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Abstract: In this article, authors introduced the notion(g@f q)-preinvex functions. Some new and interesting estimatéseoihtegral

a+n(b,a)
| (a+n(b,a) —u)P(u—a)%f(u)du via (p,q)-preinvex functions are obtained. These estimates caneveedi as refined bounds
a

of the quadrature formula of Gauss-Jacobi type. The ideas$esmmnique of this paper may be starting point for furtheeesch in this
dynamic and interesting field.
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1 Introduction and Preliminaries set with respect t@ (v,u) = v — u, but the converse is not
necessarily true. For further details, sé#& [12,13,27] and

Theory of convexity plays a pivotal role in modern the references therein.

analysis through its numerous applications. This theory

has received special attention by several authors over thBreinvex functions are defined as:

years. Consequently the classical concepts of convexit

have been extended and generalized in different direction

using novel and innovative ideas, se&4]7,14,17,26,

27]. Hanson J] introduced the notion of differentiable _

invex functions, without calling them by this word. In the flu+tn(ww) = X-HFW i),

same year, Cravenl] introduced the term invex for vu,v € Kyt € [0,1].

calling this class of functions. Mititelul0] defined the

concept of invex set, as follows:

Let K, be be a nonempty set R. Let f : K; — R be a

continuous function and lem(.,.) : R — R be a

continuous function.

efinition 2([27]). A function f: K, — R is said to be
preinvex function with respect to the bifunctigf,.), if

A function f is said to be preincave if and only #f is
preinvex. Forn(v,u) = v—u in Definition 2 a preinvex
function reduces to a convex function in the classical
sense.This shows that every convex function is a preinvex
function, but the converse is not true.

Definition 1.A set K, € R is said to be invex with respect

to the bifunctiom (., .), if . : .
Remark.In this paper function(.,.) : RxR — R is

uttn(vu) €Ky, VuvekK,tel01]. supposed to have the following property:

The concept of invex s, is sometimes referred to as

n-connected set, N(vV+un(u,v),v+tn(uv)) = (L —t2)nu,v),

. Vi1, t2 € [0,1],t < tp. (1)
RemarkiNote thatn (v,u) = v—u, the invex set reduces to

classical convex set. Thus, every convex setis also an invebn this case the following consequences hold:
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1.If t; = t, = 0 then () implies thatn(v,v) =0 for all 2 Main Results

veR.
2f 4 = 0 and t, = t > 0 then In this section, we define the class 0b,q)-preinvex

n(v,v+tn(u,v)) = —tn(u,v) for all u,v € R. This is functions and obtain some new integral inequalities for
the first requirement of Condition C introduced in (P:d)-prinvex functions. This is the main motivation of
[13]. this paper.

31 n(uv) > 0 for some (uv) € R then  Definition 3. A function f: K, — R is said to be(p,q)-
n(v,v+tn(u,v)) <0 forallt € [0,1]. It means that  preinvex function with respect to bifunctian.,.), if
property () implies that function has not constant F(u+tn (vu)) < t°(1—t)IF (U) + F(v)],

sign onR x R.
vu,v e Ky, t €[0,1]. (2)

emarkNote that ifn(v,u) = v—uin (2) then we have a

of inequalities. Several inequalities have been obtaine ew definition of(p, g)-convex function.

for convex functions, see2|5,6,9,14,16,17,18,19,20,
21,23,24,22,26]. One of the most interesting and Definition 4. A function f: K — R is said to be(p,q)-
extensively studied inequality in the literature for conve convex function, if

functions is Hermite-Hadamard'’s inequality. This gives f((L—t)u4tv) < tP(L—t)9[f (u) + f(V)],

an equivalent property for convexity property. This N Vu,ve K.t e [0,1]

inequality is stated as: ’ ’ h

Theory of convexity has a strong relationship with theory(ﬁ

Let f : 1 =[a,b] C R — R be a convex function, then the Remarklt is worth to mention here that fqgg=1=qin
following inequality holds: Definition 3 and Definition4, we recover the definitions
) of so-calledtgs-preinvex functions 15 and tgs-convex
. a+b _ 1 W < +f(b) functions pg).
2 ) " b- / ! 2 ' Theorem 1.Let f: K; — R be a(p,q)-preinvex function
a

such that n(.,.) satisfies {) with n(b,a) > 0. If
Noor [14] extended the Hermite-Hadamard’s inequality f € Z[a,a+n(b,a)], then

