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Abstract: Several methods solve linear fractional partial differential equations. In this paper, it is presented a fractional model of
the liquid-film mass transfer equation to compare numericalsolution between fractional and simple model of the equation. Then the
approximate of the generalized differential transform method is compared with the exact solution of the equation in integer orders.
Furthermore, the approximates will be obtained in the fractional orders by limiting the intervals of the coefficient andvariables. The
results show that we can achieve the same result with the proposed fractional model and the method has a high accuracy.
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1 Introduction

In recent years, the study of stability and numerical methods of fractional differential equations by using various methods
is helped to improve engineering and physics [1,2,3,4,5,6,7,8,9]. There are definitions of the fractional derivative and
integral, such as Grunwald- Letnikov, Riemann-Liouville and Caputo. The Caputo fractional derivative of orderα is
defined as follow

Dα f (t) =
1

Γ (−α +m)

∫ t

a
(t − τ)−α+m−1 f (m)(τ)dτ, (1)

wherem−1< α ≤ m,m∈ Z+. For more study see [10,11,12]. One of these methods is the differential transform method
[13,14]. The differential transform of functionf is

F(x) =
1
k!

dk f (x)
dxk |x=x0, (2)

where f is the original function andF(k) is the transformed function. The differential inverse transform ofF(k) is

f (x) =
∞

∑
k=0

xkF(k). (3)

Substituting (2) into (3), we get

f (x) =
∞

∑
k=0

xk

k!
dk f (x)

dxk |x=x0 . (4)

But, this method has developed in [15]. They have presented the generalized differential transform of functionf as follow

Fα(k) =
1

Γ (αk+1)
[(Dα)k f (x)]x=x0 , (5)
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where 0< α ≤ 1 and(Dα)k = Dα .Dα . · · · .Dα(k− times). The differential inverse transform ofFα(k) is defined by

f (x) =
∞

∑
k=0

Fα(k)(x− x0)
αk
. (6)

Substituting (5) into (6), we get

f (x) =
∞

∑
k=0

(x− x0)
αk

Γ (αk+1)
((Dα )k f )(x0). (7)

Using theorem (4) in [16], we will obtain an approximate functionf (x) from the finite series as

f (x)∼=
n

∑
k=0

Fα(k)(x− x0)
αk
. (8)

In caseα = 1, the generalized differential transform (5) changes to the differential transform. Also, GDTM is presented
for solving the linear fractional partial differential equations [17]. Many equations have been studied by using fractional
methods. The liquid-film mass transfer equation with the boundary conditions (10) is as

(1− y2)
∂ω
∂x

= a
∂ 2ω
∂y2 , (9)

ω = 0,x= 0,(0< y6 1);ω = 1,y= 0,(x> 0);
∂ω
∂y

= 0,y= 1,(x> 0). (10)

whereω , is a dimensionless temperature;x andyare dimensionless measured coordinates, respectively.a= 1
Pe wherePeis

the Peclet number [18,19,20,21,22,23,24]. Mixed boundary conditions are commonly encountered in practical purposes.
The solution of (9) is given by

ω(x,y) = 1−
∞

∑
m=1

Am exp(−aλ 2
mx) Fm(y), (11)

Fm(y) = y exp(−
1
2

λmy2) Φ(
3
4
−

1
4

λm,
3
2

;λmy2), (12)

where the functionFm and the coefficientsAm andλm are independent of the parametera. The eigenvalues ofλm for
m= 1,2, ... are solutions of the transcendental equation:

λmΦ(
3
4
−

1
4

λm,
3
2

;λm)−Φ(
3
4
−

1
4

λm,
1
2

;λm) = 0, (13)

whereφ(M,N;Z) = 1+∑∞
m=1

M(M+1)···(M+m−1)
N(N+1)···(N+m−1)

Zm

m! . The series coefficientsAm are calculated as follows

Am =

∫ 1
0 (1− y2)Fm(y)dy

∫ 1
0 (1− y2)(Fm(y))2dy

, m= 1,2, · · · . (14)

Table (1) shows the first ten eigenvaluesλm and coefficientsAm[18].
The organization of this paper is followed by: In Section 2, we described GDTM for linear PDEs. In Section 3, the

approximate of the fractional model (9) is compared with (11). In Section 4 we conclude our work.

