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Abstract: In this communication we introduce a new generalized fuzzy information measureHα
β (A) of order α and typeβ for a

fuzzy setA and establishes the validity of the measure as a fuzzy entropy. Also we define a new generalized fuzzy average code-word
lengthLα

β (A) of orderα and typeβ for a fuzzy setA and its relationship with generalized fuzzy information measuresHα
β (A) have

been discussed. UsingLα
β (P) , some coding theorems for discrete noiseless channel has been proved. The measures defined in this

communication are not only new but some known measures are the particular cases of our proposed measures that already exist in the
literature of fuzzy information theory.
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1 Introduction:

Fuzziness and uncertainty are the basic nature of human
thinking and many real world objectives. Fuzziness is
found in our decision, in our language and in the way of
process information. The main objective of information is
to remove uncertainty and fuzziness. In fact, we measure
information supplied by the amount of probabilistic
uncertainty removed in an experiment and the measure of
uncertainty removed is also called as a measure of
information, while measure of fuzziness is the measure of
vagueness and ambiguity of uncertainties. The concept of
entropy has been widely used in different areas, e.g.
communication theory, statistical mechanics, finance
pattern recognition, and neural network etc. Fuzzy set
theory developed by Lotfi. A. Zadeh [29] has found wide
applications in many areas of science and technology, e.g.
clustering, image processing, decision making etc.
because of its capability to model non-statistical
imprecision or vague concepts. The importance of fuzzy
sets comes from the fact that it can deal with imprecise
and inexact information, many fuzzy measures have been
discussed and derived by Kapur [11], Lowen [15],
Nguyen and Walker [19], Parkash [24], Pal and Bezdek

[22], Zadeh [29] etc. Application of fuzzy measures to
engineering, fuzzy traffic control, fuzzy aircraft control,
medicines, computer science and decision making etc,
have already been established. The basic noiseless coding
theorems see for instance; the papers, Aczel [1], Kapur
[10], Khan et al [13], Renyi [25], Van Der Lubbe [28],
give the lower bound for the mean code-word length of a
uniquely decipherable code in terms of Shannons [26]
entropy. Kapur [12] has established relationships between
probability entropy and coding. But there are situations
where probabilistic measures of entropy do not work, to
tackle such situations, instead of taking the probability,
the idea of fuzziness can be explored.

Let a universe of discourseX = {x1,x2, ...,xn} then a
fuzzy subset of universe X is defined as:

A = {(xi,µA (xi)) : xi ∈ X ,µA (xi) ∈ [0,1]}

WhereµA (xi) : X → [0,1] is a membership function and
gives the degree of belongingness of the elementxi to the
set A and is defined as follows:

µA (xi) =







0 If xi /∈ A and there is no ambiguity,
1 If xi ∈ A and there is no ambiguity,
0.5 If xi ∈ A or xi /∈ A and there is maximum ambiguity,
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In factµA (xi) associates with eachxi ∈,X gives a grade
of membership function in the set A. WhenµA (xi) takes
values only 0 or 1, there is no uncertainty about it and a
set is said to be a crisp (i.e. non-fuzzy) set. Some notions
related to fuzzy sets which we shall need in our discussion
Zadeh [29].

–Containment: If A ⊂ B ⇔ µA (xi)≤ µB (xi)∀xi ∈ X
–Equality : If A = B ⇔ µA (xi) = µB (xi)∀xi ∈ X
–Complement: If Ac is complement of A⇔ µAc (xi) =
(1− µA (xi))∀xi ∈ X

–Union: If A∪B is union of A and B⇔ µA∪B (xi) =
Max{µA (xi) ,µB (xi)}∀xi ∈ X

–Intersection: If A∩ B is intersection of A and B⇔
µA∩B (xi) = Min{µA (xi) ,µB (xi)}∀xi ∈ X

–Product: If AB is product of A and B⇔ µAB (xi) =
µA (xi)µB (xi)∀xi ∈ X

–Sum: If A + B is sum of A and B⇔ µA+B (xi) =
µA (xi)+ µB (xi)− µA (xi)µB (xi)∀xi ∈ X

2 Basic Concepts:

Let X be a discrete random variable taking values
x1,x2, ...,xn with respective probabilitiesp1, p2, ..., pn
pi ≥ 0 ∀i = 1,2,3, ...,n and ∑n

i=1 pi = 1. Shannon[26]
gives the following measure of information and call it
entropy.

