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1 Introduction

The Sturm-Liouville eigenvalue problem has played an important role in modeling many physical problems. The theory
of the problem is well developed and many results have been obtained concerning the eigenvalues and corresponding
eigenfunctions. It should be noted that since finding analytical solutions for this problem is an extremely difficult task,
several numerical algorithms have been developed to seek approximate solutions. Several researchers discussed
fractional Sturm-Liouville eigenvalue problem when the fractional derivative is constant. In 1970 and 1977, Djrbashian
[1] and Nahusev [2] studied this type of problems. In [1], the existence of a solution to such boundary value problemwas
established. In [2], the aforementioned relation between eigenvalues and zeros of Mittag-Leffler function was shown.
Al-Mdallal [3] used the Adomian decomposition while Abbasbandz [4] used the Homotopy Analysis method. Ertürk [5]
used the fractional differential transform method to compute the eigenvalues of such problems. Luchko [6] used the
Fourier series to solve this problem. Neamatz et al. [7] and Shi et al. [8] used the method of Haar wavelet operational
matrix. In [9]-[11], [12], and [13], researchers extended the scope of some spectral properties of fractional
Sturm-Liouville problem. Recently, Al-Refai [14] has established existence and non-existence results for aclass of
fractional Sturm-Liouville eigenvalue problems and estimated the eigenvalues. Variational Methods and Inverse Laplace
transform method applied in [15] and [16], respectively. Recently P. Antunes and R. Ferreira [17] constructed numerical
schemes using radial basis functions while B. Jin and et [18] used Galerkin finite element method and Syam and Siyyam
[19] implemented the iterated variation method to solve such problem.

The numerical solution of eigenvalue problems have received considerable interest in recent years because they have
large number of applications in different areas of physics and engineering. A few examples of such applications are
pendulums, vibrating and rotating shafts, viscous flow between rotating cylinders, the thermal instability of fluid spheres
and spherical shells, earth’s seismic behavior and ring structures; for more details see [20], [21], [22], [23], [24], [25].
Note that such problems is often referred to as the circular ring structure with constraints which has rectangular
cross-sections of constant width and parabolic variable thickness; see [26] and [27].
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In this paper, we develop a numerical technique for approximating the eigenvalues of the following regular fractional
Sturm-Liouville problem of the form

Dα(x)[p(x)y′(x)]+ q(x)y =−λ w(x)y(x),x ∈ I = [0,1], 0< α ≤ 1 (1.1)

subject to
a0y(0)+ a1y′(0) = 0,

a2y(1)+ a3y′(1) = 0, (1.2)

wherep, p′, q, andw(x) are continuous functions on[0,1] with p(x),w(x) > 0 for all x ∈ [0,1]. Herea j (for j =
0, · · · ,3) are real constants such that

a2
0+ a2

1 > 0,

a2
2+ a2

3 > 0.

If the domain is[a,b], then we use the following change of variable to make it[0,1]

x = (b− a)t+ a.

For this reason, we assume that the domain is[0,1]. The fractional derivative here is in the conformable derivative sense.
Up to our knowledge, we are the first who discuss the regular variable fraction order Sturm-Liouville problem numerically.

Historically, problem (1.1) had been studied theoretically whenα(x) ≡ 1 by [28] who showed that it has an infinite
sequence of eigenvalues{λ0,λ1,λ2, ...} with the following property

η < λ0 ≤ λ1 ≤ λ2 ≤ ...

where
lim
n→∞

λn = ∞,

andη is a constant and each eigenvalue has multiplicity at most 3.
The present work is motivated by approximating the eigenvalues of problem (1) using the Reproducing kernel Hilbert

space method (RKM). The RKM which accurately computes the series solution is of great interest to applied sciences.
This technique gives the solution in a rapidly convergent series with components that can be easily computed. This method
is used for the investigation of several scientific applications, see [29], [30], [31].

This paper is organized as follows. In section 2, we present some preliminaries which we will use in this paper.
A description of the RKM for discretization of problem (1.1) is presented in section 3. In addition, the existence and the
uniformly convergent of the eigenfunctions are given in this section. Several numerical examples and comparisons with
Al-Mdallal [3] results are presented in Section 4. Conclusions and closing remarks are given in Section 5.

2 Preliminaries

In this section, we review the definition and some preliminary results of the conformable derivatives as well as theα−
fractional integral and their properties.

