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Abstract: In this paper, we use wavelets in a Bayesian context to iiyeciianges in the pattern of data collected over time in the
presence of noise and missing observations in the data. A&y analysis based on the wavelet coefficients applyftiggliis
discussed to identify change points. Based on a simulatimysrecommendations are made on the choice of lifting Veaeeefficients

in the presence of noise and missing observations usingaptieel lifting technique. We apply our algorithm to a reatadproblem
where change points are already known to illustrate oumnaeendations.
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1 Introduction

Change point is the problem of identifying sudden changeparticular time point in the pattern of the data collected
over time. Change point problem has many diverse applicatiot only in statistics but also in other disciplines sugh a
hydrology, climatology etc. where change point problemusseegularly. There are various aspects to the change point
problem, namely detection of change point, estimation etitime at which the change occurred and finally, modeling the
data before and after change. A substantial literaturdsgis models that combine detection, estimation and maglelin
using a statistical framework. In this paper, we discussyeBian procedure to detect change points in the presence of
missing or irregular data points. Modeling change pointg become complicated in the presence of missing data. In this
paper we discuss a detection method using second genenatiahet transforms.

In statistics literature, Discrete wavelet transform (D\&s been used to detect change points but DWT can not be
used to detect change points in the presence of missingWatatroduce second generation wavelet transform tecleniqu
or lifting technique to detect change points. The use ahtiftechnique to detect change points is a new and timely
procedure.

We introduce an algorithm based on lifting transform to detdnange points. Our method is easy to implement and
can be applied to any data size. Bayesian procedure is ugieditine posterior distribution of the change point and the
position of the change point can be determined by the modsecskewed posterior distribution.

In Section 2, we provide a brief review of the existing methlodies for studying change point problems, and wavelet
analysis is discussed in Section 3 in detail. We discussditiransform in Bayesian framework in Section 4 followed by
computational procedure and some results relating to tphkcagion of lifting in change point detection in Section fada
6 respectively. Section 7 concludes the paper.

2 Overview of Change point methods

A change point is the time at which some feature of the distidin of a variable changes; the most common features
usually considered are changes in the mean structure imthedf shifts in trends, or changes in the variance structure
Detection of change points is a complicated problem in jwaets neither the occurrence nor the possible multiplafity
change points is known.
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The change point problem was originally addressed in Bapestatistics by Smith (1975), followed by Carter and
Blight (1981). Bayesian methods were applied consideringls or multiple changes in conjunction with a known or
an unknown number of change points. Gelfand et al. (1990idered a known number of change points and discussed
Bayesian analysis of a variety of normal data models, inolydegression and ANOVA, which allowed some unequal
variances. Stephens (1994) carried out a Bayesian analfysianultiple change point problem where the number of
change points was assumed to be known, but the times of ecmgriof the change points remained unknown. Examples
of such approaches using a known number of change pointsdi@dCarlin et al.(1992), Tanner (1993) and Rasmussen
(2001). Other authors considered the problem in such a vaytlile data series contained at most one change point (i.e.,
the authors emphasized the presence of zero or one chamgépibie data series).

3 Wavelets and Detection of Change points

Wavelets are functions that satisfy certain mathematicgigrties and since the resulting wavelet transforms aadileed

in time and space, they can be used to detect sharp changesdmtithuous functions. The main purpose here is to
estimate the number, locations and sizes of a functionsplmhanges. The general idea is to detect a change point by
using a wavelet approach. Jumps are identified by “unuswdiabior in the wavelet coefficients at high resolution level

at the corresponding location. Use of wavelet in changet@mialysis was first introduced by Wang (1995).

Bayesian methods were introduced by Richwine (1996) fadldwy Ogden and Lynch (1998). A prior distribution
was placed on a location of the change point and the postéisimibution of the change point was formulated on the basis
of the estimated wavelet coefficients.

In describing the use of wavelets for detection of changatppiwe first present a brief introduction to wavelet
transforms.

3.1 Overview of Wavelets

Wavelets are special functions consisting of dilation aadglation indices. Larger values of dilation indices espond to
higher frequency components, and larger values of traoslatdices correspond to rightward shifts. In practice \se &
discrete wavelet transform (DWT) to map a data vegter(y, .....,yn), for n = 27, to a vector of wavelet coefficients=
(wy, .....,Wn) via an orthogonal matrix W. Choice of wavelet functions detiees W. Since higher frequency components
occur for larger values of dilation, detection of changenpoinvolves examination of these higher frequency coeffits
inw.

Computation of the discrete wavelet transform is carriedusming the popular Mallat's pyramid algorithm which
consists of low-pass and high-pass filters through whicleaah stage, the input values of the function are decimated.
When the data are of size= 2’ the DWT requires] levels of decomposition. Denoting = n/2!, the output of a
DWT is a set of ‘detail’ coefficientslj = (dj 1,d;2,....,djn;) at levelsj =1,2,...,J along with ‘smooth’ coefficients
S = (911,92, ----, S0,y ), COrresponding to the high-pass and low-pass filters, otispéy. The detail wavelets coefficients
contain the high-frequency content and are used in the ehpoigt detection procedure.

A classical approach towards detecting a change point ifdose a levej and examine the corresponding detalil
coefficientsd;. Specifically, one can choose a threshold value based oathgls size and an estimated sample variance,
compare the coefficients uf to this threshold value and decide whether any coefficiamtsarge’ enough to indicate
the existence of a change point. Such a procedure is simil@atelet-based outlier detection procedures in Wang (1995
and Bilen and Huzurbazar (2002).

