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Abstract: In this communication we introduce a new generalized fuzdgrmation measurdﬁg(A) of ordera and typef for a

fuzzy setA and establishes the validity of the measure as a fuzzy gntédgo we define a new generalized fuzzy average code-word
length Lg (A) of ordera and typef for a fuzzy setA and its relationship with generalized fuzzy informationamreng(A) have

been discussed. Usingg(P) , some coding theorems for discrete noiseless channel leasgreved. The measures defined in this
communication are not only new but some known measures engsitticular cases of our proposed measures that alreastyirexte
literature of fuzzy information theory.
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1 Introduction: [22], Zadeh P9 etc. Application of fuzzy measures to
engineering, fuzzy traffic control, fuzzy aircraft control

Fuzziness and uncertainty are the basic nature of humamedicines, computer science and decision making etc,

thinking and many real world objectives. Fuzziness ishave already been established. The basic noiseless coding

found in our decision, in our language and in the way oftheorems see for instance; the papers, ActglKapur

process information. The main objective of information is [10], Khan et al [L3], Renyi [25], Van Der Lubbe 2§],

to remove uncertainty and fuzziness. In fact, we measurgive the lower bound for the mean code-word length of a

information supplied by the amount of probabilistic uniquely decipherable code in terms of Shannd2 [

uncertainty removed in an experiment and the measure o#ntropy. Kapur 12] has established relationships between

uncertainty removed is also called as a measure ofrobability entropy and coding. But there are situations

information, while measure of fuzziness is the measure ofvhere probabilistic measures of entropy do not work, to

vagueness and ambiguity of uncertainties. The concept ofackle such situations, instead of taking the probability,

entropy has been widely used in different areas, e.gthe idea of fuzziness can be explored.

communication theory, statistical mechanics, finance Let a universe of discoursé = {xy,%2,...,Xn} then a

pattern recognition, and neural network etc. Fuzzy sefuzzy subset of universe X is defined as:

theory developed by Lotfi. A. ZadeR9] has found wide

applicyations inpmanz areas of sciencgI and technology, e.g. A= {(X; Ha (X)) 1% € X, Ha (%) € [0, 1]}

clustering, image processing, decision making etC.yherep, (x) : X — [0,1] is a membership function and
Imprecision or vague concepts. The importance of fuzzyset A and is defined as follows:

sets comes from the fact that it can deal with imprecise
and inexact information, many fuzzy measures have been
discussed and derived by Kapufdl], Lowen [15],
Nguyen and Walker19], Parkash 24], Pal and Bezdek

1 If x € Aand there is no ambiguity

0 If x ¢ Aand there is no ambiguity
Ha (X)) =
0.5 If x € Aorx ¢ Aand there is maximum ambiguity
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In factua (X)) associates with eache, X gives agrade We call the scheme (4) as a finite fuzzy information
of membership function in the set A. When (x;) takes ~ scheme. Every finite scheme describes a state of
values only 0 or 1, there is no uncertainty about it and auncertainty, corresponding to Shanno§| [probabilistic
set is said to be a crisp (i.e. non-fuzzy) set. Some notion§N{ropy, De-Luca and Terminf] suggested the following

related to fuzzy sets which we shall need in our discussior"€asure of fuzzy entropy.

Zadeh 29].' H(R) = —= »Zi[uA (x)loga () + (1= pa (%)) log (1 — pa ()]~ (5)
—Containment If ACB< pa(X) < us(Xi) VX € X nis
—Equality : If A= B < Ha (%) = Hg (%) Vxi € X The measure (5) serves as a very suitable measure of fuzzy
—Complement If A®is complement of A= Liac (Xi) = entropy for the finite fuzzy information scheme (4)
(1—pa(i) VX e X De-Luca and Termini 7] introduced a set of four
—Union: If AUB is union of A and B& paug (%) = properties and these properties are widely accepted as for
Max{pia (%) , Hg (%)} ¥x; € X . defining new fuzzy entropy. In fuzzy set theory, the
—Intersection: If ANB is intersection of A and B> gniropy is a measure of fuzziness which expresses the
Hans (%) = Min{pa (xi), ks (%) } ¥ € X amount of average ambiguity in making a decision
—Product: If AB is product of A and B& tas(X) = \yhether an element belongs to a set or not. So, a measure
Ha (Xi) g (xi) 7% € X of average fuzzinesd (A) in a fuzzy set A should have
—Sum If A+ B is sum of A and B& tais (%) = the following properties to be valid fuzzy entropy:

Xi)+ Us (%) — Ha (X X)Vxi e X
Ha (6)  Ha (3) = Ha () Mo () V% 1.SharpnessH (A) is minimum if and only if Ais a crisp

set, i,e,.