Definition 2.1.Given a functionf : [0,∞)→ ℜ. Then the conformable derivative off of orderα is defined by

Dα f (x) = lim
ε→0

f (x+ ε x1−α)− f (x)
ε

for all x > 0, 0< α < 1. If f is α−differentiable is some(0,a), α > 0, and lim
x→0+

Dα f (x) exists, then define

Dα f (0) = lim
x→0+

Dα f (x).

Among the properties of the conformable derivatives, we mention the following properties. Let 0< α < 1 and f , g
beα−differentiable at a pointx > 0. Then,

1.Dα [a f + bg] = a Dα f (x)+ b Dα g(x), for all a,b ∈ ℜ.

2.Dα xp = p xp−α for all p ∈ ℜ.
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3.Dα p = 0 for all p ∈ ℜ.

4.Dα [ f g] = g Dα f (x)+ f Dα g(x).

5.Dα
[

f
g

]

(x) = g(x) Dα f (x) − f (x) Dα g(x)
g2(x)

provided thatg(x) 6= 0.

6.Dα f (x) = x1−α f ′(x).
7.D1 f (x) = f ′(x).

Next, we define theα− fractional integral.
Definition 2.2.Theα− fractional integral is defined by

Iα f (x) =
∫ x

0

f (t)

t(1−α)
dt,

where the integral is the Riemann improper integral andα ∈ (0,1). For more details, see [32,33,34].
Among the properties of theα− fractional integral, we mention the following property. Iff (x) is any continuous

function in the domain ofIα andx ≥ 0,
Dα Iα f (x) = f (x).

The reproducing kernel is given by this definition.
Definition 2.3. Let A be a nonempty set. A functionK : A×A → C is a reproducing kernel of the Hilbert spaceH if

and only if

1.K(.,x) ∈ H for all x ∈ A,
2.(φ(.),K(.,x)) = φ(x) for all x ∈ A andφ ∈ H.

The second condition is called the reproducing property anda Hilbert space which possesses a reproducing kernel is
called a reproducing kernel Hilbert space (RKHS).

3 Analysis of RKHSM for Solving the Eigenvalue Problem

In this section, we discuss how to solve the following regular variable fractional Sturm-Liouville problem of the form

Dα(x)[p(x)y′(x)]+ q(x)y =−λ w(x)y(x),x ∈ I = [0,1], 0< α(x)≤ 1 (3.1)

subject to
a0y(0)+ a1y′(0) = 0,

a2y(1)+ a3y′(1) = 0, (3.2)

wherep, p′, q, andw(x) are continuous functions on[0,1] with p(x),w(x)> 0 for all x ∈ [0,1]. Herea j (for j = 0, · · · ,3)
are real constants such that

a2
0+ a2

1 > 0,

a2
2+ a2

3 > 0.

If α(1) = 1, we get regular Sturm-Liouville problem of the form

d
dx

[p(x)y′(x)]+ q(x)y =−λ w(x)y(x),x ∈ I = [0,1]. (3.3)

The eigenvalues of the regular Sturm-Liouville problem (3.3) are well known. For this reason, we assume that 0< α(x)<
1. Using the properties mentioned in the previous section, we can rewrite Equation (3.3) as

x1−α(x) p(x)y′′(x)+ x1−α(x) p′(x)y′(x)+ q(x)y(x) =−λ w(x)y(x). (3.4)

Assume thaty(0) = µ1 andy′(0) = µ2. To homogenize these conditions, we assume that

f (x) = y(x)− µ2x− µ1.

Then, Equation (3.4) becomes
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x1−α(x) p(x) f ′′(x)+ x1−α(x) p′(x) f ′(x)+ µ2x1−α(x) p′(x)+ q(x) f (x)+ q(x)(µ2x+ µ1)

= −λ w(x) f (x)−λ w(x)(µ2x+ µ1)

or

g0(x) f ′′(x)+ g1(x) f ′(x)+ g2(x) f (x) = h(x) (3.5)

subject to
f (0) = f ′(0) = 0. (3.6)

where

g0(x) = x1−α(x) p(x),

g1(x) = x1−α(x) p′(x),

g2(x) = q(x)+λ w(x),

h(x) = −(µ2x+ µ1)(λ w(x)+ q(x))− µ2x1−α(x) p′(x).

Sincea2
0+ a2

1 > 0 andµ1 a0+ µ2 a1 = 0, we have the following two cases.

1.If a0 = 0, µ2 = 0 and we have only one unknown which isµ1.

2.If a0 6= 0, µ1 =− µ2 a1
a0

and we have only one unknown which isµ2.