All the applications discussed above suggest a very essdinst step, that is, to transform the data into empirical
wavelet coefficients through the discrete wavelet tramsf@@WT). DWT has its own limitations. Such a transformation
is only possible under the following conditions:

(a) the time points (i.g;’s of equation (1)) should be equally spaced, and
(b) total number of observatiomsshould be a power of 2.

Various methods have been proposed for adjusting irrdgudaaced data. Cai and Brown (1998) proposed a method
which takes into account the irregularity by using the cspandencé; = H=(i/n), whereH is a strictly increasing
function which needs to be estimated. The motivation wasstothe approximatioty; to be distributed ag(t;)) =
i/(n+1), and the observatior($/(n+ 1), fj) are considered as alternates instead;of;). Kovac and Silverman (2000)
made a mapping of irregularly spaced ddtato a regular gridf, by linear interpolation of the original noisy valuds=

Rf, where the matriR describes the interpolation. To simultaneously handletuice of wavelets, primary resolution
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level and threshold for estimating the true function, Na@f02) developed a fast cross-validation algorithm fargrrar
grids using the Kovac-Silverman procedure. Antoniadis eaud (2001) formulated a penalized least squares problem in
terms of unknown wavelet coefficients gfi /n). Assuming a regular grid am= 2’ , and imposing certain conditions
on the penalty function, they arrived at a unique solutidmeyralso introduced a new universal threshold which produce
estimators with smaller risk than that of universal thrégho

Another approach is to address the shortcoming of DWT. The papular of these methods are lifting technique. We
describe method of lifting in the next section.

3.2 Adaptive Lifting

Lifting transform is relatively new in statistics literatuand there are no applications of lifting in change poiné¢cigon.
The algorithm was first introduced by Sweldens (1996) whidilitated for a wavelet construction of non-standard data
including irregular data on a grid. Jansen (2004) introduc@ew lifting algorithm which was modified by Nunes et al.
(2006). An imputation method based on lifting was lateradtriced by Heaton and Silverman (2008). Lifting essentially
consists of three steps: splitting the data, predictingé¢neoved data and updating the remaining data. In this seatio
describe the different lifting algorithms.

As a first step, the data is subsampled into two disjoint ssbgeints representing the even positions in the grid,
and points representing the odd positions in the grid (Serel®96). Jansen (2004) and Jansen et al. (2001) proposed
generating just one wavelet coefficient at each step. Nunhat €2006) used a flexible lifting scheme that suggests
removing one coefficient at a time in order to build up adaptpvediction steps and embedding them into the lifting
algorithm.

The second step is to predict the function values correspgnd the odd positions by using polynomial regression
of the corresponding function values to the even positidhe. error in prediction (the difference between the true and
predicted functional values of odd positions) is then qgifigdtin a vector referred to as the set of wavelet (or detail)
coefficients.

In the final step, the function values of the even positiorswgrdated by using linear combinations of the current
function values of the even positions and the vector of teteasfficients obtained at the previous step.

The split-predict-update steps can be re-iterated on tllated data set, and the initial data set is replaced by the
remaining updated subsample (which reproduces the coeae features of the initial signal). The detail coefficgent
are accumulated throughout this process. This is simildteadWT method, discussed above, which replaces the initial
signal by a set of scaling and wavelet coefficients. The mhoeeis easily inverted by undoing the update stage, the
prediction stage and then merging the subsamples.

Jansen (2004) and Jansen et al. (2001) introduced the dowfcifting just one coefficient in each step. The split
step of the lifting algorithm suggests choosing a point Wwidan be removed. The odd/even split, however, poses some
problems in higher dimensions. Jansen (2004) and Jansén(20@1) proposed removing the points in an order guided
by the configuration, namely, that the points belonging tosée areas be removed first. Again, each location is supposed
to be associated with an interval values: the shorter thexvat, higher the densely sampled area around the location.
Once a point has been selected for removal, identify itsfsstighbors. The next step is to predict scaling coefficibgts
using regression over the neighboring locations. The ptiedi error will be the detail coefficient corresponding hait
location. In the update step, only the function-values efrthighboring points are updated by using a linear comloinati
with the detail coefficients. At this stage, the lengths efititervals associated with the neighboring points aregasing
updated, accounting for the decreasing number of scalimggwithin the range of same interval. The procedure is then
repeated on the updated data set, and with each repetitiew avavelet coefficient is added. Hence after gay- L)
removals, we havk scaling coefficients anth — L) wavelet coefficients.

Nunes et al. (2006) proposed a modification to the LOCAATt{hg One Coefficient At a Time) lifting scheme which
is called “Adaptive Lifting”. This algorithm is primarily &sed on lifting one coefficient at a time without imposing any
restriction on a choice of prediction or a choice of neighioad at the beginning of the procedure. The adaptive lifting
scheme is called “adaptive” because at each step a choigeditfion or a choice of neighborhood is made. Two types
of neighbor choices are used in adaptive lifting. We can se@ymmetrical neighbors that is, same number of neighbors
on the left and right of the removed points or we can choosseskneighbors to the removed points irrespective of which
side they lie. This algorithm is computationally efficiehah the LOCAAT lifting schemes suggested by Jansen et al
(2001).

We know that the DWT scale is a discrete dyadic quantity. Iime“coefficient at a time” lifting, this scale becomes
more of a continuous type. In this adaptive lifting scheneefthest level contains half of the wavelet coefficients, thetn
coarser level represents a quarter and so on.