H(P) =−
n

∑
i=1

pi logD pi (1)

The measure (1) serves as a suitable measure of entropy.
Let p1, p2, p3, , pn be the probabilities of n codewords to
be transmitted and let their lengthsl1, l2, , ln satisfy Kraft
[14] inequality,

n

∑
i=1

D−li ≤ 1 (2)

For uniquely decipherable codes, Shannon[26] showed
that for all codes satisfying (2),the lower bound of the
mean codeword length,

L =
n

∑
i=1

pili (3)

lies between H(P) and H(P)+1.Where D is the size of code
alphabet.

If x1,x2, ...,xn are members of the universe of
discourse, with respective membership functions
µA (x1) ,µA (x2) , ...,µA (xn),then all µA (x1) , µA (x2) ,
...,µA (xn) lies between 0 and 1 but these are not
probabilities because their sum is not unity.µA (xi) , gives
the elementxi the degree of belongingness to the set A
The functionµA (xi) associates with eachxi ∈ Rn a grade
of membership to the set A and is known as membership
function.

Denote

F.S=

[

x1 x2 ... xn
µA (x1) µA (x2) ... µA (xn)

]

,0≤ µA (xi)≤ 1∀xi ∈X

(4)

We call the scheme (4) as a finite fuzzy information
scheme. Every finite scheme describes a state of
uncertainty, corresponding to Shannons [26] probabilistic
entropy, De-Luca and Termini [7] suggested the following
measure of fuzzy entropy.

H(A) =− 1
n

n

∑
i=1

[µA (xi) logµA (xi)+(1−µA (xi)) log(1−µA (xi))] (5)

The measure (5) serves as a very suitable measure of fuzzy
entropy for the finite fuzzy information scheme (4)

De-Luca and Termini [7] introduced a set of four
properties and these properties are widely accepted as for
defining new fuzzy entropy. In fuzzy set theory, the
entropy is a measure of fuzziness which expresses the
amount of average ambiguity in making a decision
whether an element belongs to a set or not. So, a measure
of average fuzzinessH(A) in a fuzzy set A should have
the following properties to be valid fuzzy entropy:

1.Sharpness: H(A) is minimum if and only if A is a crisp
set, i,e,.

µA (xi) = 0 or 1;∀xi, i = 1,2, ...,n

2.Maximality : H(A) is maximum if and only if A is
most fuzzy set, i.e.,

µA (xi) =
1
2

;∀xi, i = 1,2, ...,n

3.Resolution: H(A∗) ≤ H(A), whereA∗ is sharpened
version of A.

4.Symmetry: H(A) = H(Ac), where Ac is the
complement of A, i.e.,

µAc (xi) = 1− µA (xi) ;∀xi, i = 1,2, ...,n

Later on Bhandari and Pal [4] made a survey on
information measures on fuzzy sets and gave some fuzzy
information measures, analogous to Reynis [25]
information measure; they have suggested the following
fuzzy information measure of orderα as:

Hα (A) =
1

1−α

n

∑
i=1

log
[

µα
A (xi)+(1−µA (xi))

α ] ;α 6= 1,α ≥ 0 (6)

and analogous to Pal and Pals [23] exponential entropy,
they have suggested the following fuzzy information
measure:

He(A) =
1

n
√

e−1

n

∑
i=1

log
[

µA (xi)e1−µA(xi) +(1−µA (xi))eµA(xi)−1
]

(7)

Analogous to Havrda and Charvats [8] information
measure, Kapur [11] suggests the following fuzzy
information measure:

Hα (A) =
1

1−α

n

∑
i=1

[

µα
A (xi)+(1−µA (xi))

α −1
]

;α 6= 1,α ≥ 0 (8)

Corresponding to Boekee and Lubbe [5] R-norm
information measure, Hooda [9] proposed and
characterize the following fuzzy information measure:

HR(A) =
R

R−1

[

n

∑
i=1

1−
(

µR
A (xi)+(1−µA (xi))

R
)

1
R

]

;R 6= 1,R ≥ 0 (9)
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Corresponding to Campbells [6] measure of entropy,
Parkash and Sharma [20] proposed and characterize the
following fuzzy information measure:

H/
α (A) =

1
1−α

log

[

n

∑
i=1

{

µα
A (xi)+(1−µA (xi))

α}α
]

;α 6= 1,α ≥ 0 (10)

Corresponding to Sharma and Taneja [27] measure of
entropy of degree(α,β ) Kapur [11] has taken the
following measure of fuzzy entropy:

H/
α,β (A) =

1
β −α

n

∑
i=1

[

{

µα
A (xi)+(1−µA (xi))

α}−
{

µβ
A (xi)+(1−µA (xi))

β
}]

(11)

Where,α ≥ 1,β ≤ 1 or α ≤ 1,β ≥ 1
In the next section we propose a new generalized

fuzzy information measure of orderα and type β
analogous to Ashiq and Baigs [3] generalized entropy of
order α and typeβ and show that it is a valid fuzzy
information measure.

3 New Generalized Fuzzy Information
Measure and Its Properties:

Let A be the fuzzy set defined on a discrete universe of
discourse taking valuesx1,x2, ,xn having the membership
valuesµA (x1) ,µA (x2) , ...,µA (xn) respectively.

We define a new generalized fuzzy information
measure of orderα and typeβ analogous to Ashiq and
Baigs [3] generalized entropy of orderα and typeβ as:

Hβ
α (A) =

β
1−α

logD

[

1
n

n

∑
i=1

(

µαβ
A (xi)+(1−µA (xi))

αβ
)

]

,0< α < 1,0< β ≤ 1

(12)

In order to prove that (12) i.e.,Hβ
α (A) is a valid fuzzy

information measure, we shall show that four properties
(P1-P4) i.e. sharpness, maximality, resolution and
symmetry are satisfied.

P1.(Sharpness): Hβ
α (A) is minimum if and only if A is a

crisp set, i,e,

Hβ
α (A) = 0 if and only if µA (xi) = 0 or 1∀i = 1,2, ...,n

Proof: Let Hβ
α (A) = 0

⇒ β
1−α

logD

[

1
n

n

∑
i=1

(

µαβ
A (xi)+ (1− µA (xi))

αβ
)

]

= 0

⇒ logD

[

1
n

n

∑
i=1

(

µαβ
A (xi)+ (1− µA (xi))

αβ
)

]

= 0 (13)

We know that logD x = 0, if x = 1. Using this result in
equation (13), we get

[

1
n

n

∑
i=1

(

µαβ
A (xi)+ (1− µA (xi))

αβ
)

]

= 1

Or equivalently, we can write,

n

∑
i=1

(

µαβ
A (xi)+ (1− µA (xi))

αβ
)

= n (14)

Now 0< α < 1,0 < β ≤ 1 (14), will hold when either
µA (xi) = 1 or µA (xi) = 0,∀i = 1,2, ...,n

Next, conversely, if A is a crisp set, then either
µA (xi) = 1 or µA (xi) = 0,∀i = 1,2, ...,n

It implies
[

1
n

n

∑
i=1

(

µαβ
A (xi)+(1−µA (xi))

αβ
)

]

= 1,∀0< α < 1,0< β ≤ 1

⇒ logD

[

1
n

n

∑
i=1

(

µαβ
A (xi)+(1−µA (xi))

αβ
)

]

= 0

⇒ β
1−α

logD

[

1
n

n

∑
i=1

(

µαβ
A (xi)+(1−µA (xi))

αβ
)

]

= 0

⇒ Hβ
α (A) = 0

Hence,Hβ
α (A) = 0, if and only if A is non fuzzy set or

crisp set.

