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Abstract: In this article, using the definition of fuzzy-contractive mapping, we introduce intuitionistic fuzgy, n)-contractive
mapping and extend the fixed point results to intuitionifizzy metric spaces.
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1 Introduction introduce intuitionistic fuzzy((, n)-contractive mapping
and extend the fixed point results to intuitionistic fuzzy

In 1988, the famous fixed point theorems of Banach anﬁet'm':'spaces. . .
Edelstein for contraction mapping are extended to fuzzyP€finiton ~ 1.1. [16 A binary operation
metric spaces in the sense of Kramsoil and Michalak[ * - [0, 1] > [0,1] — [0, 1] is called &-norm if the following
by M.GrabiecB]. Further, Valentine Gregori and c_onqlltlons h.OIO.I' .

Almanzor Sapena9land D.MihetH] extended the fixed (i)« is associative and commutative;

point theorem of Banach for contraction mapping to (!!)a*lza,Vae [0,1];

fuzzy metric spaces in the sense of George ancg”)a * b < cxd whenever a < c and
Veeramanif]. Several authors have studied the kinds of < q,Va, b.’ cdelo, 1]'. . .

Contraction mappings in fuzzy metric spaddkld]. If*'|s'c'ont|nuousthen itis caIIedaqontlnuausorm.'
D.Mihet[5] has also introduced the concept of fuzzy Definition ~ 1.2. [16 A  binary  operation
y-contractive mapping in fuzzy metric spaces. He proved? : (0.1 % [0.1] — [0,1] ‘is called at-conorm if the
fixed point theorems usingp-contractive mapping in fpllo_wmg °°F‘d'.“°”3 hold: o
non-Archimedean fuzzy metric spaces in the sense of)® IS @ssociative and commutative;

George and Veeramani. Later Shenghua Wadg] [ (!!)aOO:a,Vae[O,l];

proved that the above-fixed point theorems are also tru%)"')a ob =< cod whenever a < ¢ and
of fuzzy metric space in the sense of Kramsoil andP<d.v&b.c,d€[0,1]. .

Michalek[lZ. Continuing this, Ishak Altun and If <>'|s'c'ont|nuousthen itis caIIedacontlnuausonorm.
D.Mihet[1]] defined the order fuzzyy-contractive Definition 1.3.[13 Let X be an arbitrary set: be a
mapping in ordered fuzzy metric spaces and proved twocontmuous—norm,ozbe a continuout-conorm anav,N
kinds of fixed point theorems in ordered P€ fuzzy sets orX®:x (0,e). Consider the following
non-Archimedean fuzzy metric spaces. But they can nofonditionsvu,v.w € X andt > 0,

prove the existence of uniqueness. Many Mathematician%!.)M(u’V’t) +N(uvt) <1

has studied the concept of the intuitionistic fuzzy metric (1) M(U;v,0) = 07 . _

spaces 15|[3]. Very recently, L.A. Ricarte and S. (M(uwt)=1ifandonlyifu=v,

Romagueral4 has introduced the existence of fixed (MM(U:v.t)=M(v.u,t); _

points of g-Contractions in fuzzy metric spaces with the (VM (U:W.t+8) >M(u,v.t) xM(v.ws);

application for an intuitionisticsetting. In this article (VOM(U,v..) : (0,0) — [0, 1] is left continuous;

using the definition of fuzzyy-contractive mapping, we (VIDN(U,v,0)=1;
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(vii)N(u,v,t) =0 ifand only ifu=v; Clearly,n(r) <r,vr € (0,1) andn(0) =
(IX)N(u,v,t) = N(v,u,t); Definition 2.5. Let (X,M,N,x*,¢) be an intuitionistic

(ON(U Wt +85) < N(UV.t) o N(V,W.S);

(Xi)N(u,v,.) : (0,00) — [0,1] is left continuous.

If M satisfies conditions (ii)-(vi), then the paiM, ) is
called fuzzy metric orX. In this case, the tripl€X,M, x)

is called a fuzzy metric space. N satisfies conditions
(vii)-(xi), then the pair(N,¢) is called dual fuzzy metric
on X. Then the triple(X,N,¢) is called a dual fuzzy
metric space.

If (M, %) is a fuzzy metric orX and(N,¢) is a dual fuzzy
metric on X satisfying condition (i), then the 4-tuple
(M,N,x*,0) is called an intuitionistic fuzzy metric oK.

In this case, the 5-tupléX,M,N,x o) is called an
intuitionistic fuzzy metric space.