A few modifications of the resulting coefficients are needeajiply adaptive lifting in Bayesian change point detection
procedure. In the framework of nonparametric regressiea,af wavelets; \ follows independent normal distribution
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with constant variance. This may not be true in case of {iftiim fact, in this case of lifting there will be a correlation
between coefficients and different coefficients will haviéedent variances. To overcome this, we normalize the tiegul

coefficients by multiplying{diag(VN\/VN\/T)]*l/2 for each step whend/ is the the matrix associated with the transform.

4 Lifting Transformation in Bayesian framework

In this section, we derive the marginal posterior distiitabf change point using lifting-based wavelet coefficeefrom
our discussion in previous section we know that the liftingfficients are not independently distributed with constan
variance as we expect in case of wavelet coefficients defieaad DWT. If we assume initial independence of data then
the resulting lifting coefficients are independent but dohave homogeneous variances. To make the variance constant
we have to normalize coefficients at each step by multiplangansformation matrix. Even if the initial data has a
covariance structure, normalizing lifting coefficientseath step by multiplying a transformation matrix will manajily
affect detection of change points.

In the general change point problem, as mentioned by Ogdehyarch (1998)Y,....., Y, are the ordered observed
data such that; ~ N(f(i/n), c?) for some functionf defined on [0,1]. Hencd, has the form

_Ju ifo<u<rt
f(u)_{u—kﬁ ifr<u<1 @)

for some change point e [0,1]. Our objective is to estimate the parameterg, /A ando?. Estimation of change-point
T is important here. Later we will choose suitable priorsgior\ anda?.

In previous section we defined lifting transformation. le thting-based procedure aftén — L) removals, we have
L scaling coefficients anth — L) wavelet coefficients. These lifting coefficients are indegent but with a non constant

variance. To overcome this, we normalize the resultingfments by multiplying[diag(VN\NN\/T)]_1/2 for each step where
W is the matrix associated with the transform. After normalun we denote these transformed empirical lifting
coefficients asv. Since the empirical lifting coefficients are independeithwonstant variance?, the joint distribution
can be written as:

P(W|T,A,02) =, Mk P(Wj | T, A, 02)

wherew represents the vector of coefficients. As before, the piosteistribution of the parameter is
p(Ta A? 02|W) D |_IJ |_|k p(WJ sk |T7 Aa 02) : T[(Ta Aa 02)

for a joint prior distributionrt on 7, A andg?. The distribution of a single lifting-based wavelet coééfitt was taken to
be
Wik |T,A, 0% ~N(AQj (1), 02/n).

Ogden and Lynch (1998) defined the mean functjpp(t) as

271k —[n1] if2-lk<t<27)(k+1)/2

— (27 1(k+1)—[n1]) if27i(k+1)/2<T<27(k+1) @

aj.k (1) =21/2/nx {

for T € [0,1]. Theq;, function is continuous and piecewise linear, shaped likewgrted hat; it is zero outside the support
of the corresponding wavelet and goes to a peak at the mitipaspport ofy; . To get the values dij i for all j and
k we can apply lifting scheme to the vector of 0 andrirf — 1 zeros aneh — [n7] + 1 ones).

Hence, the posterior density will be

p(r,2,0%w) 0o~ " D2n(t,A,0%) x exp(~ 5 Z(Wj k=D 0jk(1)%/(20%)) ®)
]

The analytical result may vary according to the choice ofattier distributionrton 7, A ando?.
Each empirical wavelet coefficient contains informatiogeneling the changes of a function in a localized region. For
this reason, we use more localized or higher level coeffisismcompute the posterior density. The posterior density i
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thus computed using only the wavelet coefficients with dilaindexj > jo. Ogden and Lynch (1999) used Jeffreys’
non-informative joint prior forr, A ando such that
n(t,A,0%) 01/0.

Thus the joint posterior density is given by

p(1,A, 0?|w) 0 g~ (MD/2x
&Xp(— 3 j>jo Tk(Wj ik — A ajk(T))%/(207))

Integrating outA andog, the marginal posterior of change poinwill be (see Appendix for detailed derivation)
p(tw) DCY*A—B?/C) ("o (4)

whereA = 5 -0 S Wj g, B = 3> jo TkWj 0k (T), andC = ¥ =i, 5@k (T). Mode of above posterior probability
distribution oft will give us the change point.

5 Computation

Computation of marginal posterior probabilities with iliij-based procedures involves three steps: computirigdift
coefficients from the original data, computing lifting cieients from the mean function and finally, computing pdster
probabilities using both lifting coefficients in previowsa steps.

Step 1: As mentioned before, adaptive lifting does not fellsssumptions of independence and the total number of
observations need not to be a power of 2. Also in section 3.desgeribed artificial leveling of detail coefficients which
we use in this step of our computation. At this initial stepwge adaptive lifting technique to denoise the data and to get
the lifting coefficients simultaneously. Denoising of thgnal involves the estimation of noise variances of artfi@vels.

We first use the transformation matrix to normalize the dleefficients produced from the lifting transformation.eTh
coefficients are divided into artificial levels and the ceatdevel is used to estimate the noise variances of the cieeifs.

A particular package “adlift” in R can be modified to produetervant results.

There are several options for modify the function as necgs®ée can choose neighboring points at each step over
which the regression is performed. The neighbors are chegametrically on both sides around the removal point;
otherwise closest neighbor is chosen. We can also selemt$bkution that conveys the number of scaling coefficiemts t
be kept in the final representation of the initial signal.

The output of this function denotes the denoised liftingfioients with artificial assignment of detail coefficients.