P2.(Maximality) : Hβ
α (A) is maximum if and only if A is

most fuzzy set.

Proof: We have

Hβ
α (A) =

β
1−α

logD

[

1
n

n

∑
i=1

(

µαβ
A (xi)+(1−µA (xi))

αβ
)

]

(15)

Now differentiating equation (15) with respect toµA (xi),
we get

∂ Hβ
α (A)

∂ µA (xi)
=

αβ 2

1−α





∑n
i=1

(

µαβ−1
A (xi)− (1−µA (xi))

αβ−1
)

∑n
i=1

(

µβ
A (xi)+(1−µA (xi))

β
)





Let 0≤ µA (xi)< 0.5, then

∂Hβ
α (A)

∂ µA (xi)
> 0,∀0< α < 1,0< β ≤ 1.

Hence, Hβ
α (A) is an increasing function ofµA (xi) ,

whenever, 0≤ µA (xi)< 0.5
Similarly, for 0.5< µA (xi)≤ 1 we have

∂Hβ
α (A)

∂ µA (xi)
< 0,∀0< α < 1,0< β ≤ 1.

Hence,Hβ
α (A) is decreasing function ofµA (xi) , whenever,

0.5< µA (xi)≤ 1
And for µA (xi) = 0.5

∂Hβ
α (A)

∂ µA (xi)
= 0,∀0< α < 1,0< β ≤ 1.

Thus Hβ
α (A) is a concave function which has a global

maximum atµA (xi) = 0.5. HenceHβ
α (A) is maximum if

and only if A is the most fuzzy set, i.e.
µA (xi) = 0.5,∀i = 1,2, ...,n.
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P3.(Resolution): Hβ
α (A) ≥ Hβ

α (A∗), whereA∗ is sharped
version of A.

Proof: SinceHβ
α (A) is increasing function ofµA (xi) in the

interval[0,0.5) and is decreasing function ofµA (xi) in the
interval(0.5,1], therefore

µ(A
∗)(xi)≤ µA (xi)⇒ Hβ

α (A
∗)≤ Hβ

α (A), in [0,0.5) ,

and

µ(A
∗)(xi)≥ µA (xi)⇒ Hβ

α (A
∗)≤ Hβ

α (A), in(0.5,1] ,

Taking the above equations together, we get

Hβ
α (A)≥ Hβ

α (A
∗).

P4.(Symmetry): Hβ
α (A) = Hβ

α (Ac), where Ac is the
complement of A.

Proof: It may be noted that from the definition ofHβ
α (A)

andµAc (xi) = (1− µA (xi)), we conclude that

Hβ
α (A) = Hβ

α (A
c).

Hence,Hβ
α (A) satisfies all the properties of fuzzy entropy,

thereforeHβ
α (A) is a valid measure of fuzzy entropy.

It is easy to see that asβ = 1 andα → 1 (12), reduces
to (5).

In the next section new generalized fuzzy code-word
mean length analogous to Ashiq and Baigs [3] new
generalized code-word length of orderα and typeβ is
considered and bounds have been obtained in terms of
new generalized fuzzy entropy measureHβ

α (A) analogous
to Ashiq and Baigs [3] new generalized entropy of order
α and typeβ .The main aim of these results is that it
generalizes some well-known fuzzy measures already
existing in the literature.

Generalized fuzzy coding theorems by considering
different fuzzy information measures were investigated
by several authors see for instance, the papers: M. A. K
Baig and Mohd Javid Dar [16], [17] and [18], Ashiq and
Baig [2], Parkash and P. K. Sharma [20] and [21],
Bhandari and Pal [4], Kapur [11].