Example 1.4.[2] Let (X,d) be a metric space. Denote
axb=abandacb=min{l,a+b},vVa,be [0,1] and let
Mg andNg be fuzzy sets oiX x X >< (0,+) defined as
follows:Mq(u,Vv,t) and

t+d(uv)
Ng(u,v,t) = t+é(u{,) vt > 0, then (X,Mg,Ng,*,¢) is an
intuitionistic fuzzy metric space.
Definition 1.5.[8] Let (X,M,N,x,¢) be an intuitionistic
fuzzy metric space. A sequenge,} in X is called
(a)convergent to a pointu € X if and only if
[iMp_s e M(Un,u,t) and
limn_ e N(up,u,t) =0,Vt >0,
(b)Cauchy if  liMh—se0 M(Un,Unsp,t)
liMn—s+e0 N(Un, Unpp,t) = 0,vt > 0 andp > 0.
Definition 1.6. An intuitionistic fuzzy metric space
(X,M,N,x*,¢) is said to be complete if every Cauchy
sequence iiX is convergent.

1;

1, and

2 Main results

Definition 2.1. Let ¥ be the class of all mappings
Y :[0,1] — [0,1] such that

(i) is nondecreasing and lim. Y"(s) = 1,v¥s< (0,1];

(i) Y(s) > s Vse (0,1);

(il) (1) =

Example 2.2. Define ¢ : [0,1] — [0,1] by
W(s) = 2, vse[0,1].

wz( ) = 3s+1#lf3( ) = %v"'vwn(s) = (zﬂfzijri)ss_trlvvse
[0,1].

M e Y(S) = liMp_seo ﬁ =1,¥se (0,1).

Clearly,(s) >s,Vse (0,1) andy(1) =
Definition 2.3. Let ¥ be the class of all mappings

n :[0,1] — [0,1] such that

(iyn is nondecreasing and lim. n"(r) = 0,vr € [0, 1);
(ipn(r) <rvre(0,1);

(i) n(0) =0;

Example 2.4. Define n 0,1 — [0,1] by
n(r)=z=Vvrel0,1].

nz(r) = ﬁvn:‘;(r) = ﬁ?"'ann(r) = mvvr S
[0,1].

liMn e N™(r) = liMp 0 m =0,vr€[0,1).

fuzzy metric space angg,n € ¥. A mappingT : X — X
is called an intuitionistic fuzzy (g, n)-contractive

mapping if M(T(u),T(v),t) > @(M(u,vt)) and
N(T (u), T(v),t) <n(N(u,vt)),Vu,ve X andt > 0.
Proposition  2.6. An intuitionistic  fuzzy

(g, n)-contractive mapping is continuous.

Proof. Let T : X — X be an intuitionistic fuzzy
(g, n)-contractive mapping andup} be a sequence
convergent tau € X. That is limh_. M(up,u,t) = 1 and

|imn_>oo N(Un,u,t) = 0

Now, let us prove limeM(T(un),T(u),t) =1 and

liMp—e N(T (Un), T (u),t) =0.

Since T is the intuitionistic fuzzy (g, n)-contractive

mapping,

[IMpye M(T (Un), T(u),t) > iMoo Y(M(Un,u,t)) =
Y(limp_eM(un,u,t)) = (1) = 1.

lIMpseo N(T (Un), T(u),t) < Ilm,Hoon( (Up,u,t)) =
N (liMnse N(Un,u,t)) = n(0) =

That s, Imh_mM(T( ) T(u,t) = 1 and
liMp—e N(T (Un), T (u),t) =0.

Therefore, intuitionistic ~ fuzzy (y,n)-contractive
mapping is continuous.

Theorem 2.7. Every intuitionistic fuzzy

(g, n)-contractive mapping on a complete intuitionistic
fuzzy metric space has a unique fixed point.
Proof. Let T : X — X be an intuitionistic fuzzy

(g, n)-contractive mapping. Letip € X and define a
sequence, in X,vn € N as follows:

Un+1 - T(Un).
Thenvt > 0,

M (una Un+1at) =

—
—
<
T
n
c
=}
-
—
~—
=

> " (M(uo, uy, t)).

By taking limit asn — « and by our assumption

rl]l_r!loM(Un,Un+1,t) 1

T(Un), T(Un4a),t)
M(Un, Un1,t))

M(T (Un-1), T (un),t))
Un—1,Un,1))

M(Un41,Uns2,t) =

=

2 l,Un(M(Ul, Uz,t)).