Therefore, we can write the solution as a product of one of theconstantsµ1 andµ2 and a function which depends on
x andλ only. To find the eigenvalues of Problem (3.1)-(3.2), we use the simple shooting method by forcing the solution
to satisfy the condition

a2y(1)+ a3y′(1) = 0.

In order to solve problem (3.5)-(3.6), we construct the kernel Hilbert spacesW 1
2 [0,1] andW 3

2 [0,1] in which every
function satisfy the boundary conditions (3.6). Let

W 3
2 [0,1] = { f (s) : f , f ′,and f ′′ are absolutely continuous real-valued functions,

f ′′′ ∈ L2[0,1], f (0) = f ′(0) = 0}.

The inner product inW 3
2 [0,1] is defined as

(u(z),v(z))W 3
2 [0,1]

= u(0)v(0)+ u′(0)v′(0)+ u(1)v(1)+ u′(1)v′(1)+
∫ 1

0
u(3)(z)v(3)(z)dy,

and the norm‖u‖W 3
2 [0,1]

is given by

‖u‖W 3
2 [0,1]

=
√

(u(z),u(z))W 3
2 [0,1]

whereu,v ∈W 3
2 [0,1].

Theorem 3.1.The spaceW 3
2 [0,1] is a reproducing kernel Hilbert space, i.e.; there existsK(s,z) ∈ W 3

2 [0,1] such that
for anyu ∈W 3

2 [0,1] and each fixedz,x ∈ [0,1], we have

(u(z),K(x,z))W 3
2 [0,1] = u(x).

In this case,K(x,z) is given by

K(x,z) =

{

∑5
i=0 ci(x)zi, z ≤ x

∑5
i=0di(x)zi, z > x

}

where
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c0 = 0, c1 = 0, c2 =
1

120
(5z4−111z2−10z3− z5),

c3 = 0, c4 =
−z
24

, c5 =
1

120
(1+ z2),

d0 =
z5

120
, d1 =

−z4

24
, d2 =

1
120

(5z4−111z2− z5),

d3 = −
z2

12
, d4 = 0, d5 =

z2

120
.

Proof: Using integration by parts, one can get

(u(z),K(x,z))W 3
2 [0,1] = u(0)K(x,0)+ u(1)K(x,1)+ u′(0)Kz(x,0)+ u′(1)Kz(x,1)

+u′′(1)
∂ 3K
∂ z3 (x,1)− u′′(0)

∂ 3K
∂ z3 (x,0)

−u′(1)
∂ 4K
∂ z4 (x,1)+ u′(0)

∂ 4K
∂ z4 (x,0)+ u(1)

∂ 5K
∂ z5 (x,1)− u(0)

∂ 5K
∂ z5 (x,0)−

∫ 1

0
u(z)

∂ 6K
∂ z6 (x,z)dz.

Sinceu(z) andK(x,z) ∈ W 3
2 [0,1],

u(0) = u′(0) = 0

and
K(x,0) = Kz(x,0) = 0. (3.7)

Thus,

(u(z),K(x,z))W 3
2 [0,1] = u(1)K(x,1)+ u′(1)Kz(x,1)+ u′′(1)

∂ 3K
∂ z3 (x,1)− u′′(0)

∂ 3K
∂ z3 (x,0)

−u′(1)
∂ 4K
∂ z4 (x,1)+ u(1)

∂ 5K
∂ z5 (x,1)−

∫ 1

0
u(z)

∂ 6K
∂ z6 (x,z)dz.

Since K(x,z) is a reproducing kernel ofW 3
2 [0,1],

(u(z),K(x,z))W 3
2 [0,1]

= u(x)

which implies that

∂ 6K
∂ z6 (x,z) = δ (z− x ) (3.8)

whereδ is the Dirac-delta function and

K(x,1)+
∂ 5K
∂ z5 (x,1) = 0, (3.9)

Kz(x,1)−
∂ 4K
∂ z4 (x,1) = 0, (3.10)

∂ 3K
∂ z3 (x,1) = 0, (3.11)

∂ 3K
∂ z3 (x,0) = 0. (3.12)
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Since the characteristic equation of∂ 6K
∂ z6 (x,z) = δ (x− z) is λ 6 = 0 and its characteristic value isλ = 0 with 6 multiplicity

roots, we writeK(x,z) as

K(x,z) =

{

∑5
i=0ci(x)zi, z ≤ x

∑5
i=0 di(x)zi, z > x

}

.