Step 2: The mean functiogy,« (T) is a continuous and piecewise linear function, as mentiomeection 4. To get the
values ofgj k() for all j andk, we can apply lifting procedure to the vector of 0 andrir— 1 zeros andh — [n7] + 1
ones). We do not denoise the resulting lifting coefficientsiormalize them. Those normalized lifting coefficients ar
used to estimate change points.

Step 3: We calculate posterior probabilities using liftcefficients obtained from both the original data ang (1)

for all j andk. Since, there is no hard and fast rule to select the numbeoefficients, and it is not possible to prove
theoretically optimum number of coefficients needed to aetbange points under different conditions, one can use
simulation technique to come up with some right numbers effaments.

5.1 Smulations

Statistical simulation studies provide powerful toolstloe analysis of many mathematical models and real datagurebl
when analytical solution is not possible. To recommend tablé choice of lifting-based coefficients, it is essernitial
explore different cases of variable sample size, variabisenvariances, variable jump sizes and variable time serie
structures. The results of the study will provide us a gundetio choose lifting-based coefficients.

As mentioned earlier, there is no specific rule of selectispecific number of coefficients for detection of change
points. Due to lifting scheme of resolutidn we haveL smooth andn— L) detail coefficients. Thesgn— L) detall
coefficients are assigned with artificial levels into fine andrse levels. To detect change points we use only the fiee lev
detail coefficients.

In our simulation framework we will choose= 2™ wherem = 7 to make a comparison between DWT and lifting.
We simulate data for 4% of missing observations present enditaset which will simulate a dataset with minimal

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

450 NS 2 A.Chatterjee: A new approach to Bayesian change point tietec

number of data points missing. For a strong noise in the datasl a correlated variance structure with high percentage
of missing observations, DWT does not perform well in terrhsaiching change point. We perform simulation under
similar conditions prevailing under lifting coefficients $ee how well it performs under such circumstances. We ehoos
different sets of detail coefficients to find an optimum numifecoefficients that can detect change points. We introduce
number of data points missing from minimum number of datan{somissing (4%) to maximum number of data points
missing (14%). We simulate data from AR(1) covariance $tmgcand instead of modeling the AR(1) structure to detect
change points we select lifting coefficients that can detbange points. We increase sample sizesite 8 and 9 to
study the possible effects on lifting coefficients. In fifjibased scheme we can select the resolution lewale choose

L = 2 for the simulation.

6 Results

We decided on 1500 simulations. The principle was that foxedfset of lifting coefficients, the percentage of detection
should stay constant even if we increase the number of stionta Hence, we run 1500 simulations for different choices
of sample sizes, resolution levels and different sets tifigifcoefficients. Following are the discussions of diffareases

of simulations performed here.

(a) Comparison between DWT and lifting:

For 1500 simulations we first compare DWT-based coefficiantslifting-based coefficients. In this case our sample
size isn = 27 and the resolution level is two. There are no missing obsiens We consided7, dé andd5 wavelet
coefficients to calculate posterior probabilities. We dé/our grid into equal spaced 128 points. If five highest paste
probabilities match with any of five points on the grid (i.etual change point and two nearest values on both sides of
the change point) we then consider it as a successful dete€irn = 2/, d7, d6 andd5 are the finest level coefficients
of DWT which should have information about jumps. For lifftbased scheme we have four artificially assigned levels
of detail coefficients. Out of these 126 detail coefficiemts, choose all coefficients of two finest levels and 22 of 31
coefficients from the third finest level. We simulate datehvetror terms for three different choices of variances. 4s th
variance term goes up, noise in the data also goes up andidetet change points will be difficult. We carried out
simulation for two jump sizes. We can expect that with thejbigp size change point detection becomes relatively easier
Following is the comparison table between DWT and lifting:

Table 6.1: Comparison between DWT and Lifting

Variance
0.5 1 15
Size of jump| DWT | Lifting | DWT | Lifting | DWT | Lifting
1 54.1 93.7| 36.3 89.8| 28.9 87.4
3 98 93.7| 91.9 91.1| 84.9 90.7

From the above table we can conclude that lifting-basedgutoie coefficients are performing consistently better than
DWT coefficients under the presence of different noise vaes. In fact when the noise variance is high and jump size is
small, DWT coefficients can detect change points in 28.9%sasmpared to 97.4% cases for lifting. Hence we strongly
recommend lifting-based procedure coefficients as thecetor detecting change points.

(b) Constant variance with no missing observations:

For a sample size of = 2’ we change noise variances from 0.5 to 1.5 with an incremeh&of\e try three different sets

of lifting coefficients to choose the best one for differeoise levels in the data. Presented in Table 6.2 are the pagzn

of detection for different noise variances and jump sizé® first set of coefficients are the same as described in (g). Fo
the second set of coefficients we only consider all coefftsiehthe two finest levels. The last set of coefficients areseho
arbitrarily using part of the three finest level detail caséfnts. For a constant noise variance we note the percentdge
successful detection of change points for these threerdiffechoices of coefficients. Following are the percentaes
successful change point detection under different scenari

Table 6.2: Percentages of detection using lifting; 2’

