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Abstract: A flexible manufacturing cell consisting of two machininghters, several automated storage retrieval stations, anubde
transporting robot is considered. The problem is to scleefhils on machines so as to minimize the makespan, with thetefof
transportation and set-ups to be taken into account. Thagnois studied with the aid of a graph model, and an exactriéfgo of
cubic complexity is derived based on the Gilmore- Gomoryathm for the travelling salesman problem
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1 Introduction been presented by Kis al. (1991). They considered the
two-machine one-robot scheduling problem and solved it
Small — scale flexible manufacturing cells with a few In cubic time using the Gilmore — Gomory algorithm for
machines for parts processing and robots for theirT SP a§asubrout|ne.'Th|s.mo<_:ielwas restricted to the case
transportation are quite commonly found in real Qf a single AS/R s.tatlon, Job-lndepenQent'transportatlon
applications. Most of the multi-machine flowshop fimes, and set-ups included in processing times.
scheduling problems arising in this environment areKabadi and Fazle (1999) worked on Gilmore—Gomory
known to be NP- hand, for which no exact algorithm type traveling salesman problems (TSP) where they
running in reasonable computational time are found,implementthe GG scheme in NP-hard for classes of TSP.
except for very special cases. One of the well-solvableHowever, they identify some subclasses of GG which the
cases is the famous two-machine, n-job flowshop problenf>G scheme can be implemented in time of polynomial. In
with unbounded inter-machine storage, which was studiedhe problems, they identify, generalize and unify
by ‘Johnson (1954) who solved it in O(n log n) time. polynomially testable and polynomially solvable
Various modifications of the latter problem, taking into subclasses of the TSP.
account the transportation and set-up times have bee@arlier et al. (2010) investigate Optimization-Based
developed by many authors ( Lawlktral 1993). Heuristic for the Robotic Cell Problem where problem
Another type of flowshop scheduling model describes thearises in automated cells and is a complex flow shop
robotic cells having no intermediate storage between thgproblem with an single transportation robot and a
machines for work-in-progress (‘no-WIP-storage’), as isblocking constraint by proposing an approximate
often the case in industry. Two basic modifications of thedecomposition algorithm were it breaks the problem into
no-WIP-storage model are known. The first one does notwo scheduling problems that are solved sequentially: a
include input / output automated storage-and-retrievaflow shop problem with additional constraint (blocking
stations (AS / RS). This modification has been and transportation times) and a single machine problem
investigated, among others, by Levner (1969), Panwalkewith precedence constraints, time lags, and setup times
(1991) and Stern and Vitner (1990)who have discussed it®\ntonio et al., (2014) worked on Production processes in
relations with the Johnson flowshop problem and theCellular Manufacturing Systems (CMS) often involve
travelling salesman problem (TSP). groups of parts sharing the same technological
A more complicated modification of the no — WIP — requirements in terms of tooling and setup, that is, issue
storage scheduling model, involving AS/R stations, hasof scheduling such parts through a flow-shop production
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layout is known as the Flow-Shop Group Scheduling 2.Concurrently with the above transportation and
(FSGS) problem where they proposed an hybrid loading, a tool is set on machine Afbr performing
metaheuristic procedure integratingfeatures from Geneti  job P,

Algorithms (GAs) and Biased Random Sampling (BRS) 3.Then machine I starts processing the first job, the
searchtechniques with the aim of minimizing the total  robot unloads it from M, transports and loads it on
flow time, i.e., the sum of completion times of all jobs. machine Mg

Sarahet al., (2015), they considered the work on flexible  4.Upon completing Job ;Pon machine M, the robot
flow shop scheduling with unrelated parallel machines at  unloads it from M, transports and loads it on
each , were the number of stages and machines vary at machine M

each stage and each machine can process specific5.Concurrently with the above transportation and
operations. There proposed problem, that is , loading, a tool is set on machinegMor performing
transportation of parts, loading and unloading parts are Py

done by robots and the objective function is finding an

optimal sequence of processing parts and robots€t k: =1and then apply Rule 2

movements to minimize the makespan and finding theRule 2

closest number to the optimal number of robots. Their
contribution of the study was to present the mixed integer
linear programming model for the problem which
considers release times for parts in scheduling area,
loading and unloading times of parts which transferred by
robots.

Yazdani and Naderi, (2017) worked on Modeling and
Scheduling No-idle Hybrid Flow Shop Problems where
they focus on considers the problem of scheduling no-idle
hybrid flow shops, by developing a mixed integer linear
programming model mathematically formulate the
problem. Using commercial software, the model can
solve small instances to optimality.

1.Machine M; receives job Rand starts its processing.
Concurrently, the empty robot moves to the input AS/
RS station where job R, are stored. Loads it and
transport it to machine | then job R, 1is loaded by
robot on machine M. Concurrently with the
transportation and loading, a tool on maching M
changed for performing jobyR1, if necessary.

