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1 Introduction

In 1988, the famous fixed point theorems of Banach and
Edelstein for contraction mapping are extended to fuzzy
metric spaces in the sense of Kramsoil and Michalek[12]
by M.Grabiec[8]. Further, Valentine Gregori and
Almanzor Sapena [9]and D.Mihet[4] extended the fixed
point theorem of Banach for contraction mapping to
fuzzy metric spaces in the sense of George and
Veeramani[6]. Several authors have studied the kinds of
Contraction mappings in fuzzy metric spaces[1][10].
D.Mihet[5] has also introduced the concept of fuzzy
ψ-contractive mapping in fuzzy metric spaces. He proved
fixed point theorems usingψ-contractive mapping in
non-Archimedean fuzzy metric spaces in the sense of
George and Veeramani. Later Shenghua Wang [17]
proved that the above-fixed point theorems are also true
of fuzzy metric space in the sense of Kramsoil and
Michalek[12]. Continuing this, Ishak Altun and
D.Mihet[11] defined the order fuzzyψ-contractive
mapping in ordered fuzzy metric spaces and proved two
kinds of fixed point theorems in ordered
non-Archimedean fuzzy metric spaces. But they can not
prove the existence of uniqueness. Many Mathematicians
has studied the concept of the intuitionistic fuzzy metric
spaces [15][3]. Very recently, L.A. Ricarte and S.
Romaguera[14] has introduced the existence of fixed
points ofφ -Contractions in fuzzy metric spaces with the
application for an intuitionistic setting. In this article,
using the definition of fuzzyψ-contractive mapping, we

introduce intuitionistic fuzzy(ψ ,η)-contractive mapping
and extend the fixed point results to intuitionistic fuzzy
metric spaces.
Definition 1.1. [16] A binary operation
∗ : [0,1]× [0,1]→ [0,1] is called at-norm if the following
conditions hold:
(i)∗ is associative and commutative;
(ii)a ∗1= a,∀a ∈ [0,1];
(iii) a ∗ b ≤ c ∗ d whenever a ≤ c and
b ≤ d,∀a,b,c,d ∈ [0,1].
If ∗ is continuous then it is called a continuoust-norm.
Definition 1.2. [16] A binary operation
⋄ : [0,1] × [0,1] → [0,1] is called a t-conorm if the
following conditions hold:
(i)⋄ is associative and commutative;
(ii)a ⋄0= a,∀a ∈ [0,1];
(iii) a ⋄ b ≤ c ⋄ d whenever a ≤ c and
b ≤ d,∀a,b,c,d ∈ [0,1].
If ⋄ is continuous then it is called a continuoust-conorm.
Definition 1.3. [13] Let X be an arbitrary set,∗ be a
continuoust-norm,⋄ be a continuoust-conorm andM,N
be fuzzy sets onX2 × (0,∞). Consider the following
conditions∀u,v,w ∈ X andt > 0,
(i)M(u,v, t)+N(u,v, t)≤ 1;
(ii)M(u,v,0) = 0;
(iii) M(u,v, t) = 1 if and only ifu = v;
(iv)M(u,v, t) = M(v,u, t);
(v)M(u,w, t + s)≥ M(u,v, t)∗M(v,w,s);
(vi)M(u,v, .) : (0,∞)→ [0,1] is left continuous;
(vii)N(u,v,0) = 1;
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(viii) N(u,v, t) = 0 if and only if u = v;
(ix)N(u,v, t) = N(v,u, t);
(x)N(u,w, t + s)≤ N(u,v, t)⋄N(v,w,s);
(xi)N(u,v, .) : (0,∞)→ [0,1] is left continuous.
If M satisfies conditions (ii)-(vi), then the pair(M,∗) is
called fuzzy metric onX . In this case, the triple(X ,M,∗)
is called a fuzzy metric space. IfN satisfies conditions
(vii)-(xi), then the pair(N,⋄) is called dual fuzzy metric
on X . Then the triple(X ,N,⋄) is called a dual fuzzy
metric space.
If (M,∗) is a fuzzy metric onX and(N,⋄) is a dual fuzzy
metric on X satisfying condition (i), then the 4-tuple
(M,N,∗,⋄) is called an intuitionistic fuzzy metric onX .
In this case, the 5-tuple(X ,M,N,∗,⋄) is called an
intuitionistic fuzzy metric space.
Example 1.4. [2] Let (X ,d) be a metric space. Denote
a ∗ b = ab anda ⋄ b = min{1,a+ b},∀a,b ∈ [0,1] and let
Md andNd be fuzzy sets onX ×X × (0,+∞) defined as
follows:Md(u,v, t) = t

t+d(u,v) and

Nd(u,v, t) =
d(u,v)

t+d(u,v) ,∀t > 0, then (X ,Md ,Nd ,∗,⋄) is an
intuitionistic fuzzy metric space.
Definition 1.5. [8] Let (X ,M,N,∗,⋄) be an intuitionistic
fuzzy metric space. A sequence{un} in X is called
(a)convergent to a pointu ∈ X if and only if
limn→+∞ M(un,u, t) = 1, and
limn→+∞ N(un,u, t) = 0,∀t > 0,
(b)Cauchy if limn→∞ M(un,un+p, t) = 1, and
limn→+∞ N(un,un+p, t) = 0,∀t > 0 andp > 0.
Definition 1.6. An intuitionistic fuzzy metric space
(X ,M,N,∗,⋄) is said to be complete if every Cauchy
sequence inX is convergent.