for preinvex functions as: a+n(b,a)
Let f : Ky — R be a preinvex function such that(.,.)  ,pig-1 (22+0(ba)Y) _ 1 (u)du
satisfies {), then the following inequality holds: 2 n(b,a)
+1(b, < .
2a+ n(b,a) wHb < B(p+1,a+1)[f(a)+ f(b)
f > < 7.3 / f(u)du Proof. Sincen(.,.) satisfies {) and f is (p,q)-preinvex
’ a funcuon so, foru = a+tn(b,a), v=a+ (1—t)n(b,a)
f(a)+ f(b) andt = 1, we have
B 2a+n(b,a)
We now recall some known concepts which will be helpful 2
in obtaining some of our main results. f(at+tn(b.a))+ f(a+ (1—t)n(b.a
Beta functionsB(.,.) are defined as: < @ttn(b,a)) ngrq a-tn(b.a)
1 Integrating both sides of the above inequality with respect
B(u,v) = /tu—l(l_t)v—l dt. tot on|[0,1], we have
0 2at (b ) 1 a+n(b.a)
p+g-1 a+no,a /
It is known that 2 f < 2 ) = n(b,a) flwdu. 3
a
B(U,v) = rurv) We now prove second inequality. Since it is known that
’ Mu+v) " is (p,q)-preinvex function, then, we have
The generalized quadrature formula of Gauss-Jacobi typd (@+tn(b,a)) <tP(1—t)d[f(a) + f(b)].
has the form: Integrating both sides of the above inequality with respect
A tot on|[0,1], we have
m
(b,a)
x—a)P(b—x)4f (xX)dx =Y Bmkf(yK) + Rn[f], &
[ o-aPe—x10 &,k (0 + Rl ] e f(u)du < B(p+1,q-+1)[f(a) + f(b)).(4)
a n(b,a)
for some Bni, % and rest termRpy[f]. For more On summation of inequalities3f and @) the proof is
information, seeZ5| complete. O
@© 2017 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett5, No. 2, 51-56 (2017) www.naturalspublishing.com/Journals.asp

%N S\ 53

Note that whermp — 1 andg — 1 in Theoreml, we have
the following new result fotgs-preinvex functions.

Corollary 1. Let f: K; — R be a tgs-preinvex function
such that n(.,.) satisfies 1) with n(b,a) > 0. If
f € Z[a,a+n(b,a)], then

a+n(b,a)

of <2a+l;(b,a)> < n(;a) /

_f@+fb)
=7 6

@)

Theorem 2. Left f,g: Ky — R be two (p,q)-preinvex
functions such tha (.,.) satisfies {) andj(b,a) > 0. If
fge .Z[a,a+n(b,a)], then

g2pra-1g (22400 (2a+n0(b.a)
2 2
~B(2p+ 1,29+ 1)[M(a,b) +N(a,b)]
a+n(b,a)

where

M(a,b) = f(a)g(a) + f(b)g(b),
and

N(a,b) = f(a)g(b) + f(b)g(a),
respectively.

(5)
(6)

Proof. Sincef andg are(p,q)-preinvex functions, so

f (2a+g(b,a)> g<2a+g(b,a)>

[f(a+tn(b.a)) + fla+(1-t)n(b.a))]

X oo tn(b.a))]

g [fartn(ba)g@+tn(b.a)

~ 22(piq
f(a+(1-t)n(b,a))g(a+ (1-t)n(b,a))
t)n(b,a))g(a+tn(b,a))

+fla+(1-
f(a+tn(b,a))g(a+ (1—-t)n(b,a))]

< —
— 2pPtq

[9(a+tn(b,a))+g(@a+(1—

< g [f(@+tn(b.a)g(a+tn(b,2)
f(a+(1-tn(ba)g@r+ (1-tn(b,a)
F2P(1-t)[f(2) + (b)][g(a) + g(b)]

Integrating the above inequality with respect tn [0, 1],
we have

(2a+r](b,a)> <2a+n(b,a)>
f g

2 2
a+n(b,a)

/ f(u)g(u)du

a

< 1 1
= 20191 | (b,a)

+B(2p+ 1,29+ 1)[M(a,b) + N(a,b)]|.

O

Theorem 3. Left f,g: K, — R be two (p,q)-preinvex
functions such tha (b,a) > 0. If fg € Z[a,a+ n(b,a)],
then

a+n(b,a)
f(u)g(u)du

n(b,a)
<B(2p+1,2q+1)[M(a,b) +N(a,b)],

where Ma,b) and N(a,b) are given by %) and ©)
respectively.