2.Machine M, then starts processing ¢R.
Concurrently with processinggPiby machine M,
the empty robot moves to machinegMwaits there
until job R is finished on machined p unloads it,
then transfers it to the output AS/RS and unloads it
there.

3.The empty robot then moves from the output AS/RS

. . to machine M, waits there if job R, 1 is not finished

2 Description of the Robotic Cell on Ma, and then unloads it from+M transfers and

) ) o o loads it on machine WM Concurrently with the
Consider a robotic cell consisting of two machining transportation and loading, a tool on machingi#/

centres (machines), several input AS/RS and a single  changed for performingjob;, if necessary
output AS/ RS

A given set J of n jobs is to be processed on the machinessetk : =k + 1, and, if k< n, apply Rule 2. If k = n, apply
Ma and Mg, in this order A job is loaded at one of the Rule 3

input AS/R stations and unloaded after its processing aRule 3

the output AS / R station. Transportations between the

input/output stations and a machine and between two 1.Machine M starts processing job,P

machines are performed by a transporting robot. The 2.The empty robot waits at machinegMintil the last
same robot serves for loading / unloading the jobs job, B, is finished, unloads it and then transfers it to
No machine has buffer storage for work-in-progress. The  the output AS/ RS, where it loads. Stop

robot can transport only one job at a time. Each machin
can process at most one job at a time and is not allowed t
interrupt processing once it has started. The problem is ¢
determine in which order (the same for both machines) the? ;
jobs are to be processed, and to find the robot’s tours, sdiotation _

as to minimize the makespan J= [1, 2, ..., n]: the set of n jobs to be processed.

Let us consider a fixed order (a sequence) P=#p, ..., rori=1,....,n , o

Pn) of jobs from J to be processed on the machines. Thé-1() = the time required for the robot to load job j at the

jobs in P are processed according to the foIIowing'”pL{t,AS/RS* where it is located;
technological rules. T1a7(j) = the transportation time needed for the robot to

Rule 1 send job j from its input AS / RS to machinesM
La(j) and Lg(j) = the times spent loading job j on machine
1.The first job, P, is loaded on the robot at the AS/ RS Ma and machine M respectively
station where is stored, and sent to machine Kfter Ca(j) and Gg(j) = the times to set (or change) a tool for
transporting job P, the robot loads it on machined  processing job j on machinesdind Ms respectively.

he key points of our model are that the transportation
imes are job-dependent and the work piece / tool set-ups
re separated from processing operations.
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Fig 1. Graph G of the nejob technalogical process

Fig 2 Subgraph G, he ° Compoanlof graph G

Pa(j) Pxy1and Rs(j) = the processing times of job j on

machines M and Mg, respectively;

Uaand W = the times spent by the robot unloading any

job from machines I and Ms respectively; The proof is omitted as being analogous to that presented
Tal.B = the transportation time needed for the robot toby Levner (1954) and Kiset al(1991). In our notation,
deliver any job finished on machinedMor processing on  the length of the maximal path in the initial party, ®f G

Msg; is equal to time b(p), needed to fulfill all the operations
Tag® = the transportation time needed for the empty robotdescribed in Rule 1 steps (a) — (e), and is a follows:
to run from machine I to Me; b(pr) = La(p1) + max {Trya(p1) + La(p1). Ca(pr)} +

Tg.1%(j) = the transportation time for the empty robot to Pa(py) + Ua + max{Tag! + Le(p1) . Ca(p1)} (??)

run from Mg to that input AS/ RS where job jis stored;  The middle part of G includes n — 1 identical sub graphs
Tgo! = the transportation time for the robot to deliver the Gy, G, . . ., Gy__1, one of which is depicted in Figure 2
finished job from machine Wto the output AS/ RS; FIG.2.SubgraphGk=1,..., n—1is equal to time t(p

Uo = the time required to unload any job at the output needed to fulfill the operations described in Rule 2, Steps
AS/RS; (a) = (c), at iteration k, and is as follows:

Toa? = the transportation time needed for the empty roboty(p,) = max{W? .1, W2 1 W3} + Up + max{Tlap +

to run from the output AS/RS again to machine b Le(pks1): Ca(prer)} - (2) ’

serve a job finished at that machine. Where

Whi1 = T%1(pri1) + La(Pisr) + max{Tiap(pera) +
La(Pk +1)- Ca(Prs1)} + Pa(presa);
3 A Graph Model of the Technological W21 = T8 1(Prs1) + Li(Prs1) + max{Tll,A(pkgl) +
Process La(Pk +1)- Ca(Pks1)} + TOag +Up + Tlg o + Ug + T o
W2 = Pg(py) + Ug + Tlg o + Ug + T A

