0X4 + ay4 f(X,y), ( )
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respectively.
HerecDgu =139 (u), a € (0,1] is the derivative of ordea in the sense of Caput@]and for any integral functiog,

the left-sided Riemann-Liouville fractional integngl of orderf3 > 0 is defined by
Igg(t) = ﬁ 15 (tf’r(%dr, wherel™ (B) is the Euler Gamma function.

Let

Qy={(Xy):0<xy<1}, Qe={(xt):0<x<10<t<T},

Qp ={(yt):0<y<1,0<t<T}, Q=04 x(0,T), T >0.

The direct and inverse methods are analyzed as stated below.

Direct problem. Givenf(x,y,t) and¢(x,y), we find a functioru(x,y,t) such that:

(1)u is continuous i, together with its derivatives, they appear in the boundanditions,
(2)u satisfies equatiorl] in Q,
(3)u also satisfies the following boundary conditions

U(Xa ya O) = ¢(Xa y)7 (Xa y) € §XYa (3)
dku dlu dlu —
K Ix=0 =0, Fa [x=0 = Fa Ix=1, (Yit) € Qut,k=1,3,£=0,2, 4)
ou u —
BN ‘y:O = BN ‘y:l; (xt) € Qxt, k=0,2, )

whereQ denotes the closure @ .

Inverse problem. Given¢ and (¢, we find a pair of functiongu(x,y,t), f(x,y)} with the following properties:

(L)uis continuous inQ, its derivatives alongside itself also appear in the boandanditions and (x,y) € C(Qy),
(2)u satisfies equatior?f in Q,
(3)u also satisfies boundary conditiorg-(5) and the following terminal condition

U(X,y,T) = w(xvy)ﬂ (va) € -(Sxy (6)

Before we tackle our stated problems, we recall that therthebboundary value problems for fractional differential
equations has grown for the past years in two directions:nenh@nd, for its applications in real-life problems inchugli
viscoelasticity, dynamical processes, biosciences asigrocessing, system control theory, electrochemisiffysion
processes, and many otherg]{[13]) and on the other hand for its intensive contribution in theneral theory of
differential equations. For our knowledge, very few papease been devoted to initial-boundary value problems
governed by fractional partial differential equations adifth or higher order ([4]-[ 16]). In addition to the work devoted
to direct problems involving fractional differential edicams, driven and motivated by their applications, patatedies
investigated inverse problems for these equations thaapp different fields, for instance in quantum physicsénse
problems in quantum theory of scattering), geophysicsefis® problems of electric prospecting, seismology, ancdrthe
of potentials), biology, medicine, quality checking pragns, and others1[]-[23]).

The organisation of the manuscript is as follows. Sectiore@lglwith the investigation of the direct problem. The
unigueness and existence of a solution of this problem caeée in Section 3. The investigation of the inverse problem
is given in Section 4. The conclusion part is depicted in iBad.

2 Investigation of the Direct Problem

The solution of the direct problem can be expressed as thefarsolution for the homogeneous equation
o%u 9%
-+ — =
oxt  ay?
with the boundary conditions3)-(5), and a solution of the nonhomogeneous equatijos(ibject to the boundary
conditions #)-(5), and the homogeneous initial conditiofx,y,0) = 0.

cDgu+ 0, (7
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We seek a nontrivial particular solution of the homogeneaausation 7) in the separate form

u(x,y,t) = Z(x,y)C(t).

Using separation of variables and considering the bounctzmglitions 8)-(5), we obtain the spectral problem:

0z 9%z
W_FW_GZ’ (X,Y) € Qy, (8)
oz 0'z 'z
W |X:O = 07 W |X:0 = W |X:17 yE [Oa 1]7 k: 1737 é = 0727 (9)
oz oz
W‘y:OZW‘y=1=0aX€[0a1]vk=0,2; (10)
its corresponding adjoint problem is
0*W  9*W
W + W =aW, (x,y) S Qxy, (11)
oMW o'W o'W
W |X=1 = 07 W |X=0 = 7 |X=17 y6 [07 1]7 k: 07 27 é - 1737 (12)
oW oW
W‘y:O=W|y=1zovxe[071]ak:0727 (13)

whereo is the separation parameter.