Variance
0.5 1
Jump size| 73:126| 96:126| 77:124| 73:126| 96:126]| 77:124
1 93.7 68.5 42.2 89.8 59.5 37.8
3 93.7 64.9 43.1 91.1 63.8 41.3
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Variance
15
Jump size| 73:126| 96:126| 77:124
1 87.4 55.6 35.3
3 90.7 62.7 42.1
Table 6.3: Percentages of detection using lifting; 28
Variance
0.5 1
Jump size| 148:254| 195:254| 158:252| 148:254| 195:254| 158:252
1 91.3 62.8 40.2 86.8 57 41.1
3 92 57.9 43.1 81 55.3 37.2
Variance
15
Jump size| 148:254| 195:254| 158:252
1 85.2 54.2 39.2
3 78.3 51 37
Table 6.4: Percentages of detection using lifting; 2°
Variance
0.5 1
Jump size| 298:510| 392:510| 320:508| 298:510| 392:510| 320:508
1 94.5 70.2 41.9 89.1 68.1 41
3 96 69.2 45.1 90.4 67.7 44.8
Variance
15
Jump size| 298:510| 392:510| 320:508
1 87.6 66.9 40.6
3 90.3 65.8 44.2

Table 6.2 shows that the detection of change points seemesddflzult when the jump size is small. If we consider the
first set of lifting coefficients at the finest level i.e. 73 tB6lwhich accounts for 45% of all coefficients and low noise
level, the percentage of detection becomes 93.7% for betjuthp sizes considered. The same set of coefficients perform
better compared to other choices of coefficients in the cabigh error variance. We may thus conclude that for both
high and low noise-level in the data we can choose 45% of tlestfievel of detail coefficients which are able to detect
change points for at least 87.4% cases.

If we increase the sample sizerie= 28, 45% of the finest level detail coefficients can detect chanujets 85% for
both the jump sizes (Table 6.3). This percentage, howevangimally decreases (i.e. 82%) with the increase in sample
size fromn = 28 to n = 2° (Table 6.4). It may be mentioned in this context that The atwback of the lifting based
procedure takes much more run time for each simulation hititzen DWT. For example, DWT takes approximately 10
minutes to run 1500 simulations. With a processor speed3o&Riz, it takes 5 hours of CPU time to run a simulation of
1500 lifting procedures whem= 27. The CPU time increases with the increase of samplersigern = 28 andn = 29,

CPU time is approximately 8 hours for 1500 simulations.

From the above observations we can now conclude that ab&atafShe finest level lifting coefficients may be
considered as the best choice for detecting change paiespactive of any jump size and presence of noise in the data.
(c) Constant variances with 4% missing data:

We now consider the cases of missing data. We choose 4% ofntlidased data missing at random. This means that
initially, we intent to study the simulation results of iifg based coefficients when small number of data points are
missing. These results may be compared with the situatian ofissing observations. Thus, following the same proaedur

of lifting described in (b), we have presented in Tables 6.6,and 6.7 the percentages of detection of change poirtts wit
4% missing data by different sets of lifting coefficients foe 27, n = 28 andn = 2° respectively.

Table 6.5: Percentages of detection when 4% data missiag’

Variance
0.5 1 1.5
Jump size| 68:121] 91:121| 68:121| 91:121| 68:121]| 91:121
1 84.9 65.7 80.6 53.2 79.6 48.3
3 83.1 61.5 81.8 60.8 80.2 61.2
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Table 6.6: Percentages of detection when 4% missirg28
Variance
0.5 1 15
Jump size| 138:244| 185:244| 138:244| 185:244| 138:244| 185:244
1 87.2 59.7 87.5 58.1 86.8 57.7
3 89.5 62.6 88.2 62.7 89.2 60.1
Table 6.7: Percentages of detection when 4% missirg2°
Variance
0.5 1 15
Jump size| 277:489| 371:489| 277:489| 371:489| 277:489| 371:489
1 90.6 68.3 87.5 68.1 87.2 67.2
3 92.5 70.0 90.1 67.6 88.6 64.2

Comparison of results presented in Table 6.2 and Table 6Wwssthat the detection of change points is not easy when 4%
of the observations are missing compared to no missing wéisens. If we consider the first set of lifting coefficientsize
finest leveli.e. 68 to 121, accounting for 45% of all coeffidgeand low noise level, the change point detection is plessib
for 85% cases for both the jump sizes. Same set of coefficparferm better compared to other choice of coefficients
when the error variance is high. Interestingly if we inceesample sizes, percentage of detection remains almost Bame
is, however, true that the percentages of detection in the @amissing data are relatively lower compared to the sitna

of no missing observations, as observed in Tables 6.2, 6% an

(d) AR(2) variance structure with no missing data:
Keeping in mind the problem of change point detection in ts@ees data an attempt has been made in our simulation

study, we generate data from a simple time series structmataregressive (1) or AR(1). Following are few cases where
we recommend lifting-based procedure to detect changesomer AR(1) structure.

Correlated variance structure is very common in real daiblpms. To study the detection procedure under correlated
variance structure, we simulate three different AR coedfits 0.2, 0.6 and 0.85 denoted by There are no missing
observations in the dataset. We use the same sets of liftiefficients shown in Table 6.2 and choose the best one for
different AR coefficients. Note that the higher the valuexaheans the stronger correlation structure in the data. Noise
variance is constant at 1 for these sets of simulations. [8iion results are presented in Tables 6.8, 6.9 and 6.10.