By taking limit as n — o, and by our assumption
|imn4>oo M(Un+1,Un+2,t) = 1
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Now,

M (Un, Un+pat)

> M(Un,Un; 1, p) - *M(Untp-1,Un+p, :—))
By taking limit n — o, we have,

. t
> —)*...
ARM(UmUmpv ) > ARM(UnaUnHa p)* *
. t
r!moM(Uner—l, Unp; —)

p
>1*x...x1
=1
That is,
rLl_r;rch(un,unﬂo,t) 1.
Again, vt > 0,
N(Un, Un+1,t) = N(T (Un-1), T (Un),t)
< N(N(Un—1,Un,t))
=nN(N(T(Un—2), T (Un-1),t))
SUZ(N(Un 2,Un—1,1))

< nn(N(UOaUlat))~
By taking limit asn — o and by our assumption

r!|iI>nm N(Un, Un_A,_l,t) - 0

Similarly, we can prove,
lim N(Up41,Uns2,t) =0.
n—oo

Now,

t
oN(Unsp-1,Untp, —p)

t
N(un, Un+pat) < N(Un, Un+1, —p)<>
By taking limit asn — o,

. . t
A[)T(LN(U[], Un+p,t) S A[)T(LN(U[], Un+l, B) OO0

ThatisT (u) =
Uniqueness:
Assumev =T (v) for somev € X. Then fort > 0, we have,

M(u,v,t) = M(T (u), T(v),t)

> Y(M(uvt))
> @MU v))

Taking limit asn — o and by our assumption,
M(u,v,t) > limpse YN(M(u,vt)) = 1.
Thatis,M(u,v,t) = 1.

Again, fort > 0,

N(u,v,t) = N(T (u), T(v),t)
< n(N(u,v,t))

> (NG vY))

By taking limit asn — o and by our assumption,
N(u,v,t) <limpoe n"(N(u,v,t)) = 0.

Thatis,N(u,v,t) = 0.

Thereforey =v.

HenceT has a unique fixed point K.

Example 2.8.Let X = [0, o) with the metricd defined by
d(u,v) = |u—v|, define M(uvt) = Hd‘(uv) and
N(u,vt) = t+é(u{,) Yu,v € X andt > 0. Note that,
(X,M,N,*,¢) whereaxb = ab andacb =min{1,a+ b}
is a complete intuitionistic fuzzy metric space.

AmapT : X — X is defined by (u) = 83 andT (v) =
8—v

.
Define the mapyp : [0,1] —
eachse [0,1] andy € W.

0.1] by @(s) = 25 for

fim N(U ! t M(T (u), T(v),t) > @g(M(u,v,t))
N0 (Uni-p-1, Un+p, p) " I\/|(8—u 8—v 0 2M(u,v,t)
<0¢---00 37 3 777" Muvt)+1
=0. i 2
, Thatis if e > Y
That s, im NG _o (*3%5) t+d(L“,)Jrl
im N(Un, Unyp,t) = 0. 2
n—co e . t T u—V]
. ) That is if U sy > T
Hence{un} is a Cauchy sequencei |85 — &Y o 1
Since(X,M, N, x,¢) is a complete fuzzy metric space, o t t
there existsu € X such that lim . M(un,u,t) = 1 and Thatis if = ="
limn_e N(Un,u,t) = 0. for eacht > 0. t+ t+ =
i [ i . - u—v
SinceT is continuous, Thatisif t4+ lu . v St | . |
T(u) = (Amoun) = I|m T(un) = I|m 1 Uni1 = U Thatisif 3> 2.
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Again define the map : [0,1] — [0,1] by n(r) = 5~ for
eachr € [0,1] andn € Y.

N(T (u),T(v),t) < n(N(u,vt))

. 8—u 8-v N(u,v,t)
<
it N 37 3 ’t)*Z—N(u,v,t)
_u 8- d(u,v)
d(8zu 8y _aluy)
That s if (38_u 38_)V < ‘*df;(‘*fv)
A5 55 T 2y
B -%Y _ dnw
That is if —
8u_ 8-v| — —
t+ |55 — 5] 2—tﬁuf‘\,‘
Ju—v| |U—V|
That is if 3

H_@ T 2t+ju—v|
Thatisif 2+[u—v|<3t+|u—Vv]
Thatisif 2<3.

ThereforeT is the intuitionistic fuzzy(y, n)-contractive
mapping.

Then 2 is the unique fixed point.

Hence every fintuitionistic fuzzy(y,n)-contractive

mapping on a complete fuzzy metric space has a unique

fixed point.
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