In the last decade, there were several types of new nonigddssathematical-physical problems that are devotedeo th
study of the spectral properties of a non-self-adjointedéhtial operators, where the eigenfunctions are gegenatl
orthogonal and complet@,3,5,17].

Now, we look for a solution to the problerB)¢(10) in the form
Z(xy) = X(X)Y(y)- (14)

Similarly as in the previous problem, using separation afaldes and the boundary conditior-(10), the problem
(8)-(10) is split into two spectral problems governed by ordinaiffedential equations:

nn

X (X)) =AX(x), 0<x<1, (15)
X'(0)=X"(0)=0, X(0)=X(1), X"(0)=X"(1), (16)

and
Y (y) = uY(y) =0, Y(0) =Y"(0) =Y(1) =Y"(1)=0,0< y< 1, (17)

whereg =0 —A and’ denotes the classical derivative of order one.
The eigenvalues and eigenfunctions of the probl&w fave the form
e = (km?, and Y (y) = v2sinkmy), ke N. (18)
The characteristic equation of the problet®)¢(16) is given by
K'-A=0sK=A.
We now investigate three cases for the valued ahd determine their corresponding eigenfunctions.
For A = 0, the corresponding solution has the form

X(x) = C;]_X3 + CzX2 4 C3x+Ca.
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Substituting the obtained expression in equatits),(we obtainC; = C, = C3 = 0, whileC4 is an arbitrary real number.
Thus, the eigenfunction associated to the eigenvidue 0 can be chosen ag(x) = 1.

ForA <0, sayA = —4u* (u > 0), the characteristic equatiéfi = —4u* has the roots
ki=(1+0y, k=(-1+ip, ke=1A-Du, ki=(-1-i)u
and the corresponding solution is of the form
X(x) = Cych(ux) cog px) + Coch(x) sin( ux) + Cash(px) cog px) + Cash(ux) sin(ux).

Substituting this expression into the boundary conditidi®, we obtainC; = C; = C3 = C4 = 0 and hence the problem
(15)-(16) has only a trivial solution for alA < 0.

Finally, for A > 0, sayA = u?, (1 > 0); the characteristic equatidd = u* has the root&; » = +1,ks 4 = +pi, and
consequently, the corresponding solution can be written as

X(x) = Cre"*+ Coe™H* + Czcoq ux) 4 Casin(ux).

Substituting this solution into equatiob@), we obtain the following set of eigenvalues and eigenfiomstof the problem
(19-(16)

An= (2rm)*, Xa(x) = cog2mmx), ne NU {0}.
Thereby, according to the representation of the solutisergby equationi4), the eigenvalues and the corresponding
eigenfunctions of the problem8)-(10) have the form

Ok = An+ e = (2nm)°* + (kmn)*,

and
Znk(Xy) = X%a(X)¥k(y), neNU{0},keN

respectively. Note that the proble®){(10) is not self-adjoint and the set of eigenfunctiayg(x,y) is not complete in
the spacé.?(Qyy) in the sense of the inner producté, n >= [ & (x,y)n(x,y)dxdy .

Qu
Following [5], we supplement the problem with the associated functﬁm@gy),n € NU{0},k € N, to make the set
complete orL?(Qyy).

The associated functiotfg(x,y),n € NU {0}, k € N, are solutions of the following problem

%7k N %7k

o gyt~ Ondnc=—A2Zo (%Y) € Dy,

oz 9'Z 3'Z

ENa lx=0 =0, ax Ix=0 = FN Ix=1, Y€[0,1],k=13,¢=0,2,
oz oz
W |y=0 = W |y=1 =0, xe [0,1], k=0,2.

Note that forn = 0, k € N, corresponding to the eigenvalueg, = Lk, the above problem has no solution, while for
n,k € N, we obtain the following expression of the associated fonest

Zok(%,y) = xsin(2n7x) v/2 sin(krty).

For a notation convenience, the system of eigenfunctiodstamcorresponding associated functions of probl@r{10)
are respectively expressed as follows

ZOk(Xv y) = Yk(y)v Zanlk(Xv y) = X2n—1(X)Yk(y)a

and
Zonk(%,Y) = Xen(X)Yk(Y), n,kE N, (19)
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where
Xo(X) =1, Xon—1(X) = coq2rmx), Xon(X) = xsin(2rmx), n € N. (20)

(For further methods on spectral problems, check Rdfgl,$,17,24,25])). Here, we are using the scheme df fo
construct a system of eigenfunctions and associated aumgcto problems under consideration.