4 Bounds for New Generalized Fuzzy
Information Measure:

Consider Ashiq and Baigs [3] generalized entropy of order
α and typeβ as:

Hα
β (P)=

β
1−α

logD

[

n

∑
i=1

pαβ
i

]

(16)

Where 0< α < 1,0< β ≤ 1,pi ≥ 0 ∀i = 1,2,3, ...,n and
∑n

i=1 pi = 1.

Further consider Ashiq and Baigs [3] new generalized
code-word length of orderα and typeβ corresponding to
(16) and is given by

Lα
β (P) =

αβ
1−α

logD

[

n

∑
i=1

pβ
i D−li

(

α −1
α

)

]

,0< α < 1,0< β ≤ 1. (17)

Where D is the size of code alphabet.
Analogous to (16) and (17), we propose the following

fuzzy measures respectively.

Hβ
α (A) =

β
1−α

logD

[

1
n

n

∑
i=1

(

µαβ
A (xi)+(1−µA (xi))

αβ
)

]

(18)

and

Lβ
α (A) =

β
1−α

logD

[

1
n

n

∑
i=1

(

µαβ
A (xi)+(1−µA (xi))

αβ
)

D
−li

(

α−1
α

)

]

(19)

Where,0< α < 1,0< β ≤ 1

Remarks for (16)

1.Whenβ = 1 (16) reduces to Reynis entropy,i.e.,

Hα(P) =
1

1−α
logD

[

n

∑
i=1

pi
α

]

2.Whenβ = 1 andα → 1 (16) reduces to Shannons [26]
entropy i.e.,

H(P) =−
n

∑
i=1

pi logD pi

3.Whenβ = 1, α → 1 andpi =
1
n ∀i = 1,2,3, ...,n then

(16) reduces to maximum entropy i.e.,

H(
1
n
) = logD n

Remarks for (17)

1.For β = 1 (17) reduces to code-word length
corresponding to Reyni’s entropy i.e.,

Lα (P) =
α

1−α
logD

[

n

∑
i=1

piD
−li( α−1

α )

]

2.For β = 1 and α → 1 (17) reduces to optimal
code-word length corresponding to Shannon [26]
entropy i.e.,

L =
n

∑
i=1

pili

3.Forβ = 1 andl1 = l2 = = ln = 1 then (17) reduces to
1. i.e.,Lα = 1
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Now we found the bounds of (19) in terms of (18)
under the condition,

1
n

n

∑
i=1

(

µαβ
A (xi)+ (1− µA (xi))

αβ
)

D−li ≤ 1 (20)

Or, we can write

1
n

n

∑
i=1

[ f (µA (xi) ,µAc (xi))]D
li ≤ 1 (21)

Where

f (µA (xi) ,µAc (xi)) =
(

µαβ
A (xi)+ (1− µA (xi))

αβ
)

Which is generalized fuzzy Kraft [14] inequality,
where D is the size of code alphabet, it is easy to see that
for β = 1,α → 1 the inequality (21) reduces to Kraft [14]
inequality.

Theorem 4.1. For all integers(D > 1) the code word
lengths l1, l2, ..., ln satisfies the condition (21), then the
generalized code-word length (19) satisfies the inequality

Lα
β (A)≥ Hα

β (A).Where,0< α < 1,0< β ≤ 1. (22)

Where equality holds good if

li =− logD

[

1
1
n ∑n

i=1 [ f (µA (xi) ,µAc (xi))]

]

(23)

Where

f (µA (xi) ,µAc (xi)) =
(

µαβ
A (xi)+ (1− µA (xi))

αβ
)

Proof. By Holder’s Inequality we have

n

∑
i=1

xiyi ≥
(

n

∑
i=1

xp
i

)
1
p
(

n

∑
i=1

yq
i

)
1
q

(24)

For all xi,yi > 0, i = 1,2,3, ...,n and 1
p +

1
q = 1, p < 1(6=

0),q < 0 or q < 1(6= 0), p < 0. We see the equality holds
iff there exists a positive constant c such that,

xp
i = cyq

i (25)