Since∂ 6K
∂ z6 (x,z) = δ (x− z), we have

∂ mK
∂ zm (x,x+0) =

∂ mK
∂ zm (x,x−0), m = 0,1, ...,4. (3.13)

On the other hand,integrating∂
6K

∂ zx (x,z) = δ (x− z) from x− ε to x+ ε with expect toz and lettingε → 0 to get

∂ 5K
∂ z5 (x,x+0)−

∂ 5K
∂ z5 (x,x−0) =−1. (3.14)

Using the conditions (3.7), and (3.9)-(3.14), we get the following system of equations

c0(x) = 0,c1(x) = 0,c3(x) = 0,

6d3(x)+24d4(x)+60d5(x) = 0,
5

∑
i=0

di(x)+120d5(x) = 0,

5

∑
i=i

idi(x)−24d4(x)−120d5(x) = 0,

5

∑
i=0

ci(x)x
i =

5

∑
i=0

di(x)x
i
,

5

∑
i=1

ici(x)x
i−1 =

5

∑
i=i

idi(x)x
i−1

,

5

∑
i=2

i(i−1)ci(x)x
i−2 =

5

∑
i=1

i(i−1)di(x)x
i−2

,

5

∑
i=3

i(i−1)(i−2)ci(x)x
i−3 =

5

∑
i=3

i(i−1)(i−2)di(x)x
i−3

,

5

∑
i=4

i(i−1)(i−2)(i−3)ci(x)x
i−4 =

5

∑
i=4

i(i−1)(i−2)(i−3)di(x)x
i−4

,

5!d5(x)−5!c5(x) = −1.

We solved the last system using Mathematica to get

c0 = 0, c1 = 0, c2 =
1

120
(5z4−111z2−10z3− z5),

c3 = 0, c4 =
−z
24

, c5 =
1

120
(1+ z2),

d0 =
z5

120
, d1 =

−z4

24
, d2 =

1
120

(5z4−111z2− z5),

d3 = −
z2

12
, d4 = 0, d5 =

z2

120
.
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which completes the proof of the theorem.
Next, we study the spaceW 1

2 [0,1]. Let

W 1
2 [0,1] = {u(x) : u are absolutely continuous real-valued functions,u′ ∈ L2[0,1]}.

The inner product inW 1
2 [0,1] is defined as

(u(z),v(z))W 1
2 [0,1]

= u(0)v(0) +

∫ 1

0
u′(z)v′(z)dz,

and the norm‖u‖W 1
2 [0,1]

is given by

‖u‖W 1
2 [0,1]

=
√

(u(z),u(z))W 1
2 [0,1]

whereu,v ∈W 1
2 [0,1].

Theorem 3.2.The spaceW 1
2 [0,1] is a reproducing kernel Hilbert space, i.e.; there existsR(s,z) ∈ W 1

2 [0,1] such that
for anyu ∈W 1

2 [0,1] and each fixedz,x ∈ [0,1], we have

(u(z),R(x,z))W 1
2 [0,1]

= u(x).

In this case,R(x,z) is given by

R(x,z) =

{

1+ z, z ≤ x
1+ x , z > x

}

.

Proof: Using integration by parts, one can get

(u(z),R(x,z))W 1
2 [0,1]

= u(0)R(x,0) +

∫ 1

0
u′(z)

∂R
∂ z

(x,z)dz

= u(0)R(x,0)+ u(1)
∂R
∂ z

(x,1)− u(0)
∂R
∂ z

(x,0)−
∫ 1

0
u(z)

∂ 2R
∂ z2 (x,z)dz.

SinceR(x,z) is a reproducing kernel ofW 1
2 [0,1],

(u(z),R(x,z))W 1
2 [0,1]

= u(x)

which implies that

−
∂ 2R
∂ z2 (x,z) = δ (z− x ) (3.15)

and

R(x,0)−
∂R
∂ z

(x,0) = 0, (3.16)

∂R
∂ z

(x,1) = 0. (3.17)

Since the characteristic equation of− ∂ 2R
∂ z2 (x,z) = δ (z−x ) is λ 2 =0 and its characteristic value isλ = 0 with 2 multiplicity

roots, we writeR(x,z) as

R(x,z) =

{

c0(x)+ c1(x)z, z ≤ x
d0(x)+ d1(x)z, z > x

}

.

Since ∂ 2R
∂ z2 (x,z) =−δ (z− x ), we have

R(x,x+0)−R(x,x+0) = 0 (3.18)

∂R
∂ z

(x,x+0)−
∂R
∂ z

(x,x+0) = −1 (3.19)
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Using the conditions (3.17)-(3.19), we get the following system of equations

c0(x)− c1(x) = 0, (3.20)

d1(x) = 0,

c0(x)+ c1(x) x = d0(x)+ d1(x) x,

d1(x)− c1(x) = −1,

which implies that

c0(x) = 1, c1(x) = 1,d0(x) = 1+ x, d1(x) = 0.