Consider the graph representation of the technological "€ !ength of the maximal path in the middle part of G is
__1), needed to fulfill all the

; B} ; . qual to the time, t(p ...m
gé%%eesnsces LIJDbJ:(:JEL:IEt’Igg, .F\.)%j,lii) %sg’e IC:?gr;ruerSepf)ndmg a fIXecgperations described in Rule 2, Steps 2 (a) — (¢ ), for all k;
The following statement can be proved by induction on n.ltisas follows:
For a fixed p, the makespan, F(P), is equal to the length(P1 - -» P-—1) = 3(P) (3) ' _ '
of the maximal path in the graph G which comprises threeThe time f(m), needed to fulfill the final operations
parts: initial (denoted as¢p middle (G, ..., G,_1),and  describedin Rule 3, steps (a) — (b), is:
terminal, G. f(pn) = Pa(pn) + Ug + T'go + Uo (4)
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Therefore, the time to complete all n jobs in sequence pan auxiliary pair of numbers. (A(n + 1), B(n +1) = (K, K),

is: where K> max (A, Az, ..., An, B1, By, ..., B)

F(p) =b(p) + t(p1, --» ph——1) * f(pn) (5) Step 1 of the modified scheme is the same as the first step
in GGA (1991): to arrange the A(i) values in
non-decreasing order and or find the permutatipn

4 Analysis of the Objective Function defined byg(j) = g, 1 < i < n, q being such that A(q) is
the jth smallest of the A(i)
We start two evident observations. At step 2, for each pair of indices, l and jA |, I,j =1,

..., N, we find a partial sortingq, which is obtained from
1.The optimal solution of the problem (i.e. the sequencethe sorting at step 1 by excluding ()) and A(q(j)).
minimizing (5) does not change if we subtract from Step 3, 4 and 5 of our algorithm reproduce three main
F(P) the following constants, c, enteringf{p ¢ = Ug steps of GGA (1991), namely ‘forming an auxiliary
+Tgo+ U graph’, finding a maximum spanning tree and finding an
2.The optimal solution of the problem does not changeoptimal permutation respectively. The only difference
if we subtract from F(P) the following quantity, g, not from GGA is that these steps are repeated fopgjt that

depending on P: is, they are performed n(n — 1) times in turn, for each pair
of indices, landj, 4], I,j=1, ..., n, being excluded
q=y[Ua+max{Tag + La(p), Ca(Pu)}], Denote the optimal permutations obtained at step 5 by
in which the first term, W + max {T'ag + Lg(pa), P
Ca(pa)}, enters b(p) (see (1)) while all other components At step 6, for each optimal permutation; R, I, j = 1,

are fromt(R, ..., p_1) (see (3) and??)) C — iy o £
Objective function (5), after the above subtractions, will t(P*n)I #Vth,efg rg’%{)]t?"(rjr;a;rfgpt’azg':-(;?rgre lc)je(::‘)in+e£i (gyﬁ(%)
be: (8 Wh ' )

\lfzvr(ge: 0'(p2) + €(P1, - r—2) + T(Pr) Find permutation P minimizing F(P,;): F(P*) =

s _ 1 mini,jF(P*|,j)
E/f&ll)) (_G)Ll(Pl) + max{Taa(Py) + La(Py)- Calpo)} + The crucial point is that the sorting at step 1 is performed

, _ 1 2 3 : only once, requiring O (n log n) time. For each of n(n — 1)
F,((pl’)'_” ’ F?_Sl()S) I_XeTS)s({dV:nI(()JEé'JrW 1t Wb (1) g pairs of indexes, Step 2, 3 and 5 run in linear time,
A(FI)DE) _ Fr)r?air{]wlk W2} B(po) :-W3k k=1,..n(9) and Step 4 in time ‘essentially linear’ in n (see Gilmete
Then we find that minimizing F(P) in (5) is equivalent to al (1985) , Gabovet al (1986).). Step 6 runs in quadratic

finding the permutation minimizing the  followin time. Thus, the total running time of the modified
functign' P 9 9 algorithm is essentially cubic.

F(P) = b'(py) + 3 max (A(Re-1), B(RY) + F(pr) (10) Notice that if we apply the same structuring of the GGA

The latter problem is reducible to a special case of thefor solving a special case of the scheduling problem in

. . ; hich the transportation times are job-independent (see
travelling salesman problem studied by Gilmore (1985)W. . . :
and Gomory (1991), denoted GGP. The proof is given inK'se.et al., 1991) ,_a”ver5|or(1j of the modified Slgorlthdrq
the Appendix rli)nn]ngdm essentially quadratic time can be readily
Thus, one evident way to minimize (10) is to calculate, forZ tﬁllnest tive E |
each pair (pPy), the value of n lllustrative Example
b'(py) +min 5 max (A(Re.1), B(RY) + F(pr) In a numerical example below we compare our

and to choose the minimal among the resulting n (n — 1)scheduling_ model that takes into account job-d_ependent
values. transportations and set-ups (denotddiodel 1*), with a