ProofSincef andg are(p,q)-preinvex functions, so
f(a+tn(b,a)) <tP(1-t)%[f(a) + f(b)],

and

gla+tn(b,a) <tP(1-t)g(a) +g(b)).

Multiplying both sides of the above inequality and then
integrating the resultant respecttton [0, 1], we have

\H

f(a+tn(b,a))g(a+tn(b,a))dt
0

/ (L= 0F[1(@) + 1 (0)]lg(a) + g(D)d.
This implies

L a+n(ba)

b a/ f(u)g(u)du
<B(2p+ 1,29+ 1)[M(a,b) + N(a,b)].
O

We now need an auxiliary result, which will be helpful in
obtaining our next results.

Lemma 1.Let f: K, — R be a continuous function such
that f € Z[a,a+ n(b,a)]. Then

a+n(b,a)
(u—a)?(a+n(b,a)—u)Pf(u)du

a

1
_ @B, a)/t"(l—t)ﬁf(a+tn(b,a))dt.
0

Proof. Simple calculations yield the required result
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Theorem 4.Let f: K; — R be a continuous function such
that f € Z[a,a+n(b,a)]. If f is (p,q)-preinvex function.
Then

a+n(b.a)

/ (u—a)?(a+n(b,a)—u)Pf(u)du

a

<nP(b,a)B(a +p+1,B+q-+1)[f(a)+ f(b)].

Proof.Using Lemmadl, the definition of Beta function and
the fact thatf is a(p,q)-preinvex function, we have

a+n(b.a)
/ %(a+ n(b,a) — u)Pf (u)du
a
=n*F+ib,a) [t¥(1—t)Pf(a+tn(b,a))dt

)P
< n"*BJrl(b,a —t)ﬁ[tp(l—t)q][f(a) + f(b)]dt

1
(b.a) [
0
1
) [t
0
=n"Pb.a)B(a+p+1,8+a+1)[f(@)+ ().
O

Theorem 5. Let f: K, — R be a continuous function
such that fe Zaa+ n(ba). If [f[FT is
(p,q)-preinvex function. Then

a+n(b.a)
(u—a)?(a+n(b,a)—u)Pf(u)du
<n9F+Yb,a)B(ra+1,rB+1)
x [B(p+1,0+ 1) f(8)|71 + | (B)] 1]

r-1
T

Proof. Using Lemmal, Holder’s inequality, the definition

of Beta functions and the fact thift| T1is (p,q)-preinvex
function, we have

a+n(b.a)

[

1
< na+E+1(b7a) |:/tm(1—t)rﬁdt
0

@(a+n(b,a)—u)Pf(u)du

1
v

r-1
T

1
< | [ If(a+tn(b,a))|~tdt
/

<n%*B+Yba)B(ra+1,rB+1)

1
x [/{ﬂ’( 91 (2) |71+ | f(B)]

0

r-1
§

I}

<n%B+Yb,a)B(ra+1,rf+1)

r-1

r

B(p+1,q+1)[|f(a)[7T +|f (b)|~T]
O

Theorem 6. Let f: K, — R be a continuous function
such that fe Z[a,a+ n(b,a)]. If |f|" is (p,q)-preinvex
function. Then
a+n(ba)
(u—a)%(a+n(b,a) —u)Pf(u)du
a

<n9F+Y(b,a)[B(a+1,8+1)
x [B(a+p+1,B+aq+1)[f(a) +[f(b)|]]T.

r-1
T

=l

Proof. Using Lemmal, Holder’s inequality, the definition
of Beta functions and the fact thétt|" is (p,q)-preinvex
function, weobatin

a+n(b.a)

[ e
1
a+p+1
< B+ ) [ 0/ (1

[/t" 1) | (a+tn(b,a)| dt

9(a+n(b,a) —u)Pf(u)du

t)9tPdt

T

L

<P b,a) [B(a +1,8+ 1)) T

r

l/t“ 0P| ()" + |(0) et

r-1
T

=n*F+l(b,a)[B(a+1,+1)]
x [B(a+p+1,B+aq+1)[f(a) +[f(b)]]T.

=l

This completes the proof.O

Note that if p=1 = g in Theorem4, Theorem5 and
Theorem6, we get previously known result8][ Thus
these results can be considered as significant
generalizations of the results obtained&h [
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