This completes the proof of the theorem.
Now, we present how to solve Problem (3.5)-(3.6) using the reproducing kernel method. Let

σi(x) = R(xi,x)

for i = 1,2, .... It is clear thatL : W 3
2 [0,1]→W 1

2 [0,1] is bounded linear operator. Let

ψi(x) = L∗σi(x)

whereL(σi(x)) = g0(x) σ ′′
i (x) + g1(x) σ ′

i (x) + g2(x)σi(x) and L∗ is the adjoint operator ofL. Using Gram-Schmidt
orthonormalization to generate orthonormal set of functions

{

ψ i(x)
}∞

i=1 where

ψ i(x) =
i

∑
j=1

αi jψ j(x) (3.21)

andαi j are coefficients of Gram-Schmidt orthonormalization. In the next theorem, we show the existence of the solution
of Problem (3.5)-(3.6).

Theorem 3.3.If {xi}
∞
i=1 is dense on[0,1], then

f (x) =
∞

∑
i=1

i

∑
j=1

αi jh(x j)ψ i(x). (3.22)

Proof: First, we want to prove that{ψi(x)}
∞
i=1 is the complete system ofW 3

2 [0,1] andψi(x) = L(K(x,xi)). It is clear
thatψi(x) ∈W 3

2 [0,1] for i = 1,2, .... Simple calculations implies that

ψi(x) = L∗σi(x) = (L∗σi(x),K(x,z))W 3
2 [0,1]

= (σi(x),L(K(x,z)))W 3
2 [0,1] = L(K(x,xi)).

For each fixedf (x) ∈W 3
2 [0,1], let

( f (x),ψi(x))W 3
2 [0,1]

= 0, i = 1,2, ....

Then

( f (x),ψi(x))W 3
2 [0,1]

= ( f (x),L∗σi(x))W 3
2 [0,1]

= (L f (x),σi(x))W 3
2 [0,1]

= L f (xi) = 0.

Since{xi}
∞
i=1 is dense on[0,1], L f (x) = 0. SinceL−1 exists,u(x) = 0. Thus,{ψi(x)}

∞
i=1 is complete system ofW 3

2 [0,1].
Second, we prove equation (3.22). Simple calculations implies that
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f (x) =
∞

∑
i=1

( f (x),ψ i(x))W 3
2 [0,1]

ψ i(x)

=
∞

∑
i=1

i

∑
j=1

αi j( f (x),L∗(K(x,x j)))W 3
2 [0,1]

ψ i(x)

=
∞

∑
i=1

i

∑
j=1

αi j(L f (x),K(x,x j))W 3
2 [0,1]

ψ i(x)

=
∞

∑
i=1

i

∑
j=1

αi j(h(x),K(x,x j))W 3
2 [0,1]

ψ i(x)

=
∞

∑
i=1

i

∑
j=1

αi jh(x j)ψ i(x)

and the proof is complete.
Let the approximate solution of Problem (3.5)-(3.6) be given by

fN(x) =
N

∑
i=1

i

∑
j=1

αi jh(x j)ψ i(x). (3.23)

In the next theorem, we show the uniformly convergent of the
{

dm fN(x)
dxm

}∞

N=1
to d f (x)

dx for m = 0,1,2.

Theorem 3.4.If f (x) and fN(x) are given as in (3.22) and (3.23), then
{

dm fN(x)
dxm

}∞

N=1
converges uniformly tod f (x)

dx for

m = 0,1,2.
Proof: First, we prove the theorem form = 0. For anyx ∈ [0,1],

‖ f (x)− fN(x)‖
2
W4

2 [0,1]
= ( f (x)− fN(x), f (x)− fN(x))W 3

2 [0,1]

=
∞

∑
i=N+1

(( f (x),ψ i(x))W 3
2 [0,1]

ψ i(x),( f (x),ψ i(x))W 3
2 [0,1]

ψ i(x))W 3
2 [0,1]

=
∞

∑
i=N+1

( f (x),ψ i(x))
2
W 3

2 [0,1]
.

Thus,

xup
x∈[0,1]

‖ f (x)− fN(x)‖
2
W 3

2 [0,1]
= xup

x∈[0,1]

∞

∑
i=N+1

( f (x),ψ i(x))
2
W 3

2 [0,1]
.