Since the GGP may be solved in O(n log n) time. In fact, M€ rough Model 1l in which the set- ups are included
this scheme may be modified to be performed in into the processing times. The makespans computed for
essentially cubic time. In what follows, we will consider 20 arbitrary schedule, P, in the two models are denoted,
this modified scheme, not detailing the steps, which arJESpECt'Ve,IV’ F(P) and in (P) ,
the same as those of the Gilmore — Gomory AIgorithm.Tab|31f Time parameter sfor the sample computations
GGA (comprising seven jobs)
Job Ly T 1ALaLg CaCgPaPs T
10.21904260.139245.71.1
5 Description of the Algorithm 20.81.90.50.12.30.3359.61.1
3042204040.1090.30.90.9
The input of the modified scheme is n + 1 pairs of numbers? 0-51.90.60.32.52.24.6251.1
corresponding ton + 1 cities in the Gilmore — Gomory case® 0.6 2.20.41.10.20.35.6 1.1 0.9
of the TSP: n pairs, (A(i), B(i), KX i <n, defined by (9) 60.22.20.10.40.11.10.54.10.9
and renumbered so that®) < B(??) <...<B(n),and 70.71.90.80.62.51.83.03.81.1
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Model [ 1-4) for Model I, and B = (2-7-5-6-3-1-4) for Model II,
with the makespan values, respectivelyHr) = 76.0, and

Fi (Pz) =834

We can measure the transportation / set-up effects in
flowshop scheduling by estimating relative differences of
the optimal makespan values in Models | and Il, the
so-called modeling errors

TABLE 2: Integrated Parametersfor the two models
JobBAf b’
Model |
17.96.85.74.9
211.87.89.66.7
33.17.10.98.3
44787257.6
53.39.71.18.8
66.36.64.13.0
76.07.73.86.4
Model Il Model Il
114.46.413.25.0
212.210.110.09.0
34.46.72.23.4
47.211.25.010.1
54.79.9259.0
67.8655.63.1
78.410.06.28.9

TABLE 3: Results of Sorting
JobBA(Q
. Model |
Fig. 3 Graphs Models [ and 11 615.015.06
57.99.72
46.37.73
36.07.11

In Table 2, those data are transformed, by formulae (6)% 3-36.85

- (8), into integrated parameters A(j), B(), b’() and §(j 13.16.64
which will enter F'(P) in (10) Model I

For this numerical example, the results of step of the615.015.06
suggested algorithm, for the fixed pair (5, 6), are514.410.04
presented in Table 3 48.49.92
The auxiliary parameters, A(6) and B(6), are chosento be3 7.8 6.7 1

k = 15. The results of step 4 are sets of arcg,ahd 24.76.53
T, which are to be added to the auxiliary graphs obtained1 4.7 6.4 5
at step 3. They are, corresponding, ¥ {(5, 6), (2, 3}

for model I, and % = {(5,6)} for Model Il. The resulting 1.The error grelative, time losses incurred by using
graphs are depicted in Figure 3 Model 1I: e = [F1(P1) — F(P2)] / F1(Py); in our
The optimal permutations obtained at Step 6 run out to be example, I{P1) = 76 versus F(P;) = 83.4 produces
different for the two models. They are; B ( 2-5-3-6-7- errorg =10%
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2.The error g measures the roughness of criterignd®  L(T) = ymax(Bp(q), Ap(1+1) + Max (Byn), Ap22) A(??)

Model II in comparison with the corresponding The problemis to find a tour of minimal length

criterion. i of Model |, which is defined as,e= Consider the GGP with the traditional, (n + 1)th, city with
[F1(P1) — Fa(P1) / F1(P1); in our example, {P1) =  parameters (A 41, Bn.1) such that A 41 = Bhi1 = K,
76, ;(P1) = 84.4, and errorg=11% where K> max(Ay, ..., Ay, By, ..., By).

. The length of an arbitrary tour, T = (P, PLP,..., R,
The example shows that, even in the case of small nF’n+1), according to (A1) is

including the transportation set — up times into processinq_(.l.) = Smax(Bg), A ) + 2K

times may lead to essential errors. This effect was steadilyz: ; (i) “p(+1

observed in our computational experiments for various)é:gglaeriKO'fS riiﬁﬁr?iztiim E(n.lfj) (?gees Ega%i?e{:)d t?]r;tT,ofthe
randomly-generated small and medium —sized instance inimizing t'( 9 )a earinq in7?), as claimed

(n < 60). The same effect is also observed when the 9P, - Fh-1) @pP g1t
transportations / set — up times are averaged or igiBred
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