The problem 11)-(13) has eigenvaluesy = 0, Ap = (2nn)4, n € N; the corresponding eigenfunctions and associated

functions are given by
Wok (X, Y) = X5 (X)Yk(Y),  Wan_1k(X,Y) = X3n_1(X)Yk(Y),

and
\N2nk(xa y) = X;n(X)Yk(y)a n, ke N, (21)
respectively.
Here
X5 (X) =2(1—X), X5n_1(X) = 4(1 — x) cog2rmx), X5,(X) = 4 sin(2rmx). (22)

It follows from [2] that the system of function2() and @2) are complete and forms a Riesz’ basisL#{0,1); the
similar statement applies to systerd9)(and @1).

Prior to the statement of our results, we recall the follgpiemma.
Lemma 1 ([26]). For any fixed number, let = 0,1,2,..., {¢K(x ) ko0 be a complete orthonormal system of functions in
[0, and the system of functiong(y) forms a Riesz basis in?[0,2m. Then the system of functions
Unk(X,Y) = X (X)Wn(y), n.k=0,1,2, ... forms a Riesz basis it?([0, r1] x [0, 271]).

Now, we are ready to state the following lemmas.
Lemma 2. The systems of functiond 9) and @1) are bi-orthogonal.

The proof of Lemma 2 can be achieved by direct calculatiorsgpfopriate integrals.

Lemma 3. The systems of functiond 9) and 1) form a Riesz basis ihz(Qxy).

The proof of Lemma 3 follows from the basis property of theddtinctions 0) and £2), and lemma 1.

3 Uniqueness and Existence of a Solution for the Direct Problem

Since the set of functiond §) and @1) is complete and forms a Riesz basid i{Qyy), then the solution for equatiofd)
subject to the boundary conditior®{(5), can be represented by the bi-orthogonal series

u(x,y,t) z Cok(t)Zok(X,y) + ; Con—1k(t)Zon—1k(X.Y)

+ ; Can(t)Zan(Xa y)7 (23)
whereCo(t), Con_1k(t), Conk(t) are unknown functions.
Using properties of the bi-orthogonal set of functioh8)(and @1), we obtain from 23) the following representation
of these unknowns
COk(t) =< U(X,y,t),\/\/ok(X,y) >, Canlk(t) =< u(xvyvt)aVVanlk(Xay) >
Cank(t) =< u(x,y,t), Wonk(X,y) >

Acting the operatogDg; on both sides of each equation B¥, considering equatiorv) and boundary conditior8], we
obtain the following time fractional differential equati®forCok(t), Conk(t) and Con_1k(t):

{CDgtCOk(t)"’IJkCOk(t) =0,
Cok(0) = ¢k

(24)
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{ cD&Conk + TrkCank(t) =0,
C2n k(o) = ¢2n ks
and

Con-1k(0) = Pon-1k-
The solutions of the above initial value problems are giveneck R7] [p. 231] for details) by

Cok(t) = dokEa (—ut?), (25)

{ cD&Con—1k + TrkCan-1k(t) = 4(2rm)Conk(t),

Conk(t) = ¢on kEa(_Unkta)a (26)
and
Con—1k(t) = P2n—1kEa (—Ort?)

t
+4(2mm)? / (t— 1) Eq.q(— Ot — T)%)Conk(T)dT, 27)
0

respectively, where
¢Ok =< ¢(X7Y)a\/vok(x7y> >7 ¢2n71k =< ¢(XaY)7\N2nflk(X7Y) >7

¢2nk =< ¢(XaY)aVV2nk(XaY) > (28)
HereE, g(2) is the Mittag-Leffler function7,?] defined by
E. (=5 ¢ (2) =Ea(2), za, € C, Re(a) > 0
8@ = 2 Flakr py Feal® = Fal@ 2P et

and satisfies the following properties

1) for p > 0,a,8 € (0,1,a < B the function t“—lEa,B(—ut") is completely monotone, i.e.
(—1)"[tF1E, g(—ut?)] ™ 0,ne NU{0}. (See p] and [27] [p. 118, 120 ] for details).