2 Main results

Definition 2.1. Let Ψ be the class of all mappings
ψ : [0,1]→ [0,1] such that
(i)ψ is nondecreasing and limn→∞ ψn(s) = 1,∀s ∈ (0,1];
(ii)ψ(s)> s,∀s ∈ (0,1);
(iii) ψ(1) = 1;
Example 2.2. Define ψ : [0,1] → [0,1] by
ψ(s) = 2s

s+1,∀s ∈ [0,1].

ψ2(s) = 4s
3s+1,ψ

3(s) = 8s
7s+1, . . . ,ψ

n(s) = 2ns
(2n−1)s+1,∀s ∈

[0,1].
limn→∞ ψn(s) = limn→∞

2ns
(2n−1)s+1 = 1,∀s ∈ (0,1).

Clearly,ψ(s)> s,∀s ∈ (0,1) andψ(1) = 1.
Definition 2.3. Let Ψ be the class of all mappings
η : [0,1]→ [0,1] such that
(i)η is nondecreasing and limn→∞ ηn(r) = 0,∀r ∈ [0,1);
(ii)η(r)< r,∀r ∈ (0,1);
(iii) η(0) = 0;
Example 2.4. Define η : [0,1] → [0,1] by
η(r) = r

2−r∀r ∈ [0,1].
η2(r) = r

4−3r ,η
3(r) = r

8−7r , . . . ,η
n(r) = r

2n(1−r)+r ,∀r ∈

[0,1].
limn→∞ ηn(r) = limn→∞

r
2n(1−r)+r = 0,∀r ∈ [0,1).

Clearly,η(r)< r,∀r ∈ (0,1) andη(0) = 0.
Definition 2.5. Let (X ,M,N,∗,⋄) be an intuitionistic
fuzzy metric space andψ ,η ∈Ψ . A mappingT : X → X
is called an intuitionistic fuzzy (ψ ,η)-contractive
mapping if M(T (u),T (v), t) ≥ ψ(M(u,v, t)) and
N(T (u),T (v), t)≤ η(N(u,v, t)),∀u,v ∈ X andt > 0.
Proposition 2.6. An intuitionistic fuzzy
(ψ ,η)-contractive mapping is continuous.
Proof. Let T : X → X be an intuitionistic fuzzy
(ψ ,η)-contractive mapping and{un} be a sequence
convergent tou ∈ X . That is limn→∞ M(un,u, t) = 1 and
limn→∞ N(un,u, t) = 0.
Now, let us prove limn→∞ M(T (un),T (u), t) = 1 and
limn→∞ N(T (un),T (u), t) = 0.
Since T is the intuitionistic fuzzy (ψ ,η)-contractive
mapping,
limn→∞ M(T (un),T (u), t) ≥ limn→∞ ψ(M(un,u, t)) =
ψ(limn→∞ M(un,u, t)) = ψ(1) = 1.
limn→∞ N(T (un),T (u), t) ≤ limn→∞ η(N(un,u, t)) =
η(limn→∞ N(un,u, t)) = η(0) = 0.
That is, limn→∞ M(T (un),T (u), t) = 1 and
limn→∞ N(T (un),T (u), t) = 0.
Therefore, intuitionistic fuzzy (ψ ,η)-contractive
mapping is continuous.
Theorem 2.7. Every intuitionistic fuzzy

(ψ ,η)-contractive mapping on a complete intuitionistic
fuzzy metric space has a unique fixed point.
Proof. Let T : X → X be an intuitionistic fuzzy

(ψ ,η)-contractive mapping. Letu0 ∈ X and define a
sequenceun in X ,∀n ∈ N as follows:

un+1 = T (un).

Then∀t > 0,

M(un,un+1, t) = M(T (un−1),T (un), t)

≥ ψ(M(un−1,un, t))

= ψ(M(T (un−2),T (un−1), t))

≥ ψ2(M(un−2,un−1, t))

. . .

≥ ψn(M(u0,u1, t)).

By taking limit asn → ∞ and by our assumption

lim
n→∞

M(un,un+1, t) = 1.

M(un+1,un+2, t) = M(T (un),T (un+1), t)

≥ ψ(M(un,un+1, t))

= ψ(M(T (un−1),T (un), t))

≥ ψ2(M(un−1,un, t))

. . .

≥ ψn(M(u1,u2, t)).

By taking limit as n → ∞, and by our assumption
limn→∞ M(un+1,un+2, t) = 1.
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Now,
M(un,un+p, t)
≥ M(un,un+1,

t
p )∗ . . .∗M(un+p−1,un+p,

t
p).