2 Basic Concepts: pa () =0 or 1:vx,i = 1,2,...,n

Let X be a discrete random variable taking values
X1,X2,...,Xn With respective probabilitiesps, p, ..., pn
pi >0Vi=123..,nand3y;p =1 Shannon[26]

2 Maximality : H(A) is maximum if and only if A is
most fuzzy set, i.e.,

gives the following measure of information and call it 1 .
entropy. IJA(Xi)Z?VXi,l:l?wan
n
H(P) = —_21 pilogp pi @ 3.Resolution H(A*) < H(A), where A* is sharpened
1= version of A.

The measure (1) serves as a suitable measure of entropy4 Symmetry: H(A) = H(AS), where A° is the
Let p1, P2, P3,, Pn be the probabilities of n codewords to complement of A, i.e.,

be transmitted and let their lengthsls,, |, satisfy Kraft

[14] inequality, Pac (%) =1—pa(%);Vx,i=1,2,....,n

n
le"i <1 (2) Later on Bhandari and Pal] made a survey on
i= information measures on fuzzy sets and gave some fuzzy

For niauely deciphersble codes, Sharnonize) showedSTTALEH | TEESUEE, AISO00LE 0 OIERL, g
tmhzgéoéoﬁlévﬁgfde,ser?gfﬂffy'ng (2).the lower bound of the fuzzy information measure of orderas:

n
L= leih 3)
= and analogous to Pal and Pak3][ exponential entropy,
lies between H(P) and H(P)+1.Where D is the size of codehey have suggested the following fuzzy information
a|phabet_ measure:

If Xi1,X2,...,X, are members of the universe of
discourse, with respective membership functions
Ha (X1) U (X2) ;... Ha (Xn),then all pa(x1), Ha(X2),
.sHa(Xn) lies between 0 and 1 but these are not
probabilities because their sum is not unjiy.(x) , gives
the element; the degree of belongingness to the set A

Ha(A) = = ilog M8 )+ (- pa(x)°ia £La 20 (§)

He(A) = W{l Z"’g [ (x) €A 08) 4 (1 pa () @0 — 1] (@)

Analogous to Havrda and Charvat§] [information
measure, Kapur 1[I suggests the following fuzzy
information measure:

The functionyia (x) associates with each € R a grade H(A) = % i[uﬁ () +1—pa(x) —1];a #L,a>0 (8)

of membership to the set A and is known as membership e

function. Corresponding to Boekee and Lubbé&] [R-norm
Denote information measure, Hooda 9][ proposed and

characterize the following fuzzy information measure:
ES X1 X2 Xn

ST pa(X2) Ha(X2) - Ha(Xn) J0< Ha(Xi) <1vx €X

n 1
) HR<A>:%[_;1—(uE(W(l—m(m))R)“}:R;él.,Rzo ©
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Corresponding to Campbell$][ measure of entropy,

Parkash and Sharm&(] proposed and characterize the

following fuzzy information measure:
Hi(A) = 1 log {i{uﬂ <xi>+<1—uA<xi>>"}“} a#La>0  (10)

Corresponding to Sharma and Tanef¥][measure of
entropy of degree(a,B) Kapur [11] has taken the
following measure of fuzzy entropy:

Mg = g 3 [0 00+ 0060 = {1 00)+ (1)}

an

Where,a > 1 <lora<13>1

In the next section we propose a new generalized

fuzzy information measure of ordeo and type
analogous to Ashiq and Baig8][generalized entropy of

order a and typef and show that it is a valid fuzzy

information measure.

3 New Generalized Fuzzy Information
Measure and Its Properties:

Let A be the fuzzy set defined on a discrete universe of

Or equivalently, we can write,

d ap X af
i)+ (1— ua(x =n
3 (P 00+ (2= m00))
Now 0< a < 1,0 < B <1 (14), will hold when either
Pa(X) =1o0rpa(x)=0,vi=1,2...n
Next, conversely, if A is a crisp set, then either
pa(X)=1o0rpa(x)=0,vi=1,2...n
It implies

(14)

{%i(uﬁﬁ (m)+<lqu<>Q))"’3)} =1¥0<a<10<pf<1

Hence,Hg(A) =0, if and only if A is non fuzzy set or
crisp set.