Making the substitution

xi =

[

1
n
( f (µA (xi) ,µAc (xi)))

] α
α−1

Dli

yi =

[

1
n
( f (µA (xi) ,µAc (xi)))

]
1

1−α

p = α−1
α andq = 1−α

Using these values in (24), and after suitable simplification
we get,

1
n

n

∑
i=1

[ f (µA (xi) ,µAc (xi))]D
−li ≥

[

1
n

n

∑
i=1

{ f (µA (xi) ,µAc (xi))}D
−li

(

α−1
α

)

]
α

α−1

[

1
n

n

∑
i=1

{ f (µA (xi) ,µAc (xi))}
] 1

1−α
(26)

Now using the inequality (21) we get,

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

D
−li

(

α−1
α

)

]

α
α−1

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

]
1

1−α
≤ 1 (27)

Or equation (27) can be written as

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

]
1

1−α
≤
[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

D
−li

(

α−1
α

)

]

α
1−α

(28)

Taking logarithms to both sides with base D to equation
(28) we get

1
1−α

log

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

]

≤ α
1−α

log

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

D
−li

(

α−1
α

)

]

(29)

As 0< β ≤ 1,multiply equation (29) both sides byβ > 0,
we get

β
1−α

log

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

]

≤ αβ
1−α

log

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

D
−li

(

α−1
α

)

]

(30)

Taking

f (µA (xi) ,µAc (xi))=
(

µαβ
A (xi)+ (1− µA (xi))

αβ
)

,we get

β
1−α

log

[

1
n

n
∑

i=1

(

µαβ
A

(

xi
)

+
(

1−µA
(

xi
))αβ

)

]

≤ αβ
1−α

log

[

1
n

n
∑

i=1

(

µαβ
A

(

xi
)

+
(

1−µA
(

xi
))αβ

)

D
−li

(

α−1
α

)

]

(31)

Or equivalently, we can write
Lα

β (A) ≥ Hα
β (A),0 < α < 1,0 < β ≤ 1. Hence the

result.
From equation (23) we have

li =− logD

[

1
1
n ∑n

i=1 [ f (µA (xi) ,µAc (xi))]

]

Or equivalently, we can write

D−li =
1

1
n ∑n

i=1 [ f (µA (xi) ,µAc (xi))]
(32)

Raising both sides to the powerα−1
α to equation (32) and

after simplification, we get

D−li( α−1
α ) =

[

1
n

n

∑
i=1

[ f (µA (xi) ,µAc (xi))]

]
1−α

α

(33)

Multiply equation (33) both sides by
1
n { f (µA (xi) ,µAc (xi))} and then summing over
i = 1,2, ...,n, both sides to the resultant expression and
after simplification, we get

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

D
−li

(

α−1
α

)

]

=

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

]
1
α

(34)
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Taking logarithms both sides with base D to equation (34),
then multiply both sides byαβ

1−α , we get

αβ
1−α

log

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

D
−li

(

α−1
α

)

]

=
β

1−α
log

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

]

(35)

Or equivalently, we can write

Lα
β (A) = Hα

β (A).Hence the result

Where

f (µA (xi) ,µAc (xi)) =
(

µαβ
A (xi)+ (1− µA (xi))

αβ
)

Theorem 4.2. For every code with lengthsl1, l2, ..., ln
satisfies the condition (21),Lα

β (P) can be made to satisfy
the inequality,

Lα
β (A)< Hα

β (P)+β , where 0< α < 1,0< β ≤ 1. (36)

Proof. From the theorem 4.1 we have

Lα
β (A) = Hα

β (A)

Holds if and only if

D−li =
1

1
n ∑n

i=1 [ f (µA (xi) ,µAc (xi))]
,0< α < 1,0< β ≤ 1

Or equivalently we can write

li = logD

[

1
n

n

∑
i=1

[ f (µA (xi) ,µAc (xi))]

]

