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1 Introduction

Claim of the derivatives and integrals with any arbitrary order (that is, fractional calculus) was born in 1695 and, this
new and remarkable subject has intensive work fields such as mathematics, physics, chemistry, biology, medicine,
engineering and so on since that day [1,2,3,4,5,6].
In our present article, we analyze this concept for the radial Schrödinger equation and so, we can summarize some
scientific studies related to fractional calculus and Schr¨odinger equation in this section. For instance, Yildirim [7] used
Homotopy Perturbation Method for the fractional nonlinearSchrödinger equation. Rida et al. [8] applied the ADM for
finding the solution of the generalized fractional nonlinear Schrödinger equation subject to some initial conditions. In
[9], Muslih et al. obtained solutions of the fractional Schrödinger equation via Lagrangian and Hamiltonian approach.
And, Naber [10] studied on the time fractional Schrödinger equation. Zhao et al. [11] investigated the local fractional
Schrödinger equations in the one-dimensional Cantorian system. In his study, the approximations solutions were
obtained by using the local fractional series expansion method. Dong developed a space-time fractional Schrödinger
equation containing Caputo fractional derivative and the quantum Riesz fractional operator from a space fractional
Schrödinger equation in [12]. Baleanu et al. [13] exhibited approximate analytical solutions of the fractional non-linear
Schrödinger equations by using the homotopy perturbationmethod. Jumarie [14] introduced from Lagrangian mechanics
fractal in space to space fractal Schrödinger’s equation via fractional Taylor’s series. In [15], nonlinear Schrödinger
equations with steep potential well was investigated. A numerical method for the solution of the time-fractional
nonlinear Schrödinger equation in one and two dimensions which appear in quantum mechanics was applied in [16]. In
[17], free particle wavefunction of the fractional Schrödinger wave equation was obtained and the wavefunction of the
equation was represented in terms of generalized three-dimensional Green’s function that involves fractional powersof
time as variabletα . Laskin [18] introduced some properties of the fractional Schrödinger equation and proved the
Hermiticity of the fractional Hamilton operator and established the parity conservation law for fractional quantum
mechanics and, also studied on the relationships between the fractional and standard Schrödinger equations. Yasuk etal.
[19] obtained the general solutions of Schrödinger equation for non central potential via Nikiforov Uvarov method.
Al-Jaber [20] formulated analytic solution of the free particle radial dependent Schrödinger equation in N-dimensional
space by means of homotopy perturbation method. In this paper, we also studied to find the fractional solutions of the
Schrödinger’s radial equation via generalized Leibniz rule and some fractional calculus theorems.
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The paper is organized as follows. In Section 2, we give the essential materials and methods. In Section 3, we state
the main results of this paper. In Section 4, we specify the conclusions of this work.

2 Materials and Methods

In this section, we exhibit the essential materials and methods.

Definition 1.Riemann-Liouville fractional derivative and integral formulas are defined by[21],

αDκ
x χ(x) = [χ(x)]κ =

1
Γ (n−κ)

dn

dxn

∫ x

α

χ(y)
(x− y)κ+1−ndy, (1)

(n−1≤ κ < n,n∈ N)

and

αD−κ
x χ(x) = [χ(x)]−κ =

1
Γ (κ)

∫ x

α

χ(y)
(x− y)1−κ dy (x> α,κ > 0). (2)

Definition 2.Suppose thatχ(z) is analytic and, branch point ofχ(z) isn’t found inside and onΩ , whereΩ := {Ω−,Ω+},
Ω− is a contour along the cut joining the points z and−∞+ iIm(z), which starts from the point at−∞, encircles the
point z once counter-clockwise, and returns to the point−∞, andΩ+ is a contour along the cut joining the points z and
∞+ iIm(z), which starts from the point at∞, encircles the point z once counter-clockwise, and returnsto the point at∞,

χκ(z) :=
Γ (κ +1)

2π i

∫

Ω

χ(x)dx
(x− z)κ+1 (κ /∈ Z−)

and
χ−n(z) := lim

κ→−n
χκ(z) (n∈ Z+),

where x6= z,−π ≤ arg(x− z) ≤ π for Ω− and,0 ≤ arg(x− z) ≤ 2π for Ω+, and, fractional derivative ofχ(z) with κ
order is shown asχκ(z) (κ > 0) and, similarly, fractional integral ofχ(z) with −κ order is shown asχκ(z) (κ < 0),
where| χκ(z) |< ∞ andκ ∈ R [22].