2)fora €(0,2), y<|argzl <mB eR ye (nma/2;min{m ma})

|Eap(@] < 11/'|Z|, (29)
whereM is a constant that is independentzpf
z
3)Equ(2) = ﬁ + ZEqain(2), O/tﬂlEa,“(At“)dt = Eq 1 (A D). (30)

Plugging the expressions of the functio@g(t), Conk(t) and Con_1(t) in equation 23), the solution of problem?)
subject to the boundary conditior®{(5) can be represented by the series

u(x,y,t) = 3 Uok(X.y,t) + ; (Uzn-1k(%,Y;1) 4 Uznk(X, ¥, 1)), (31)
k=1 nk=1
where
uOk(Xayat) = ¢OKECI(_IJkta)ZOk(X7y)7 (32)
Uon—1k(X%,Y,t) = (Pan-—1kEa (— Ot ®) + 4(27m) 2 PoniFrk(t)) Zon-—1k(t). (33)
Uon k(Xa yat) - ¢2n kEa(—Unkta)ZZn k(X7 y)a (34)
(@© 2018 NSP
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t

Fk(t) = /(t - T)a_lEa,a(_Gnk(t —1)")Eq(—0w1?)dT. (35)
0

Afterwards, we prove the uniqueness and the existence ofluicso to the problem ¥) subject to the boundary
conditions B)-(5).

Theorem 1. Assume thatp € Cf{g}(ﬁxy) mcijf(éxy) satisfying the following conditions:
¢(07y) = ¢(17y)7 ¢XX(an) = ¢XX(17y)7 ¢X(an) = ¢XXX(07y) = 07 y € [Oa 1]7

?(X,0) = ¢(x,1) = Pyy(X,0) = ¢yy(x,1) =0, x € [0,1].

Then, the problem?) subject to the boundary condition3){(5) has a unique solution and it is represented by the
series B1).

Proof.

e Uniqueness of the solution:
Let u; anduy be two solutions of the problenT),_(3)-(5) in the domainQ. The functionu = u; — u, satisfies equation
(7), conditions 4), (5), andu(x,y,0) =0, (x,y) € Q. Taking £5), (26) and @7) into account, we have

Cok(t) =0, Con1k(t)=0, Conk(t)=0,

or
(U(X,y,t),V\/Ok(x,y)) =0, (u(xayat)v\NZH—lk(Xay)) =0,

(u(x,y,t),Wenk(x,y)) = 0.

This shows that the functiomis orthogonal to the set of function2%) which is complete and forms a basisLif( Q).
Hence,u(x,y,t) = 0 in the domaim2. Sinceu € C(Q), we haveu=01in Q.

e Existence of the solution:
By constructionu(x,y,t), the initial and boundary conditions are satisfied. Whataiesiis to prove the validity of the
differentiation of the series. We show that C(Q). The estimates ofl@) and @1) can be easily obtained as follows

|Zn k(xvy)| S \/Ea |Wn k(xvy)| S 4\/57
while estimates for32) and 34) are obtained by using the boundedness properties of thiagMiteffler function
[Uok(%,Y; 1) < V2Ma|dokl,  [Uank(XY;t)| < V2Ma|p2nkl,
whereM1, M5 are positive constants.

Using the property given by equatioBd), we estimate the expressiadhj as follows:

M
Fa()] <~ Mg =Ms(1+Mp),t €[0,1],
Onk
whereMs is positive constant.
From the 83), we have
Uzn—1k(X Y, 1) < Ms (|$2n—1k| + $2nk]) - Ms = max{v2Mp, 4v/2Mg}.

Thus,u(x,y,t) can be estimated througB%)-(35) as follows:

lu(x,y,t)] < v2My > ok +Ms ; |$2n—1kl + (V2M2 + Ms) > Idoxl-

= nk=1 1

k=1 k=

(@© 2018 NSP
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Furthermore, applying Cauchy-Schwarz and Bessel’s ingimsao each expression 028), and taking into account the
conditions imposed on the functign we obtain the estimations

2 V2 V2(30+/15)
> 190 < 5 18l ; bl < 2L gl
; |banil < =5 H%HLZ (2" (36)
Consequently, the serie3]) is dominated by the convergent series
k;|¢ok| + n7;=1(|¢2n71k| + [@2nk])

and hence by the M-test of Weierstrass, the series is alkgohrd uniformly convergent.
Similarly, one can prove that

d'u ~ dlu — . .