We choose the code-word lengthsli, i = 1,2, ...,n in such a
way that they satisfy the inequality,

logD

[

1
n

n
∑

i=1

[

f
(

µA
(

xi
)

,µAc
(

xi
))]

]

≤ li < logD

[

1
n

n
∑

i=1

[

f
(

µA
(

xi
)

,µAc
(

xi
))]

]

+1 (37)

Consider the interval

δi =

[

logD

[

1
n

n
∑

i=1

[

f
(

µA
(

xi
)

,µAc
(

xi
))]

]

, logD

[

1
n

n
∑

i=1

[

f
(

µA
(

xi
)

,µAc
(

xi
))]

]

+1

]

of length unity.In everyδi, there lies exactly one positive
integerli, such that,

0< logD

[

1
n

n
∑

i=1

[

f
(

µA
(

xi
)

,µAc
(

xi
))]

]

≤ li < logD

[

1
n

n
∑

i=1

[

f
(

µA
(

xi
)

,µAc
(

xi
))]

]

+1 (38)

We will first show that the sequencel1, l2, ..., ln, thus
defined satisfies the inequality (21), which is generalized
fuzzy Kraft [14] inequality.

From the left inequality of (38), we have

logD

[

1
n

n

∑
i=1

[ f (µA (xi) ,µAc (xi))]

]

≤ li

Or equivalently, we can write

D−li ≤ 1
1
n ∑n

i=1 [ f (µA (xi) ,µAc (xi))]
(39)

Multiply equation (39) both sides by
1
n { f (µA (xi) ,µAc (xi))} and then summing over
i = 1,2, ...,n, on both sides to the result that we obtain,
we get the required result (21),which is generalized fuzzy
Kraft [14] inequality.

Now the last inequality of (38) gives

li < logD

[

1
n

n

∑
i=1

( f (µA (xi) ,µAc (xi)))

]

+1

Or equivalently, we can write

Dli <

[

1
n

n

∑
i=1

( f (µA (xi) ,µAc (xi)))

]

D (40)

As 0< α < 1, then(1−α) > 0, and
(1−α

α
)

> 0, raising
both sides to the power

(1−α
α
)

> 0, to equation (40),and
after suitable simplification, we get

D−li( α−1
α ) <

[

1
n

n

∑
i=1

( f (µA (xi) ,µAc (xi)))

]( 1−α
α )

D
1−α

α

(41)
Multiply equation (41) both sides by
1
n { f (µA (xi) ,µAc (xi))} and then summing over
i = 1,2, ...,n, on both sides to the resulted expression, and
after making suitable operations we get,

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

D
−li

(

α−1
α

)

]

<

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

]
1
α

D
1−α

α (42)

Taking logarithms to both sides with base D to equation
(42), we get,

logD

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

D
−li

(

α−1
α

)

]

<
1
α

logD

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

]

+
1−α

α
(43)

As 0<α < 1,0< β ≤ 1 then(1−α)> 0 and
(

αβ
1−α

)

> 0,

multiply both sides equation (43) by
(

αβ
1−α

)

> 0, we get

αβ
1−α

logD

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

D
−li

(

α−1
α

)

]

<
β

1−α
1
n

logD

[

1
n

n
∑

i=1

{

f
(

µA
(

xi
)

,µAc
(

xi
))}

]

+β

(44)

Or equivalently, we can write

Lα
β (A)<Hα

β (A)+β .Hence the result for 0< α < 1,0< β ≤ 1.

Thus from above two coding theorems we have shown that

Hα
β (A)≤ Lα

β (A)< Hα
β (P)+β ,0< α < 1,0< β ≤ 1

5 Conclusion:

In this paper we define a new generalized fuzzy entropy
measure of orderα and typeβ . and show that this is a
valid measure of fuzzy entropy. This measure also
generalizes some well-known fuzzy measures already
existing in the literature. Also generalized fuzzy average
codeword length is considered and bounds have been
obtained in terms of new generalized fuzzy entropy
measure of orderα and typeβ .
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