Table 6.8: Percentages of detection with AR(1) structuvemissing datan = 27

a
0.2 0.6 0.85
Jump size| 68:121| 91:121| 68:121| 91:121| 68:121| 91:121
1 81.3 82.3 82.9 83.7 81.7 81.1
3 87.1 75.6 87.7 75.2 88.3 74.9
Table 6.9:Percentages of detection with AR(1) structuwemissing datan = 28
a
0.2 0.6 0.85
Jump size| 148:254| 195:254| 148:254| 195:254| 148:254| 195:254
1 86.2 82.6 87.0 83.6 83.4 82.2
3 92.4 77.0 89.6 76.4 90.1 78.8
Table 6.10:Percentages of detection with AR(1) structuwanissing datan = 2°
a
0.2 0.6 0.85
Jump size| 298:510] 392:510| 298:510| 392:510| 298:510| 392:510
1 87.1 68.5 88.5 70.2 87.6 66.7
3 90.6 73.2 91.1 73.4 915 72.6

It is interesting to note from Tables 6.8, 6.9 and 6.10 thatglrcentages of detection remain the same across different
values ofa for the same set of coefficients. If we consider the first séiftaig coefficients at the finest level i.e. 68 to
121 which accounts for 45% of all coefficients and having l@isa level, the detection of change points becomes 87%
cases irrespective of any jump size. It is thus clear thaspective of high or low values of AR(1) coefficients, we can
choose 45% of the finest level of detail coefficients whichcsssfully catch the change points for at least 82% cases. Iti
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also seen from the same tables percentage of detectionmesane across different sample sizes. If we compare results
between constant variance and a variance structure likd)ARg find that irrespective of jump sizes and sample sizes,
the percentage of detection drops 6% on an average due tattbdiction of a variance structure across all the jump
and sample sizes. Undoubtedly, our method is simplistiabtiie same time effective in comparison to model the AR
structure. Apparently, the effect of the presence of vagasiructure affects minimally to detect change point.

Now, with a processor speed of 2.8 GHz, it takes more than BshafuCPU time to run a simulation of 1500 lifting
procedures when = 27, Forn = 28 andn = 2%, CPU time is few hours more. For DWT, irrespective of samjdess it
takes approximately 10 minutes to run 1500 simulations.

(e) AR(1) variance structure with 4% missing data:

Now, incorporating 4% missing observations in the datagesimulate three different AR coefficients 0.2, 0.6 and 0.85
from AR(1) variance structure. We use three different sétdtimg coefficients as shown in Table 6.11 and choose the
best one from different AR coefficients. Higher valuecoimeans the stronger correlation structure in the data. Noise
variance is constant at 1 for these sets of simulations.|Reme presented in Tables 6.11, 6.12 and 6.13.

Table 6.11:Percentages of detection with AR(1), 4% misdatg,n = 27

a
0.2 0.6 0.85
Jump size| 68:121| 91:121| 68:121| 91:121| 68:121| 91:121
1 84.2 72.7 84.2 74 82.5 73.6
3 89.5 79.5 88.3 79.4 88.9 78.4
Table 6.12: Percentages of detection with AR(1), 4% misdatg,n = 28
a
0.2 0.6 0.85
Jump size| 138:244| 185:244| 138:244| 185:244| 138:244| 185:244
1 79.4 78.9 80.3 78.2 77.6 72.4
3 85.3 75.7 84.6 75.4 83.2 72.5
Table 6.13: Percentages of detection with AR(1), 4% misdatg,n = 2°
a
0.2 0.6 0.85
Jump size| 277:489| 371:489| 277:489| 371:489| 277:489| 371:489
1 83.4 76.3 83.6 75.8 83.1 72.4
3 87.1 79.5 86.7 78.1 86.5 79.2

Based on the results presented in Tables 6.11, 12 and 13, dvihfihthe detection of change points become once again
difficult if we consider 4% missing data and small jump sizewléver, the percentages of detection remain the same across
different values ofx for the same set of coefficients. Now, considering the firsb&Efting coefficients at the finest level

i.e. 68 to 121 which accounts for 45% of all coefficients anditng low noise level, the detection of change points is
possible for 84% cases for the jump sizes considered heme. thange sample size o= 22 the detection percentage is
still close to 80%. Fon = 29 detection percentage increases marginally to 83%. If wepesenour results with constant
variance case, irrespective of any sample size, percenfadetection drops 6% on an average for considering AR(1)
variance structure.

(f) AR(1)variance structure with 14% missing data:

If we enlarge the percentage of missing data (14%) and stmtiaee different AR coefficients 0.2, 0.6 and 0.85 from
AR(1) variance structure, we find that the detection of clegmgjnts do not provide any fruitful result in the case of dmal
jump size.

Table 6.14:Percentages of detection, AR(1) structure, dM8sing datan = 27

a
0.2 0.6 0.85
Jump size| 55:108| 78:108| 55:108| 78:108| 55:108| 78:108
1 29.6 58.9 28.8 58.4 31.1 56.9
3 34 61.4 34.7 61.1 34 57.7
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Table 6.15:Percentages of detection, AR(1) structure, dd8sing datan = 28

a
0.2 0.6 0.85
Jump size| 124:218| 159:218| 124:218| 159:218| 124:218| 159:218
1 24.5 46.7 24.8 45.9 23.8 447
3 25.8 47.2 25.3 46.1 25.1 45.2
Table 6.16:Percentages of detection, AR(1) structure, d¥8sing datan = 2°
o]
0.2 0.6 0.85
Jump size| 249:440| 321:440| 249:440| 321:440
1 30.1 49.7 29.7 49.3] 29.1| 48.8
3 33.8 51.4 32.1 50.8| 28.6 | 49.1

Forn = 27, considering the first set of lifting coefficients at the finkesel i.e. 55 to 108 which accounts for 45% of all
coefficients and having low noise level, the detection ofhgfeapoints is possible only for 32% cases irrespective of any
jump size. The percentages of detection is found to be mtelgtsgh if we take the second set of lifting coefficients i.e
78 to 108 for both the jump sizes. If we increase sample sipes i = 27 to n = 28 andn = 29 no striking difference of
the results from the earlier one is noticed. Thus, percentdgletection remains more or less same across sample size.
(Tables 6.14, 6.15 and 6.16).