2 Generalized Two-Dimensional Differential Transform Method

In this section, we provide some important definitions and theorems of GDTM for linear PDEs. First, we consider the
function of two variablesu(x,y). Also, suppose thatu(x,y) = f (x)g(y). According to [25,26], the functionu(x,y) can be
represented as

u(x,y) =
∞

∑
k=0

Fα(k)(x− x0)
kα

∞

∑
h=0

Gβ (h)(y− y0)
hβ =

∞

∑
k=0

∞

∑
h=0

Uα ,β (k,h)(x− x0)
kα(y− y0)

hβ
, (15)
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Table 1: Eigenvalueλm and coefficientsAm in Equation (11).
m λm Am

1 2.2631 1.3382
2 6.2977 -0.5455
3 10.3077 0.3589
4 14.3128 -0.2721
5 18.3159 0.2211
6 22.3181 -0.1873
7 26.3197 0.1631
8 30.3209 -0.1449
9 34.3219 0.1306
10 38.3227 -0.1191

whereα > 0 andβ 6 1.Uα ,β (k,h) = Fα(k)Gβ (h) is the spectrum ofu(x,y). The generalized two-dimensional differential
transform ofu(x,y) is as follows

Uα ,β (k,h) =
1

Γ (αk+1)Γ (βh+1)
[(Dα

x0
)k(Dβ

y0
)hu(x,y)]x0,y0. (16)

According to (15) and (16), the following results obtain.
Theorem 2.1. Suppose thatUα ,β (k,h),Vα ,β (k,h), andWα ,β (k,h) are the differential transformations ofu(x,y), v(x,y),

andw(x,y), respectively:

(a) if u(x,y) = v(x,y)±w(x,y), thenUα ,β (k,h) =Vα ,β (k,h)±Wα ,β (k,h),
(b) if u(x,y) = cv(x,y),c∈ R, thenUα ,β (k,h) = cVα ,β (k,h),
(c) if u(x,y) = v(x,y)w(x,y), thenUα ,β (k,h) = ∑k

r=0 ∑h
s=0Vα ,β (k,h)Wα ,β (k,h),

(d) if u(x,y) = (x− x0)
nα(y− y0)

mβ , thenUα ,β (k,h) = δ (k−n)δ (h−m),

(e) if u(x,y) = Dα
x0

v(x,y), 0< α 6 1, thenUα ,β (k,h) =
Γ (α(k+1)+1)

Γ (αk+1) Uα ,β (k+1,h).

Theorem 2.2. If u(x,y) = f (x)g(y) and the functionf (x) = xλ h(x), whereλ > −1, h(x) has the generalized’s series
expansionh(x) = ∑∞

n=0an(x− x0)
αk [16], and

(I) β < λ +1 andα is arbitrary, or
(II) β > λ + 1,α is arbitrary andan for n = 0,1,2, · · · ,m− 1, wherem− 1< β 6 m. Then the generalized differential
transform (16) becomes

Uα ,β (k,h) =
1

Γ (αk+1)Γ (βh+1)
[(Dαk

x0
)(Dβ

y0
)hu(x,y)]x0,y0. (17)

Theorem 2.3. If v(x,y) = f (x)g(y), the functionf (x) satisfies the conditions of theorem 2.2 andu(x,y) = Dα
x0

v(x,y), then

Uα ,β (k,h) =
Γ (α(k+1)+ γ)

Γ (αk+1)
Vα ,β (k+

γ
α
,h). (18)

The proofs and the convergence of GDTM maybe found in [15,27].

3 Numerical Results

In this section, first we introduce the fractional liquid-film mass transfer equation. Then by using the mentioned definitions
and theorems, we compare an approximate of GDTM with the exact solution in the integer and fractional orders cases.
We consider the fractional liquid-film mass transfer equation with following boundary conditions

(1− y2)Dα
x ω = aDγ

yω , (19)

ω(0,y) = 0,ω(x,0) = 1,
∂ω
∂y

(x,1) =−437.11+2.9130 105ax−1.4271 108a2x2
, (20)
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where 0< α 6 1, 1< γ 6 2, anda= 1. It can be obtained an ordinary system by sittingα = 1, β = 1, andγ = 2. The
generalized differential transform of (19) is as follows

Ω1,1(k,h+2) =
1

a(h+1)(h+2)
[(k+1)Ω1,1(k+1,h)−

k

∑
r=0

h

∑
s=0

(δ (k− r)δ (s−2)(k− r +1)Ω1,1(k− r +1,s))]. (21)

Also, we can write the generalized differential transform of the boundary conditions (20) as

Ω(k,0) = 1, Ω(k,1) =−437.11+2.9130105δ (k−1)δ (h)−1.4271108δ (k−2)δ (h). (22)

Therefore, we have the solutionω(x,y) up toO(x18) as follows:

ω(x,y) = 1−437.11x+
x2

2a
−72.85166667

x3

a
+

(

1−437.11x+
x2

a
−145.7033333

x3

a
+

x4

6a2

)

y2 (23)