P2 (Maximality) : Hg(A) is maximum if and only if A is
most fuzzy set.

discourse taking values, x, , X, having the membership proof: We have

valuespia (X1), Ha (X2) , ..., Ua (Xn) respectively.

We define a new generalized fuzzy information
measure of ordea and typef analogous to Ashiq and

Baigs [3] generalized entropy of order and typeS as:

HER) = 2 1ogs [%_i(uﬁ‘* (%) + (1 (6))%) | 0<a <10<B<1

(12

In order to prove that (12) i.eHg(A) is a valid fuzzy

information measure, we shall show that four properties
resolution and

(P1-P4) i.e. sharpness,
symmetry are satisfied.

maximality,

P1(Sharpness) Hg(A) is minimum if and only if A'is a
crisp set, i,e,

Hg(A) =0ifandonlyifua(x)=0o0rvi=1,2,...,n

Proof: Let HE(A) =0

= 1fLD(IogD %Z(uﬁﬁ (N)+(1_UA(Xi))aB)1 =0
= logp [%i(ﬂgﬁ (Xi)+(1—l1A(Xi))aB)] =0 (13)

We know that logx = 0, if x = 1. Using this result in
equation (13), we get

Hzi (k&% 00) + <1—uA<xi>>“ﬁ)] =1

HE®) = 12 togs {%_;(uﬁﬁ () + (1 i (m))“ﬁ)} (15)

a

Now differentiating equation (15) with respectfg (),
we get

OHE(A)

A (%)

ap? [ (P00 - (- pa () )
a5 (00 + - pmx))P)

Let 0< pa(x) < 0.5, then
IHE (A)
oA (%)

Hence, Hg(A) is an increasing function ofua(X),
whenever, &< ta (x) < 0.5
Similarly, for 0.5 < pa(x) < 1 we have

>0,V0<a<1,0<B<1L

aHE (A
oA (%)

<0,V0<a<10<B<1L

HenceH? (A\) is decreasing function qgfa (X ) , whenever,
05<pua(x) <1
And for pa (%) = 0.5

aHE (A
oA (%)

Thus Hg(A) is a concave function which has a global

maximum atua (x) = 0.5. HenceHg(A) is maximum if
and only if A is the most fuzzy set, i.e.
pa(x)=05Vvi=12..n.

=0,V0<a<10<B<L
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P3(Resolution) Hg(A) > HE(A*), whereA* is sharped
version of A.

Proof: SinceHg(A) is increasing function offia (X ) in the

interval[0,0.5) and is decreasing function pf (x;) in the
interval0.5, 1], therefore

HAY) (%) < Ha (%) = HE (A") < HE (A),in[0,0.5),
and
HAY) (%) > Pa (%) = HE (A*) <HE (A),in(0.5,1],
Taking the above equations together, we get
HE (A) > HE ().

P4(Symmetry): HE(A) = HE(AC), where A® is the
complement of A.

Proof: It may be noted that from the definition bfg(A)
andpac (%) = (1— pa (%)), we conclude that

HE (A) = HE (A%).

Hence,Hg (A) satisfies all the properties of fuzzy entropy,

thereforeHg(A) is a valid measure of fuzzy entropy.
Itis easy to see that =1 anda — 1 (12), reduces
to (5).

In the next section new generalized fuzzy code-word

mean length analogous to Ashig and Baidd hew
generalized code-word length of orderand typef is

considered and bounds have been obtained in terms of

new generalized fuzzy entropy meastitg(A) analogous

to Ashiq and Baigs3] new generalized entropy of order
o and typef .The main aim of these results is that it
generalizes some well-known fuzzy measures already

existing in the literature.

Generalized fuzzy coding theorems by considering
different fuzzy information measures were investigated

Further consider Ashiq and Baig3] jnew generalized
code-word length of ordar and typeB corresponding to
(16) and is given by

LE(P):%IogD {ipiﬁD"i (%)},0<a<1,0<ﬁ§1. a7)

Where D is the size of code alphabet.
Analogous to (16) and (17), we propose the following
fuzzy measures respectively.