From the above observations Hence, we can draw conclusidrd8% of all coefficients can detect change points
irrespective of any jump size and error variance. In thegmes of missing data those set of coefficients work well if a
huge number of data points are not missing. If a considerabitgber of data points are missing, 32% of detail coefficients
work better than 45% of all detail coefficients.

We may now turn to provide a real data example to substartiatebservations based on simulation results.

7 St. Lawrence Streamflow Data

Our case study, for purposes of comparison, uses annuaidtosv data from the St. Lawrence River at Ogdensbourg,
New York from the years 1860 to 1950. A description of the dsigiven in Rasmussen (2001). Here we note that using
lifting-based coefficients, we found the mode of the postatistribution for the time of the change point to be 1891. Fo
this example, the original data had 90 observations. We tinegxd to augment it to’2o apply wavelet transform. Lifting
transform can perform with any number of data points. UsiB&of fine detail coefficients we get our change point
as 1891. Plot of the posterior pdf (Figure 1) shows multiptedes. Lifting-based coefficients are detecting the correct
change point. It is not unusual to have a posterior pdf witltiglea modes using lifting-based coefficients. There are tw
possible reasons for the multiple modes in the plot. Ourgulace is useful for finding single change point in the data set
but if there exists multiple change points, we can not be tbfand them. Secondly, lifting based coefficients are based
on polynomial regression which does not take into accoumtithe dependence of the data which may contribute to the
calculation of lifting coefficients and hence to the postepdf.

8 Conclusion

In this paper, we have investigated the choice of liftingfficients in the context of detecting change points. We find
that the detection of change points depends on the choidéing Icoefficients. We simulate time series data with AR(1)
structure in the presence of missing observations and atbonw missing observation. Lifting-based coefficients kvor
when number of missing observations are not large. We pregesome results based on sample size 2’. Further
increase of sample size to= 2% or n = 2° we find that the results are not different from the smallersarsize. For a
large number of missing observations with moderately higisanin the data, lifting performs moderately well. Overall
lifting coefficients perform very well in terms of finding ch@e points for noisy data and data with smaller number of
missing observations.
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St.Lawrence streamflow and posterior pdf of change point
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Fig. 1: Plot of the St. Lawrence streamflow data (top) with changetmtiyear 1891 and posterior pdf (bottom)

We confirm our findings by applying them to a real dataset wiiatl previously known change points. Lifting
transformation and associated detail coefficients havemasen used to detect change points in Bayesian settings or
otherwise. We propose Bayesian change point detectionaueising lifting wavelet coefficients. We also come up with
estimated percentages of lifting coefficients which can keduto detect change points in real dataset through
simulations. Since change point problems occur regularigther disciplines such as Ecology, Glaciology, Hydrology
etc, it is suggested that our proposed algorithm should bd tes get useful results for other fields of research. In the
future we would like to apply this algorithm concerning withal data change point problems for other disciplines.

In our simulation results, we are concerned with one resoilé¢vel. However, for lifting transformation the resatut
level can be changed for the detection of relatively undcented small changes. In our simulation study, we keep the
resolution level at two which is the default resolution leweor relatively small jump size and presence of noise in the
data, change in resolution level may result a better peagentdf detection of change points. This, however, is not true
for the case of large number of missing observations wittptiesence of moderate noise in the dataset. In this case, the
resolution level needs to be increased to increase themtages of detection.

Change point detection is a common problem in time series. diatour case study we encounter time series data
with relatively high noise. In such a situation, it is appriafe to choose AR(1) structure of simulation to examine the
effectiveness of our algorithm and find that it is quite ukéfve also observe that the percentage of detections remain
unchanged even if we increase the correlation in variamoetstre. This percentage changes as and when the size of the
jump or the noise in the dataset changes.

Another important observation regarding the lifting teicjue is that it depends on polynomial regression to get the
detail wavelet coefficients. Polynomial regression mayheoan appropriate technique when the real data is very misy.
correlated data structure may influence negatively to ptéldé detail coefficients on the basis of polynomial regogss
We may have a better time series predictive approach toviétidg technique.

9 Appendix: Calculation of the marginal posterior distribu tion of 1

From section 4.2 the joint posterior density is given by
p(t, A, 0?|w) O g~ (MD/2x
&xXp(— Y j>jo Tk(Wj.k— A 05k (T))?/(20%))

= 0" U/2x exp(A— 24 B+ A%0)/(202))

whereA= 3 i~  SeWj,&, B =3 jjo SkWj .k djk (T), andC = 3 j= j; i Gk (7).
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Ogden and Lynch (1999) used the same joint posterior dettsdgrive the marginal posterior distribution forBut in

the final expression, after integrating aiitand g, they came up with a different number in the exponent. Wedréuk
integration and our exponent is different from what they earp with. But using our final expression we get sensible
answer for all the change point problems. Following is thtaitled derivation.

p(tjw) O [y [, o~ (D 2exp(—C/(20%)(A? — 2 AB/C+A/C)) dA do
= [y o (M2 [ exp(—C/(20?)[(A —B/C)? —B?/C?+ A/C| dA do
= Jo o (M2 [% exp(—C/(20%)(A — B/C)%exp((—1/(20%) (A~ B?)/C) dA do
= Jo o~ "D/ 2exp((~1/(20%)(A-B?)/C) ffm exp(—C/ (202)(A —B/C)*dA do