From Theorem (3.3), one can see that∑∞
i=1( f (x),ψ i(x))W 3

2 [0,1]
ψ i(x) converges uniformly tof (x). Thus,

Lim
N→∞

xup
x∈[0,1]

‖ f (x)− fN(x)‖W 3
2 [0,1]

= 0

which implies that{ fN(x)}
∞
N=1 converges uniformly tofN(x).

Second, we prove the uniformly convergence form = 1,2. SincedmK(x,z)
dxm is bounded function on[0,1]× [0,1],

∥

∥

∥

∥

dmK(x,z)
dxm

∥

∥

∥

∥

W 3
2 [0,1]

≤ χm, m = 1,2.

Thus, for anyx ∈ [0,1],
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∣

∣

∣
f (m)(x)− f (m)

N (x)
∣

∣

∣
=

∣

∣

∣

∣

( f (x)− fN(x),
dmK(x,z)

dxm )W 3
2 [0,1]

∣

∣

∣

∣

≤ ‖ f (x)− fN(x)‖W3
2 [0,1]

∥

∥

∥

∥

dmK(x,z)
dxm

∥

∥

∥

∥

W3
2 [0,1]

≤ χm ‖ f (x)− fN(x)‖W 3
2 [0,1]

≤ χm xup
x∈[0,1]

‖ f (x)− fN(x)‖W3
2 [0,1]

.

Hence,

xup
x∈[0,1]

∥

∥

∥
f (m)(x)− f (m)

N (x)
∥

∥

∥

W 3
2 [0,1]

≤ χm xup
x∈[0,1]

‖ f (x)− fN(x)‖W3
2 [0,1]

which implies that

Lim
N→∞

xup
x∈[0,1]

∥

∥

∥
f (m)(x)− f (m)

N (x)
∥

∥

∥

W3
2 [0,1]

= 0.

Therefore,
{

dm fN(x)
dxm

}∞

N=1
converges uniformly tod

(m) f (x)
dxm for m = 1,2.

4 Numerical Results

In this section, we apply the RKM outlined in the previous sections to solve numerically the following three examples.
Note that the maximum number of terms in the series solution is taken asN = 12 for all examples considered in this paper.

Example 4.1.Consider the following regular fractional eigenvalue problem

D
2−ν sinx

4 y′(x) =−λ y(x), 0< x < 1, 0≤ ν ≤ 1,

subject to
y′(0) = 0, y(1) = 0.

Al-Mdallal [3] solved this problem using the Adomian decomposition method in the Caputo fractional derivative sense
whenν = 0 and he found the first three eigenvalues only forN = 25. These eigenvalues are

λ1 = 2.11027708, λ2 = 13.76538223, λ3 = 24.24328676.

Using the conformable derivative sense, the correspondingproblem to Equations (6) is

x1−α(x) y′′(x) =−λ y(x)

subject to
y(0) = µ1, y′(0) = 0.

Using the change of variablef (x) = y(x)− µ1, we get

x1−α(x) f ′′(x)+λ f (x) =−λ µ1 (4.1)

subject to
f (0) = 0, f ′(0) = 0. (4.2)

We report the first five eigenvalues in Table 1 forν = 0. The eigenfunctions corresponding to these eigenvalues are
shown in Figure 1.

It worth mention that when we taken = 40, we find the following eigenvalues
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Table 1: Eigenvalues of Example (4.1) forν = 0
i λi

1 4.790491770421957
2 37.18737319624638
3 100.4162368272831
4 194.4864297458961
5 319.3895777330032

Table 2: δi, j for Example (4.1) whenν = 0
j δ1, j δ2, j δ3, j δ4, j δ5, j

1 5.7∗10−16 2.0∗10−14 2.8∗10−14 9.3∗10−14

2 5.7∗10−16 7.6∗10−14 8.5∗10−14 9.5∗10−14

3 2.0∗10−14 7.6∗10−14 2.9∗10−14 5.1∗10−14

4 2.8∗10−14 8.5∗10−14 2.9∗10−14 6.2∗10−14

5 9.3∗10−14 9.5∗10−14 5.1∗10−14 6.2∗10−14

Table 3: Eigenvalues of Example (4.1) forν = 1
i λi

1 5.189982714917013
2 39.58147104205038
3 106.91354150495103
4 182.2275092159661

4.790491770421957,37.18737319624638,100.4162368272831,194.4864297458961,

319.3895777330032,475.1536472780752,661.7509213990331,879.1907367345706,

1127.4718520205686,1406.6251455569052,1715.8056579318209,2086.2321659794966,

4090.860440344304,5129.869022158444,6836.407711802377,7267.32559030844.