HE®) = 12 tog, {%é(u}f’} <m+<1—uA<xi>>"‘3)} a8)
and
L5 = 72— 0gy {% > (1 00+ (= 00)") D*'i<%’fl>} a9)

Where,0 a <1,0< <1

Remarks for (16)

1.Whenf = 1 (16) reduces to Reynis entropy,i.e.,

H (P) = = Iogp [zi pi"]

2.WhenB =1 anda — 1 (16) reduces to Shannorg]
entropy i.e.,

H(P) = —_i pilogp pi

3WhenB=1,a — landp = £ Vi=1,23, .. nthen
(16) reduces to maximum entropy i.e.,

1
H(Z) =logpn

by several authors see for instance, the papers: M. A. K

Baig and Mohd Javid Darlfg], [17] and [18], Ashiq and
Baig [2], Parkash and P. K. Sharm&( and [21],
Bhandari and Pal], Kapur [11].

4 Bounds for New Generalized Fuzzy
Information Measure:

Consider Ashiq and Baig8] generalized entropy of order
a and type as:

HE (P2 togs [i o’ ]

Where 0< o <1,0<pB<1p>0Vvi=1,23,...,nand
SiLipi=1

(16)

Remarks for (17)

1.For B = 1 (17) reduces to code-word length
corresponding to Reyni's entropy i.e.,

L7(P) = 775 10 [Z piD'i<“al>]

2For B =1 anda — 1 (17) reduces to optimal
code-word length corresponding to Shanndf]

entropy i.e.,
n
L= p.|.
i; (]

3.Forg=1andl; =1, = =1, =1then (17) reduces to
lie,l=1

(@© 2017 NSP
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Now we found the bounds of (19) in terms of (18) Usmgtthese values in (24), and after suitable simplificatio

under the condition, we get,
1 aB) ot LS [t (%) s (x))1D = F 5 {1 (1a 04). s (x))}D (%)}%
nz(uA () +(1-pa)P)Dh <1 @) T
= =
. { Zl{f Ha (%), Hac (%)) } (26)
Or, we can write
L Now using the inequality (21) we get,
=5 [F (A (%), ac (%)) D" < 1 (21) AT ]
ni< [ 3 (1) e b))} (Tl)}j{%igl{mu;\(m,u;\c(xn)}}r51 @n
Where Or equation (27) can be written as
f (“A(Xi)7uAC (X|)) = (“:B (Xl)+(1_l’lA(X|))aE) [% :E (ua (%) - uAc(x,))}}iéu<{%igl{f(uA(xi).uAc(xi))}Dili(%A)}1% (28)

Which is generalized fuzzy Kraftlf] inequality, Taking logarithms to both sides with base D to equation
where D is the size of code alphabet, it is easy to see thaf28) we get
for B = 1,a — 1 the inequality (21) reduces to Kraft4]
inequality. —Iog{ PRUCNORC (Xi))}} <
Theorem 4.1.For all integers(D > 1) the code word . , )
lengthsly,l5,...,1, satisfies the condition (21), then the vc\esg(]):t B < 1,multiply equation (29) both sides I> 0,
generalized code-word length (19) satisfies the inequality

Iog[% :g (Ha (%) - Hac (5)) }D (lﬂiw (29)

o ] <2 10g[E 3 (1 (ua 04) b (%)
L9(A) > HJ (A)Where0<a <1,0<B <1 (22 et 5,3, 1051w (1 < a3 5 (1m0 o

Where equality holds good if Taking

. F (A (%) ae (6)) = (AP () + (1 pa () , we get
li = —logp [ : : ] (23)
2l (HA 6), e (X)) 1?,,|og[gi:§1(u,§"3 <n>+<1—uA<xi>>““)}<£ﬁ,, log[gél(u:‘* <xi>+<1—uA<xi>>“B)D"‘(”TA)}
(31)
Where Or equivalently, we can write
L%Z(A) > HI(A),0 < a < 1,0 < B < 1. Hence the
F(a 06) e (6)) = (P 06) + (1= pa (x) ™) resub. P

. From equation (23) we have
Proof. By Holder’s Inequality we have

1
oo l%z{‘zl[f (1 (5). e W]]

n (n p)% < n q)%
XYyi > X Yi (24)
izi izi ' i; ' Or equivalently, we can write

For all x;,y; > 0,i =1,2,3,...,n and%+%:1,p<1(7é Dl — 1 (32)
0),q< 0 orq< 1(0),p < 0. We see the equality holds Lon  [F(HA(X), Hac (%))]
iff there exists a positive constant ¢ such that,

Raising both sides to the powéﬁl to equation (32) and

X = cy! (25)  after simplification, we get
Making the substitution (a1 10 i
) S P YUCCORTRE) (33)
a-1 I=