= Jo o~ "D %exp((~1/(20%) (A~ B?)/C) () (V/(2m)) | ;)exp(=C/(20%)(A —~B/C)?dA do

\/_271

Using property of the normal distribution the |n5|de intgds 1 and choosmg = %(A— B?)/C we can write
p(tlw) D1/VC J5" o~ " Y/%exp((~k/0?))do
Substitutingn= k/o? and calculating the Jacobian we get
p(t|w) 0 1/VC Jg (k/m)™ D/ 4exp(—m)m*2(dm/ — 2k>/?)
[0 1//Ck~("=1/4-5/2 [ (n+1)/4+3/2¢p(—m)dm
The integral is a proper Gamma integral and hence a conStanour end result after replacikg

p(tlw) 0 = ((A—B?)/C)~(n+9)/4

References

[1] Antoniadis, A., and Fan, J. (2001), “Regularization chwelets approximations” (with discussiod),Amer. Satist. Assoc., 96,
939-967.

[2] Bilen, C. and Huzurbazar, S.(2002), “Wavelet-baseeckzn of Outliers in Time SeriesJournal Computational and Graphical
Satistics, 11(2), 311-327.

[3] Cai, T. Tony, and Brown, D. L. (1998), “Wavelet shrinkafpe nonequispaced sampleJhe Annals of Satistics, 26, 1783-1799.

[4] Carlin, B. P., Gelfand, A. E., and Smith, A. F. M. (1992Hi¢rarchical Bayesian analysis of changepoint problepfil. Sat.,
41, 389-405.

[5] Carter, R. L., and Blight, B. J. N. (1981), “A Bayesian Qige Point Problem with an Application to the Prediction aretdation
of Ovulation in Women”Biometrics, 37, 743-751.

[6] Fearnhead, P. (2005), “Exact Bayesian curve fitting aigthad segmentation'EEE Transactions on Signal Processing, 53,
21602166.

[7] Gelfand, A. E., Hills, S. E., Racine-Poon, A., and SmihF. M. (1990), “lllustration of Bayesian inference in naahdata models
using Gibbs sampling’Journal of the American Statistical Association, 85, 972-85.

[8] Heaton, T. J., and Silverman, B. W. (2008), “A waveletlifimg-scheme-based imputation methodgurnal of the Royal Satistical
Society, Series B: Satistical Methodology, 70, 567-587.

[9] Jansen, M., Nason, G. P., and Silverman, B. W. (2001)ati®ced data smoothing by empirical Bayesian shrinkagescérsd
generation wavelet coefficientdProc. SPIE, 4478, 87-97.

[10] Jansen, Mark J. (2004), “Semiparametric Bayesiarrémfee of long-memory stochastic volatility modelddurnal of Time Series
Analysis, 25, 895-922.

[11] Kovac, A. and Silverman, B.W. (2000), “Extending theofe of Wavelet Regression Methods by Coefficient-dependent
Thresholding” Journal of the American Statistical Association, 95, 172-183.

[12] Nason, G.P. (2002), “Choice of wavelet smoothnesanary resolution and threshold in wavelet shrinkag&atistics and
Computing, 12, 219-227.

[13] Nunes, M., Knight, M., and Nason, G. P. (2006), “Adagtiifting for nonparametric regressior®atist. Comput. , 16, 143-159.

[14] Ogden, R.Todd, and Lynch, James D. (1998), Bayesialysinaof Change-point model8ayesian Inference in Wavelet Based
Models, P. Muller and B. Vidokovic eds., Springer-Verlag, New York

[15] Rasmussen, P. (2001), “Bayesian estimation of changgsusing the general linear modeéltater Resour. Res., 37, 2723-2731.

[16] Richwine, J. E. (1996), “Bayesian estimation of chapgéts using Haar wavelets,” Master's Thesis at the Usitgiof South
Carolina.

(@© 2017 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro6, No. 3, 445-457 (2017)www.naturalspublishing.com/Journals.asp %N Sp) 457

[17] Smith, A.F.M., (1975), “A Bayesian approach to infecerabout change-point in sequence of random varialBesretrika, 62,
407416.

[18] Stephens, D. A. (1994), “Bayesian retrospective rplétichangepoint identificationAppl. Sat., 43, 159 178.

[19] Sweldens, W. (1996), “The lifting scheme: a customigieE€onstruction of biorthogonal wavelet®pplied and Computational
Harmonic Analysis, 3, No. 2, 186-200.

[20] Tanner, M. (1993)Tools for Satistical Inference: Methods for Exploration of Posterior Distributions and Likelihood Functions,
Springer Verlag, New York.

[21] Wang, Y. (1995), “Jump and Sharp Cusp Detection by WeteeIBiometrika, 82, 385-397.

Arunendu Chatterjee, PhD, is an associate professor at the department
of Mathematics, University of Wisconsin River Falls. He idsa a member
of American Statistical Association (ASA) and Internadbn Society for
Bayesian Analysis (ISBA). Dr. Chatterjee’'s work has beerblighed in different
statistical journals including Statistical Methodologyda Advances and Applications
in Statistics. He is an author/reviewer of Journal of StagsApplications and Probability
Letters and a reviewer of American Journal of Mathematiodllanagement Sciences.

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction
	Overview of Change point methods
	Wavelets and Detection of Change points
	Lifting Transformation in Bayesian framework
	Computation
	Results
	St. Lawrence Streamflow Data
	Conclusion
	Appendix: Calculation of the marginal posterior distribution of 