+

(

1−437.11x+
3x2

2a
−218.5550000

x3

a
+

x4

2a2

)

y4+

(

1−437.11x+
2x2

a
−291.4066667

x3

a
+

3x4

4a2

)

y6

+

(

1−437.11x+
5x2

2a
−364.2583333

x3

a
+

7x4

6a2

)

y8+

(

1−437.11x+
3x2

a
−437.11

x3

a
+

7x4

4a2

)

y10

+

(

1−437.11x+
7x2

2a
−509.9616667

x3

a
+

9x4

4a2

)

y12+

(

1−437.11x+
4x2

a
−582.8133333

x3

a
+

35x4

12a2

)

y14

+

(

1−437.11x+
9x2

2a
−655.6650000

x3

a
+

11x4

3a2

)

y16+

(

1−437.11x+
5x2

a
−728.5166667

x3

a
+

9x4

2a2

)

y18

Figures (1a) and (1b) show the exact solution and approximate of (19), respectively. Also, the intervala in figure (1a)
and (1b) is[0,1] and[0.6,0.8], respectively. As we see, the approximate is compared with the exact solution by modifying
in the intervala.

Fig. 1: The solutionω(x,y) of (19) and (20). (a) exact solution anda∈ [0,1]. (b) approximate solution whenα = β = 1, γ = 2, and
a∈ [0.6,0.8].

Now, we supposeα = 0.5, β = 1, andγ = 2. The generalized differential transform of (19) is

Ω0.5,1(k,h+4) =
Γ (0.5h+1)

aΓ (0.5k+2.5)
[
Γ (0.5k+1.5)
Γ (0.5k+1)

Ω0.5,1(k+1,h)

−
k

∑
r=0

h

∑
s=0

δ (k− r)δ (s−2)
Γ (0.5(k− r)+1.5)
Γ (0.5(k− r)+1)

Ω0.5,1(k− r +1,s)]. (24)

Also, the transformed boundary conditions (20) is

Ω(k,0) = δ (k),Ω(k,1) =−437.11δ (k)+2.9130105δ (k−2)−1.4271108δ (k−4),

Ω(k,2) = 0,Ω(k,3) = 10.138δ (k)−337.58aδ (k−2)+8688a2δ (k−4). (25)

Therefore, we have the solutionω(x,y) up toO(x8).

ω(x,y) = 1−437.11x0.5+10.138x1.5+(145650.0
x2.5

a
−84.39500000x3.5)y2

+(291300.0x0.5−337.58ax1.5)y4+(−95140000.02
x2.5

a
+2896ax3.5)y6

+(−142710000.0x0.5+8688a2x1.5)y8
. (26)

It should be noted that increasing more components of the series solution results in increasing error and changes the
solution. Although,α is decreased but the approximate will be obtained by limiting in the intervalsx,y, anda. Figure (2)
shows the comparison of the exact solution and GDTM approximate.
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Fig. 2: The solutionω(x,y) of (19) and (20). (a) exact solution anda∈ [0,1]. (b) approximate solution when
α = 0.5, β = 1, γ = 2, a∈ [6·10−9,8·10−9], andx, y∈ [0,8.4].

Finally, in the last case, we suppose thatα = 0.5, β = 1, andγ = 1.5. The transform of (19) is

Ω0.5,1(k,h+4) =
Γ (0.5h+1)
aΓ (0.5k+2)

[
Γ (0.5k+1.5)
Γ (0.5k+1)

Ω0.5,1(k+1,h)−
k

∑
r=0

h

∑
s=0

δ (k− r)δ (s−2)

Γ (0.5(k− r)+1.5)
Γ (0.5(k− r)+1)

Ω0.5,1(k− r +1,s)]. (27)

Sinceα = 0.5, therefore, we obtain the solutionω(x,y) up toO(x6) with the transformed boundary conditions (25).

ω(x,y) = 1−437.11x0.5+10.138x1.5+(109565.6171x2.5−152.3672957x3.5)y1.5+(291300.0x0.5

−337.58ax1.5)y3+(−143138658.7
x2.5

a
+5228.457710ax3.5)y4.5+(−142710000.0x0.5

+8688a2x1.5)y6
. (28)

The last case is shown in figure (3b). As we see, both orders aredecreased and GDTM approximate obtains with smaller
intervals than the previous cases.

Fig. 3: The solutionω(x,y) of (19) and (20). (a) exact solution,a∈ [0,1] andx,y∈ [0,10]. (b) approximate solution when
α = 0.5, β = 1, γ = 1.5, a∈ [6·10−11

,8·10−11], andx, y∈ [0, 6.4].

4 Conclusion

In this work, we introduced the fractional model of the liquid-film mass transfer equation. The generalized differential
transform method is powerful tool in order to solve linear PDEs. It was used for solving the mentioned equation. In the
first case, the intervala has been limited,x andy are fixed. This action makes approximates even if the orders be fractional.
As we have seen, when both of orders were decreased, the intervals became limited.
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