Lemma 1.Suppose thatχ(z) andψ(z) are analytic and single-valued functions. Linearity rule is given by

[Kχ(z)+Lψ(z)]κ = Kχκ(z)+Lψκ(z), (3)

where K and L are constants and,κ ∈ R, z∈ C [23].

Lemma 2.Suppose thatχ(z) is an analytic and single-valued function. Then, index ruleis defined by

(χυ)κ(z) = (χυ+κ)(z) = (χκ)υ(z), (4)

whereκ ,υ ∈ R, z∈ C and| Γ (κ+υ+1)
Γ (κ+1)Γ (υ+1) |< ∞ [23].

Lemma 3.Suppose thatχ(z) and ψ(z) are analytic and single-valued functions. Generalized Leibniz rule is shown as
follows:

[χ(z)ψ(z)]κ =
∞

∑
n=0

Γ (κ +1)
Γ (κ +1−n)Γ (n+1)

χκ−n(z)ψn(z), (5)

whereκ ∈ R, z∈ C and| Γ (κ+1)
Γ (κ+1−n)Γ (n+1) |< ∞ [24].

Remark.In the fractional calculus, the following equalities are provided [24]:

(eαz)κ = ακeαz (α 6= 0,κ ∈ R,z∈ C), (6)

(e−αz)κ = e−iπκ ακe−αz (α 6= 0,κ ∈ R,z∈ C), (7)

(zα )κ = e−iπκ Γ (κ −α)

Γ (−α)
zα−κ (κ ∈ R,z∈ C,

∣

∣

∣

Γ (κ −α)

Γ (−α)

∣

∣

∣
< ∞), (8)

whereα is a constant and,

Γ (κ −n) = (−1)nΓ (κ)Γ (1−κ)
Γ (n+1−κ)

(κ ∈ R,n∈ N) (9)
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Theorem 1.Suppose thatψ−κ 6= 0 and, M(z;m), N(z;n) are polynomials in z of degrees m,n. And,

M(z;m) =
m

∑
i=0

aiz
m−i = a0

m

∏
j=1

(z− zj) (a0 6= 0,m∈ N), (10)

and,

N(z;n) =
n

∑
i=0

biz
n−i (b0 6= 0,n∈ N). (11)

Thus, the nonhomogeneous linear ordinary fractional differintegral equation

M(z;m)χυ(z)+

[

m

∑
i=1

(

κ
i

)

Mi(z;m)+
n

∑
i=1

(

κ
i −1

)

Ni−1(z;n)

]

χυ−i(z)

+

(

κ
i

)

n!b0χυ−n−1(z) = ψ(z) (m,n∈ N,κ ,υ ∈ R),

(12)

has the following solution:

χ(z) =

[(

ψ−κ(z)
M(z;m)

eσ(z;m,n)

)

−1

e−σ(z;m,n)

]

κ−υ+1

(z∈ C\{z1, ...,zm}), (13)

where

σ(z;m,n) =
∫ z N(x;n)

M(x;m)
dx (z∈ C\{z1, ...,zm}). (14)

And, the homogeneous linear ordinary fractional differintegral equation

M(z;m)χυ (z)+

[

m

∑
i=1

(

κ
i

)

Mi(z;m)+
n

∑
i=1

(

κ
i −1

)

Ni−1(z;n)

]

χυ−i(z)

+

(

κ
i

)

n!b0χυ−n−1(z) = 0 (m,n∈ N,κ ,υ ∈ R),

(15)

has the following solution:
χ(z) = K[e−σ(z;m,n)]κ−υ+1, (16)

where K is an arbitrary constant[24].