We notice that these eigenvalues satisfy the property

4.790491770421957= λ0 ≤ λ1 ≤ λ2 ≤ ....

Let

δi, j =

∣

∣

∣

∣

∫ 1

0
yi(x) y j(x) w(x)dx

∣

∣

∣

∣

.

In Table 2, we report the values ofδi, j for i, j = 1,2, ...,5 with i 6= j.
However, we computeδi, j for Al-Mdallal results [3] whenn = 25 and the results are

δ1,2 = 0.0011366, δ1,3 = 0.00904938, δ2,3 = 0.0270058.

In addition, We taken = 60 but we do not get any new eigenvalue using his technique.
For ν = 1, we can write the problem under study as follow

x
2+sinx

4 y′′(x) =−λ y(x)

subject to
y(0) = µ1, y′(0) = 0.

For ν = 1, the first four eigenvalues are reported in Table 3. The eigenfunctions corresponding to these eigenvalues are
shown in Figure 2.

Example 4.2.Consider the following regular variable fractional eigenvalue problem

D
2+ν x

4 y′(x)+ y(x) =−λ y(x), 0< x < 1,0≤ ν ≤ 1,

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


316 :

Table 4: Eigenvalues of Example (4.2) forν = 0
i λ1i
1 13.051713056570495
2 57.778106764331230
3 133.34327399186424
4 239.75031067251480
5 376.99966723778533

Table 5: δi, j for Example (4.1) whenν = 0
j δ1, j δ2, j δ3, j δ4, j δ5, j

1 1.6∗10−16 1.4∗10−15 8.4∗10−15 1.0∗10−14

2 1.6∗10−16 9.4∗10−15 1.1∗10−14 1.3∗10−14

3 1.4∗10−15 9.4∗10−15 2.2∗10−14 4.8∗10−14

4 8.4∗10−15 1.1∗10−14 2.2∗10−14 3.2∗10−14

5 1.0∗10−14 1.3∗10−14 4.8∗10−14 3.2∗10−14

subject to
y(0) = 0, y′(1) = 0.

Using the conformable derivative sense, the correspondingproblem to Equations (6) is

x1−α(x) y′′(x)+ y(x) =−λ y(x)

subject to
y(0) = 0, y′(0) = µ2.

Using the change of variablef (x) = y(x)− µ2x, we get

x1−α(x) f ′′(x)+ (1+λ ) f (x) =−(1+λ x)µ2 (4.3)

subject to
f (0) = 0, f ′(0) = 0. (4.4)

We report the first five eigenvalues in Table 4 forν = 0. The eigenfunctions corresponding to these eigenvalues are
shown in Figure 3.

It worth mention that when we taken = 40, we find the following eigenvalues

13.051713056570495,57.77810676433123,133.34327399186424,239.7503106725148,

376.99966723778533,545.0914600437688,744.025733056811,973.8023947543952,

1234.4247413197409,1525.7973831367005,1850.4310652365637,2164.852262741093,

2438.535229165145,2863.299602198962,4826.808779889705,5495.563649719205,7953.451176291645

We notice that these eigenvalues satisfy the property

13.051713056570495= λ0 ≤ λ1 ≤ λ2 ≤ ....

Let

δi, j =

∣

∣

∣

∣

∫ 1

0
yi(x) y j(x) w(x)dx

∣

∣

∣

∣

.

In Table 5, we report the values ofδi, j for i, j = 1,2, ...,5 with i 6= j.
For ν = 1, the first four eigenvalues are reported in Table 6. The eigenfunctions corresponding to these eigenvalues

are shown in Figure 4.
Example 4.3.Consider the following regular variable fractional eigenvalue problem

D
2+ν x2

4 y′(x)+ y(x) =−λ y(x), 0< x < 1,0≤ ν ≤ 1,
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Table 6: Eigenvalues of Example (4.2) forν = 1
i λi

1 12.07671301571908
2 54.14588306274719
3 125.617837878429016
4 175.197982492775378

Table 7: Eigenvalues of Example (4.3) forν = 0
i λ1i
1 14.60628075017210128211
2 65.05773017966611660092
3 150.5957338546744860472
4 271.2247472417288673558
5 426.9454126371902860653

subject to
y(0) = 0, y′(1) = 0.

Using the conformable derivative sense, the correspondingproblem to Equations (6) is

x1−α(x) y′′(x)+ y(x) =−λ y(x)

subject to
y(0) = 0, y′(0) = µ2.