N € C(Q), oy eC(Q), i=123 j=12

4 4
Now, we show thatg% € C(Q). Acting the operatobd? on (33) and B4), we get

704';;2;;“ = ($2n—1kEa (—Onit™) + 4(27m)3Pon kFrk(t) ) AncOS2rmx) V2 sin( rmy),

and
0 4u2n k
axt
respectively, followed by the estimates

= V2¢ankEa (—onmt®) sin(kty) (Ansin(2rmx) — 4(2rm)*cog2mmx)),

0% \/_ 2M

‘ 02)?4 < 2|¢2n 1| +4v/2(2rm)*Mg] i,
‘94U2nk 2\/§M2
x4 | = |¢2nk|

The convergence of the sene{ ¢on 1k follows from (36), while of the series Z donk follows from the estimate
nk=1 nk=1

V2
PRI

: (37)

0x40y

which is obtained by applying Cauchy-Schwartz and Bessedqualities to the integral representationfgf x given by
equation 28).

Thus, from the above estimates, the series

0

04U2n—1k(x7y7t) - 04U2nk(xay7t)
n,;=1 7 ng—l

ox4 x4

are dominates by a convergent series, and therefore thegigeabsolutely and uniformly i@.
In a similar manner, it can be proved tldg u € C(Q). This ends the proof of the Theorem.

Remark. The solution of the direct problem can be represented as \({&3), where the functions
Cok(t), Con—1k(t),Conk(t) have the form

t
Cok(t) = PokEa (—Ht?) +/(t —1)" Ega(— 0t — 1)) fok(T)d1,
0

(@© 2018 NSP
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t
Conk(t) = donkEa (—Omt?) + / (t— T)ailEa,a(_Unk(t —1)%) fonk(T)dT,
0

Con—1k(t) = Pon—1kEa (—ort?)
t
+ / (t—1)" " Ea.a(—0mk(t — 1)) (4(2mmM)*Coni (1) + foni(1)) .
0

Here
fOk(t) = <f(xvyvt)7\N0k(X7y)> ) f2nflk(t) = <f(x,y,t),\/\/2n,lk(x,y)>,

f2nk(t) = <f(xayat)7VV2nk(X7Y)> ’
and the coefficientoy, don_1k, P2nk are defined byZ8).

4 Investigation of the Inverse Problem

The source ternf(x,y) can be expanded by the series

fxy) =5 foZok(xy) + Z fon—1kZon-1k(X,Y)
k=1 nk=1

+ ; f2nkZan(Xay)a (38)
nk=1

and the corresponding solutioix, y, t) is represented by the bi-orthogonal seriz3)(
Together, equatior2@) and @8) involve three unknown functiorS,_1x(t), Conk(t), Cok(t) and three unknown constants

fok, fan—1k, fonk-
Substituting 23) and @38) into (2), and using condition8]-(6), these unknowns satisfy the following problems

{CDgtCOk(t) + wCok(t) = fok
Cok(0) = ok, Cok(T) = Yok,

{ cD&Conk + OrkConk(t) = fark,

(39)

40
Conk(0) = $2nk, Conk(T) = Wank, (40)

and

{ cD&Con 1k + TnkCan_1k(t) = 4(2rm)3Cank (t) + fank, (a1)

Con-1k(0) = ¢2n-1k, Con—1k(T) = Wan_1k,
wheredok, don_1k, Pank, Yok, Yon—1k, Wonk are the coefficients determined by (28), and

qJOk(t) = (W(Xv y)aVVOk(Xv y)) v WYonak= ((IJ(X, Y)vWanlk(Xv y)) )

Wank = (Y(X,Y), Wenk(X,Y)) - (42)

The solution of the equatior39), satisfying the first condition, has the form

t
Cox(t) = GoEal~Hit®) + [ (t— 1) Eaa(— it~ 1) focdt
0

or
Cok(t) = PokEa (—put®) + fort “Eq g1(—Hit?).
Now, using the second condition &9), we obtain

PokEa (—kT?) + fokT“Eq a+1(— T ) = Yok.