By taking limit n → ∞, we have,

lim
n→∞

M(un,un+p, t)≥ lim
n→∞

M(un,un+1,
t
p
)∗ . . .∗

lim
n→∞

M(un+p−1,un+p,
t
p
)

≥ 1∗ . . .∗1

= 1.

That is,
lim
n→∞

M(un,un+p, t) = 1.

Again,∀t > 0,

N(un,un+1, t) = N(T (un−1),T (un), t)

≤ η(N(un−1,un, t))

= η(N(T (un−2),T (un−1), t))

≤ η2(N(un−2,un−1, t))

. . .

≤ ηn(N(u0,u1, t)).

By taking limit asn → ∞ and by our assumption

lim
n→∞

N(un,un+1, t) = 0.

Similarly, we can prove,

lim
n→∞

N(un+1,un+2, t) = 0.

Now,

N(un,un+p, t)≤ N(un,un+1,
t
p
)⋄ . . .⋄N(un+p−1,un+p,

t
p
).

By taking limit asn → ∞,

lim
n→∞

N(un,un+p, t)≤ lim
n→∞

N(un,un+1,
t
p
)⋄ . . .⋄

lim
n→∞

N(un+p−1,un+p,
t
p
)

≤ 0⋄ · · ·⋄0

= 0.

That is,
lim
n→∞

N(un,un+p, t) = 0.

Hence,{un} is a Cauchy sequence inX .
Since(X ,M,N,∗,⋄) is a complete fuzzy metric space,

there existsu ∈ X such that limn→∞ M(un,u, t) = 1 and
limn→∞ N(un,u, t) = 0. for eacht > 0.

SinceT is continuous,

T (u) = T ( lim
n→∞

un) = lim
n→∞

T (un) = lim
n→∞

un+1 = u.

That isT (u) = u.
Uniqueness:
Assumev = T (v) for somev ∈ X . Then fort > 0, we have,

M(u,v, t) = M(T (u),T (v), t)

≥ ψ(M(u,v, t))

. . .

≥ ψn(M(u,v, t)).

Taking limit asn → ∞ and by our assumption,
M(u,v, t)≥ limn→∞ ψn(M(u,v, t)) = 1.
That is,M(u,v, t) = 1.
Again, fort > 0,

N(u,v, t) = N(T (u),T (v), t)

≤ η(N(u,v, t))

. . .

≥ ηn(N(u,v, t)).

By taking limit asn → ∞ and by our assumption,
N(u,v, t)≤ limn→∞ ηn(N(u,v, t)) = 0.
That is,N(u,v, t) = 0.
Therefore,u = v.
HenceT has a unique fixed point inX .
Example 2.8.Let X = [0,∞) with the metricd defined by
d(u,v) = |u− v|, define M(u,v, t) = t

t+d(u,v) , and

N(u,v, t) = d(u,v)
t+d(u,v) ,∀u,v ∈ X and t > 0. Note that,

(X ,M,N,∗,⋄) wherea ∗ b = ab anda ⋄ b = min{1,a+ b}
is a complete intuitionistic fuzzy metric space.

A mapT : X →X is defined byT (u) = 8−u
3 andT (v) =

8−v
3 .

Define the mapψ : [0,1] → [0,1] by ψ(s) = 2s
s+1 for

eachs ∈ [0,1] andψ ∈Ψ .

M(T (u),T (v), t)≥ ψ(M(u,v, t))

if M(
8− u

3
,
8− v

3
, t)≥

2M(u,v, t)
M(u,v, t)+1

That is if
t

t + d(8−u
3 ,

8−v
3 )

≥

2t
t+d(u,v)

t
t+d(u,v) +1

That is if
t

t +
∣

∣

8−u
3 − 8−v

3

∣

∣

≥

2t
t+|u−v|
t

t+|u−v| +1

That is if
t

t + |u−v|
3

≥
t

t + |u−v|
2

That is if t +
|u− v|

2
≥ t +

|u− v|
3

That is if 3≥ 2.
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Again define the mapη : [0,1]→ [0,1] by η(r) = r
2−r for

eachr ∈ [0,1] andη ∈Ψ .

N(T (u),T (v), t)≤ η(N(u,v, t))

if N(
8− u

3
,
8− v

3
, t)≤

N(u,v, t)
2−N(u,v, t)

That is if
d(8−u

3 ,
8−v

3 )

t + d(8−u
3 ,

8−v
3 )

≤

d(u,v)
t+d(u,v)

2− d(u,v)
t+d(u,v)

That is if

∣

∣

8−u
3 − 8−v

3

∣

∣

t +
∣

∣

8−u
3 − 8−v

3

∣

∣

≤

|u−v|
t+|u−v|

2− |u−v|
t+|u−v|

That is if
|u−v|

3

t + |u−v|
3

≤
|u− v|

2t + |u− v|

That is if 2t + |u− v| ≤ 3t + |u− v|

That is if 2≤ 3.

ThereforeT is the intuitionistic fuzzy(ψ ,η)-contractive
mapping.
Then 2 is the unique fixed point.
Hence every fintuitionistic fuzzy(ψ ,η)-contractive
mapping on a complete fuzzy metric space has a unique
fixed point.
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