1
= | (f 1), Uac (X D|i
X [n( (a (3), e ')))] Multiply ~ equaton  (33) both  sides by

F{f(Ua(x),Hac (%))} and then summing over

1 T i =1,2,...,n, both sides to the resultant expression and
yi = [ﬁ (f (KA (%), Hac (Xi)))] after simplification, we get
a-1 10 W(%)]_[1 2 #
p=“9=andg=1-a {ﬁi;{fwm tac ()10 }: {ﬁi;{f(w(xi»uc(xi))} @9
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Taking logarithms both sides with base D to equation (34),Multiply equation (39) both sides by
then multiply both sides by?2- we get #{f(Ua(x),pac (%))} and then summing over
i =1,2,...,n, on both sides to the result that we obtain,
we get the required result (21),which is generalized fuzzy
Kraft [14] inequality.

Now the last inequality of (38) gives

(a=1
o 'og[%il{uuA(anuAc(m)}D (% w:%'°g{%.§1{f<uA<xi>AuAc<xi>>}} (s

Or equivalently, we can write

a _ ga 10
Lﬁ (A) = HB (A).Hence the result li < |OgD [_ zi(f (IJA(Xi)alJAC (XI))) +1
n &
Where
ap " Or equivalently, we can write
f(Ha06), ae () = (AP 06) + (1= pa () ) .
l = . e (X
Theorem 4.2. For every code with lengths,lo, ..., In D' < ni;(f(“A(x')’“A ()| B (40)

satisfies the condition (21D,g(P) can be made to satisfy

the inequality. AsO0< a <1 then(l—a) >0, and(1:2) > 0, raising
both sides to the powe(rle") > 0, to equation (40),and

Lg(A) <Hg(P)+ B, where 0< a <1,0<B <1. (36) after suitable simplification, we get

Proof. From the theorem 4.1 we have s 10 =)
D(%) < [— PYUCTONTE <xi>>>] D+
L3 (A) =HF (A NS
Holds if and only if Multiply equation (41) both sides by
L L (MA(X),ac (%))} and then summing over
-l _ < i =1,2,...,n, on both sides to the resulted expression, and
b L0 [F (HA(X) s pac (%))] 0<a<10<ps<l after making suitable operations we get,
Or equivalently we can write H:ﬁl{f@,\(m.wﬁ (xi))}D*“(uTAW < Hi{fw(xi).w (xim} T
12 Taking logarithms to both sides with base D to equation
i = logo lﬁ 3 11 (00t (mm] (42), we get, |
1=

n . (a=1 n —a
o 2.3, 1m0 e 010" < B [2 3 6m05).e ] + 25

We choose the code-word lengths =1,2,...,nin such a
way that they satisfy the inequality,

(43)

AsO<a<1,0<B§1ther(1—a)>0and(%) >0,

+1 (37)

oo | 3 311 ()] < <100 £ 3 10 ). )

multiply both sides equation (43) y%) > 0, we get
Consider the interval

n . (a=1 n
Lo [ 51 o). )0 "<T>} < Bioon 2 3 (1 1) e 51| 0
(44)

+1

6 oo [ 5 11 050 e 601 00 2 3 1m0 )

Or equivalently, we can write

of length unity.In evend;, there lies exactly one positive Lg (A) < Hg (A) -+ B.Hence the result for & a < 1,0< B < 1.

integerl;, such that,

o< | 3 511 ) ()] < <1000 2 3 10 ). )

Thus from above two coding theorems we have shown that
Hp (A) <LG(A) <Hg(P)+B,0<a<10<p<1

+1  (38)

We will first show that the sequendeg,ls,...,I,, thus
defined satisfies the inequality (21), which is generalized
fuzzy Kraft [14] inequality. 5 Conclusion:

From the left inequality of (38), we have
In this paper we define a new generalized fuzzy entropy
12 measure of ordex and typef. and show that this is a
logp [ﬁ,zl[f (Ha (%) s Hae (X‘))]] <l valid measure of fuzzy entropy. This measure also
= generalizes some well-known fuzzy measures already

Or equivalently, we can write existing in the literature. Also generalized fuzzy average
codeword length is considered and bounds have been
D-li < 1 (39) obtained in terms of new generalized fuzzy entropy
— ign ; ; f ordem and typeg.
n izt [f (Ha (%), Hae (X)) measure o yp
@© 2017 NSP
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