(@© 2018 NSP
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It follows, from the last equation and the Mittag-Leffler fition properties given in30), that

Hi

fo = Ty (Wok— Ea(—HT ) o). (43)

Substituting the obtained values faf into the representation @iy (t) yields

Hic(Wok — PokEa (— T Y))
1-Eq(—TY)

Cox(t) = PokEa (— ™) + t"Eqara(—Ht?),

or equivalently

(—pt”) — Eq (—pTY) 1—Ea(—t?)
5 dok + 5
1-Ea(—T9) 1-Ea(—T9)
The expressions of the functi@3n(t) and the value of,q can be obtained fromd(Q) by following the same approach
used in solving problenBQ):

Cok(t) = Ea Wok- (44)

Ea(—ankt“)—Ea(—ankT")d) | 1-Ea(-0ut?)
1— Eq(—0mT9) 2k B (— oI 9)

Conk(t) = Wonk, (45)

and
Onk

1—Eq(—0onT9)
The solution of the probleni() is given by the equation

Con—1k(t) = ¢on—1kEa (—omt?)

fonk = (Work — Ea (=0T Y) d2nk).- (46)

t
+ / (t— 1) Eq0(— Onelt — 1)) (4(27)Corg + fon_u) dT
0

or explicitly by
Con—1k(t) = bon—1kEa (—Oit?) + fon_ 1t “Eq a+1(— Ot )
t
+42m)° [ (=1 Eq.a(-ow(t — 1) Candr.
0
Now, using the second condition c¢fX), we have

$on—1kEa (—UnkTa) + f2n—1kTaEa,a+l(_0nkTa)

-
+4 (Zm)g/ (T- T)ailEa,a(_Unk(T - T)G)CandT = Yan_1k,
0

or
fon—1k = 1k — bon_1kEa (— Ok TY
M TR, o) [Won-1k — $2n-1kEa (— Ok T ")
T
~4@m)® [ (T 1) *Eaa(—on(T - 1)°)ConclT
0

Using properties of the Mittag-Leffler functions given 182 and @0), it follows from (45) thatCy,_1x(t) and fzn_1x can
be expressed respectively by the equations

Eq(—0nmt?) — Eq(— 0T 9) 1—Eq(—0nt?)
Con-1(t) = 1—Eq(—0nT9) bon-1+ WU&WR

4(2mm)3

T Ea(ConTd) (1 Ea(—0mT“)Fk(t)
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—(1—Ea(—0mt?))Frk(T)] (d2nk — Wark), (47)

and
Onk

1—Eq(—ouT?)
4(2rm) 30 Fc(T)
(1 Eq(—0nT9))?
~ 4(2rm)3onFak(T)
1-Eq(—0nT?)

Thus, the solution paifu(x,y,t), f(x,y)} of the inverse problem is represented Bg)(and @8), where the functions
Cok(t), Con—1k(t), Conk(t) and the coefficient$o, fon_1k, fonk are determined bydd), (45), (47), and @3), (49), (46).

fon_1k = (Won-1k — Ea (— 0T %) P2n—1x)

5 ($2nk — Work)

(Work — Eq (=0T %) d2nk) - (48)

Theorem 2. Let the functiongp andy satisfy the conditions:

9 € Cly(Qq) NCK (D), W € CRf(R0) NG (Qxy),

02l¢ 02l¢ dd’ (93(15 )
ale |X— ale |X—1 =V, ax |X— W |X=O = 07 I = 07 17 ye [07 1]7
%¢ 0%¢ :
W ‘y:O = W |y:l :07 J :Oala Xe [071]7
0 03 02i aZi o
dqj |X— - 0 LIJ |X—0 =V, ng |X=0 = ng] |X=1a I = 0725 ye [07 1]7
and .
%y 0 J

W |y:0 yzj |y 1= 07 J = Oa 1727 Xe [Oa 1]

Then the solution of the problerg) (3)-(6) exists, it is unique and can be represented by the sum efss@f)), (39).