Theorem 2.When| ψκ(z) |< ∞ (κ ∈ R) andψ−κ 6= 0, then

Az2χ2+Bzχ1+(Dz2+Ez+F)χ = ψ (A,D 6= 0,z∈ C\{0},χ = χ(z)), (17)

has the solution as follows:

χ = zν eεz

{[

A−1z−(κ+1)+ 2Aν+B
A e2εz

(

z−(ν+1)e−εzψ
)

−κ

]

−1

zκ− 2Aν+B
A e−2εz

}

κ−1

, (18)

whereν,ε andκ are in the form:

ν =
A−B±

√

(A−B)2−4AF
2A

, ε =±i

√

D
A
, (19)

and,

κ =
(2Aν +B)ε +E

2Aε
. (20)

Moreover,
Az2χ2+Bzχ1+(Dz2+Ez+F)χ = 0 (A,D 6= 0,z∈ C\{0},χ = χ(z)), (21)

has the solution in the form:

χ = Kzν eεz
(

zκ− 2Aν+B
A e−2εz

)

κ−1
. (22)

where K is an arbitrary constant[24].

In the next section, we investigate the solutions in the fractional forms and hypergeometric forms for the radial equation
by using the generalized Leibniz rule and Theorem2.
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3 Main Results

3.1 On the Generalized Leibniz Rule

In theβ -dimensional space, fractional Schrödinger equation’s radial component is

χ2(y)+
β −1

y
χ1(y)+

[

2m

h̄2

(

E+e2 αc

yc−2

)

−
ρ(ρ −β −2)

y2

]

χ(y) = 0, (23)

where constantαc is αc =
Γ (c/2)

2πc/2(c−2)ε0
(c> 2), 1≤ β ≤ 3 and 0≤ y≤ ∞.

For Equ. (23), we get some transformations as

z= 2αy, χ = yρe−αyψ , a=
me2αc

h̄2

whereα2 =−2mE/h̄2. Thus, we obtain the following singular differential equation:

zψ2+(λ − z)ψ1+
(

ωz3−c−
λ
2

)

ψ = 0, (24)

whereλ = 2ρ +β −1, ω = a
23−cα4−c [24].

Theorem 3.Suppose that c= 4 in Equ. (24), and so, we have

zψ2+(λ − z)ψ1+
(ω

z
−

λ
2

)

ψ = 0. (25)

Equ. (25) has the following fractional solutions:

ψ I (z) = Kz
1−λ+ξ

2

[

z
−

(

1+ξ
2

)

ez
]

−( 1−ξ
2 )

, (26)

and,

ψ II (z) = Lz
1−λ−ξ

2

[

z
−

(

1−ξ
2

)

ez
]

−( 1+ξ
2 )

, (27)

where z∈ C, ψ ∈ {ψ : 0 6=| ψκ |< ∞,κ ∈ R} and K, L,λ , ξ are constants.

Proof.At first, we getψ = zτ φ (z 6= 0,φ = φ(z)), and so,

zφ2+(2τ +λ − z)φ1+
[

(τ2+ τ(λ −1)+ω)z−1− (τ +
λ
2
)
]

φ = 0. (28)

If we assume thatτ2+ τ(λ −1)+ω = 0 in Equ. (28), we write an equality asτ = 1−λ±ξ
2 whereξ =

√

(λ −1)2−4ω.

(i.) Whenτ = 1−λ+ξ
2 , we have

zφ2+(1+ ξ − z)φ1−
(1+ ξ

2

)

φ = 0. (29)

If we apply Equ. (5) (Generalized Leinbiz rule) for all of terms in Equ. (29), so, we obtain

zφ2+κ +(κ +1+ ξ − z)φ1+κ −
(

κ +
1+ ξ

2

)

φ = 0. (30)

Now, we assume thatκ + 1+ξ
2 = 0 in Equ. (30), thus,κ =−

(

1+ξ
2

)

, and in the end, we have

ϕ1+
[(1+ ξ

2

)

z−1−1
]

ϕ = 0

(

ϕ = ϕ(z) = φ(
1−ξ

2

)

)

. (31)
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The solution of Equ. (31) is found easily as follows:

ϕ(z) = Kz
−

(

1+ξ
2

)

ez,

and, by substituting above assumptions, we write

ψ(z) = Kz
1−λ+ξ

2

[

z
−

(

1+ξ
2

)

ez
]

−( 1−ξ
2 )

. (32)

(ii.) By means of similar steps, the second fractional solution is

ψ(z) = Lz
1−λ−ξ

2

[

z−( 1−ξ
2 )ez

]

−

(

1+ξ
2

). (33)

After, the hypergeometric notations of Equ. (32) and Equ. (33) are presented by the following theorems:

Theorem 4.Let G be the Gauss hypergeometric function, and suppose that
∣

∣

∣

[

z
−

(

1+ξ
2

)

]

n

∣

∣

∣
< ∞ (n ∈ N,z 6= 0). Thus,

functionψ(z) in Equ. (32) is written by

ψ(z) = Kz−
λ
2 ezG

[1− ξ
2

,
1+ ξ

2
;
1
z

] (∣

∣

∣

1
z

∣

∣

∣
< 1
)

. (34)

Proof.At first, we use the generalized Leibniz rule for Equ. (32), and so,

ψ(z) = Kz
1−λ+ξ

2

∞

∑
n=0

Γ
(

1+ξ
2

)

Γ
(

1+ξ
2 −n

)

n!

[

z
−

(

1+ξ
2

)

]

n
(ez)

−

(

1−ξ
2

). (35)

After, the following form is obtained by means of (6), (8) and (9):

ψ(z) = Kz−
λ
2 ez

∞

∑
n=0

Γ
(

n+ 1−ξ
2

)

Γ
(

1−ξ
2

)

Γ
(

n+ 1+ξ
2

)

Γ
(

1+ξ
2

)

1
n!

(1
z

)n
.

In the end, we write

ψ(z) = Kz−
λ
2 ez

∞

∑
n=0

(1− ξ
2

)

n

(1+ ξ
2

)

n

1
n!

(1
z

)n
,

and,

ψ(z) = Kz−
λ
2 ezG

[1− ξ
2

,
1+ ξ

2
;
1
z

]

.

Theorem 5.Let G be the Gauss hypergeometric function, and suppose that
∣

∣

∣

[

z
−

(

1−ξ
2

)

]

n

∣

∣

∣
< ∞ (n ∈ N,z 6= 0). Thus,

functionψ(z) in Equ. (33) is written by

ψ(z) = Lz−
λ
2 ezG

[1+ ξ
2

,
1− ξ

2
;
1
z

] (∣

∣

∣

1
z

∣

∣

∣
< 1
)

. (36)

3.2 On the Fractional Calculus Theorems

Under the Coulomb potential, Schrödinger equation’s radial component is [25],

χ2(y)+
2
y

χ1(y)+

[

2m

h̄2

(

E+
e2

y

)

−
ρ(ρ +1)

y2

]

χ(y) = 0. (37)
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For Equ. (37), we get some transformations as

z= 2αy, χ = z−1/2ψ , b=
me2

αh̄2 ,

whereα2 =−2mE/h̄2. So, we obtain the following singular differential equation:

z2ψ2+ zψ1−
(z2

4
−bz+

k2

4

)

ψ = 0, (38)

whereρ(ρ +1) = k2−1
4 .

If we use the Theorem2 for Equ. (38), we can write

A= B= 1, D =−
1
4
, E = b, F =−

k2

4
, (39)

and, by applying (19) and (20), we have

ν =±
k
2
, ε =±

1
2
,

and,

κ =
(2ν +1)ε +b

2ε
.

Thus, the fractional solution of Equ. (38) is

ψ = Kzνeεz
[

z−(2ν+1−κ)e−2εz
]

κ−1
. (40)

Theorem 6.Let G be the Gauss hypergeometric function, and suppose that
∣

∣

∣

[

z−(2ν+1−κ)
]

n

∣

∣

∣
< ∞ (n ∈ N,z 6= 0). Thus,

functionψ(z) in Equ. (40) is written by

ψ(z) = Kz−(ε− b
2ε )e−εzG

[

1−κ ,1−κ−n+
b
ε

;−
1

2εz

] (∣

∣

∣
−

1
2εz

∣

∣

∣
< 1
)

. (41)

4 Conclusion

We studied on the Schrödinger equation’s radial components in theβ -dimensional space and under the Coulomb potential
respectively, and we first transformed these equations to the singular differential equations by means of some assumptions.
After, the generalized Leibniz rule and some fractional calculus theorems were applied to these singular equations dueto
find the fractional solutions, and hypergeometric solutions were also obtained. Thus, we exhibited two different solution
methods for two different equations. Moreover, we used Theorem2 to Equ. (25) and, applied generalized Leibniz rule to
Equ. (38) in our different studies.
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