Using the change of variablef (x) = y(x)− µ2x, we get

x1−α(x) f ′′(x)+ (1+λ ) f (x) =−(1+λ x)µ2 (4.5)

subject to
f (0) = 0, f ′(0) = 0. (4.6)

We report the first five eigenvalues in Table 7 forν = 0. The eigenfunctions corresponding to these eigenvalues are
shown in Figure 5.

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

1.0

y5

y4

y3

y2

y1

Fig. 1: The first five eigenfunctions of Example 4.1 forν = 0.

It worth mention that when we taken = 40, we find the following eigenvalues
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Fig. 2: The first four eigenfunctions of Example 4.1 forν = 1.
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Fig. 3: The first five eigenfunctions of Example 4.2 forν = 0.
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Fig. 4: The first four eigenfunctions of Example 4.2 forν = 1.

14.60628075017210128211442561107,65.05773017966611660092310974683,150.5957338546744860472,

271.2247472417288673558,426.9454126371902860653,617.7578953196759670319,

843.6622528272925835772,1104.6585093617758632779,1400.7466765219458657824,

1731.9267604254752142777,2098.1987645450013065074,2499.5626909698101854646,

2936.018541017728289761,3407.5663155531630992203,3914.2060151621494835994,

4455.9376403535404422933,5032.7600365544535838088,5653.4207870076875568754,

5884.4185706095808307898c© 2017 NSP
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Fig. 5: The first five eigenfunctions of Example 4.3 forν = 0.
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Fig. 6: The first four eigenfunctions of Example 4.3 forν = 1.

Table 8: δi, j for Example (4.1) whenν = 0
j δ1, j δ2, j δ3, j δ4, j δ5, j

1 1.9∗10−16 2.1∗10−15 2.6∗10−15 3.8∗10−15

2 1.9∗10−16 2.2∗10−15 2.4∗10−15 3.1∗10−15

3 2.1∗10−15 2.2∗10−15 2.9∗10−15 4.9∗10−15

4 2.6∗10−15 2.4∗10−15 2.9∗10−15 3.8∗10−15

5 3.8∗10−15 3.1∗10−15 4.1∗10−15 3.8∗10−14

We notice that these eigenvalues satisfy the property

14.60628075017210128211442561107= λ0 ≤ λ1 ≤ λ2 ≤ ....

Let

δi, j =

∣

∣

∣

∣

∫ 1

0
yi(x) y j(x) w(x)dx

∣

∣

∣

∣

.

In Table 8, we report the values ofδi, j for i, j = 1,2, ...,5 with i 6= j.
For ν = 1, the first four eigenvalues are reported in Table 9. The eigenfunctions corresponding to these eigenvalues

are shown in Figure 6.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


320 :

Table 9: Eigenvalues of Example (4.3) forν = 1
i λi

1 24.28225719853922514678
2 112.6205306176597434665
3 265.1194498587259278269
4 381.2966761564513870887

5 Conclusion

In this paper, we have developed a numerical technique to approximate the eigenvalues of regular variable fractional
Sturm-Liouville problem. The method of solution is based onRKM. The numerical results for the examples demonstrate
the efficiency and accuracy of the present method. From the three examples which we mentioned in the previous section,
we notice that our technique is very efficient for computing the eigenvalues of the regular variable fractional problems. It
is competes the method in [3] and gives better and faster results. We end this section by the following remarks.

1.From Examples (4.1), (4.2), and (4.3), we can find as much eigenvalues as the model requires with the following
property

λ1 < λ2 < λ3 < ... < λn < ....

while in [3] only three eigenvalue can be found.
2.From Examples (4.1), (4.2), and (4.3), the orthogonalityproperty

int1
0yi(x) y j(x) w(x) = 0, i 6= j

holds while in [3], we getδ1,2 = 0.0011366, δ1,3 = 0.00904938, δ2,3 = 0.0270058.
3.From Figures 1-6, we see that corresponding to each eigenvalue λi is a unique (up to a normalization constant)

eigenfunctionsyi(x) which has exactlyi - 1 zeros in(0,1).
4.We notice that the conformable derivative sense is more suitable to study the regular variable fractional

Sturm-Liouville problems than the Caputo fractional derivative sense.
5.The results in this paper confirm that RKM is a powerful and efficient method for solving regular variable fractional

Sturm-Liouville problems in different fields of sciences and engineering.
6.RKM is excellent tool due to rapid convergent.
7.The existence and uniformly convergent are proven in Theorems (3.3) and (3.4).
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