Proof. The uniqueness of the problem easily follows from the regmmestions 23) and 38), and from the completeness
of the system19).
By constructionpu(x,y,t) and f (X, y) satisfy equationd) and conditions3) and ). One can similarly prove (as in

direct problem) thati Cffto( ) ﬂnyt (Q), cDgu € C(Q) (see formulation of inverse problem). Hence, we have to
show thatf (x,y) € C(Qyy).
The series represented 88 is bounded by the expression

0 0

z fok| + ; | fon—1k| + ; | fank|- (49)
P} nfc1 n

=
Let us consider the first series @f9). LetAgx = 1— Eq (— ik p?). Sincedgy # 0, there exist® > 0 such thatAg| > 6 > 0.
Then from @9) and @3) we have

M; 1
| fox| < Ci(|dok| + Hx| Pok|). C1=max{5—pa,3}-

From @36), it follows that the senes; |¢ok| converges. Furthermore, by considering the imposed dondibny,
K=

and applying the Cauchy-Schwarz and the Bessel inequsalfitem @2) we deduce

2
Yok = 5/4 // (1-x)v2coskny)dy, z “1/4“!’ = \g_

oy

Lo(Qe)

[ee]
Hence, the serie§ |fo| is convergent.
k=1
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Now, we consider the third series @fd). Sincedn = 1—Eq(—ognp®) # 0, there exist® > 0 such thaiAn| > 0 > 0.
Then from 9) and @6) we get

My, 1
| fonk| < Co(|d2nk| + Onk|Wank|), Co= max{(;—pzow 3} :

From 36) it follows that series S |¢2nk| converges. Considering the imposed conditions on the ifomgt, from

nk=1
(42) we get
2V2 15
OnkWonk = 212nk (‘I—’an wzhk) )
Yo = / / x5y V2 cog2nmx)v/2 cogkry)dxdy,
and

Yoo = / / e \/Ecos{ZnnX)\/_ cogkry)dxdy.

We then deduce from applying the Cauchy-Schwartz and theeBewequalities that

i 2
S ol < <‘ . >>. (50)
n, 2(82xy

=1

%y
oxay®

x5y Lo( Q) ‘

From here, it follows that the serie§ g |{2nk| converges as well.

As |Ax| > 6 > 0, from (48) we have

| f2n—1k| <C (|¢2n—1k| + Unk|q—’2n—1k| + (zm)3(|¢2nk| + |q—’2nk|)) .

Thus, the convergence of the second serieggffpllows from the last equation an86), (37) and 60).

Whereupon, it follows from the M-test of Weierstrass thaiese38) converges absolutely and uniformly . The
theorem is proved.

In order to illustrate obtained results, we consider sonagrgies below.

Example 1. Let ¢ (x,y) = cos 2xsinry. Then by virtue of equations (28), we have

O,n#lork#1
$ok =0, Pok =0, Ponk =0, Pp2n-1k = { /2
—.,n=k=1
2
Since
p =1 A = (2m)*, 011 = A+ = 171,

then by considering equations (25), (26) and (27), we obtain
COk(t) = 07 Can(t) = Oa

O,n#1lork#1
Con—1k(t) = { NG u
7Ea(—17n“t ,n=k=1.

By substituting these expressions of the functiopgt), Con—1k(t) andConk(t) in equation (23) , we have the solution of
problem A in the form
u(x,y,t) = Eq(—171t%) cos 2xsinmny.

Example2. Leta = 1. Then from (25), (26) and (27), it follows that
Cok(t) = poe ", Conk(t) = panke ™,
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Con—1k(t) = (¢2n—1k + 4(27m)3t . ¢2nk) g Ot

Hence, the solution of the Problem A can be represented as

u(x,y,t) Z Poke 2ok (x,y) + ; Panke” T Zonk(X,Y)

3 (Paraick @MY o) & O 2 -24(xY)
nk=1

which coincides with the solution of the equation

@4_@4_@—0
ot axd oyt

together with conditions (3) - (5). Here functionx(X,y), Zon_1k(X,y) andznk(x,y) are defined in formula (19).

5 Conclusion

We established the existence and uniqueness of reguldios@wf problems for fractional parabolic equations, with
nonlocal conditions given with respect to two spatial Valea. Our method to prove that is based on expanding the
solution using a bi-orthogonal set of functions. In additiozve explained the corresponding spectral problems, and we
agalyzed the eigenfunctions and associated functionsobf groblems, and finally, we established their completeimess
Le(0<xy<1).
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