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Abstract: In this paper, we use wavelets in a Bayesian context to identify changes in the pattern of data collected over time in the
presence of noise and missing observations in the data. A Bayesian analysis based on the wavelet coefficients applying lifting is
discussed to identify change points. Based on a simulation study, recommendations are made on the choice of lifting wavelet coefficients
in the presence of noise and missing observations using an adaptive lifting technique. We apply our algorithm to a real data problem
where change points are already known to illustrate our recommendations.
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1 Introduction

Change point is the problem of identifying sudden change at aparticular time point in the pattern of the data collected
over time. Change point problem has many diverse applications not only in statistics but also in other disciplines such as
hydrology, climatology etc. where change point problem occurs regularly. There are various aspects to the change point
problem, namely detection of change point, estimation of the time at which the change occurred and finally, modeling the
data before and after change. A substantial literature exists on models that combine detection, estimation and modeling
using a statistical framework. In this paper, we discuss a Bayesian procedure to detect change points in the presence of
missing or irregular data points. Modeling change points may become complicated in the presence of missing data. In this
paper we discuss a detection method using second generationwavelet transforms.

In statistics literature, Discrete wavelet transform (DWT) has been used to detect change points but DWT can not be
used to detect change points in the presence of missing data.We introduce second generation wavelet transform technique
or lifting technique to detect change points. The use of lifting technique to detect change points is a new and timely
procedure.

We introduce an algorithm based on lifting transform to detect change points. Our method is easy to implement and
can be applied to any data size. Bayesian procedure is used tofind the posterior distribution of the change point and the
position of the change point can be determined by the mode of the skewed posterior distribution.

In Section 2, we provide a brief review of the existing methodologies for studying change point problems, and wavelet
analysis is discussed in Section 3 in detail. We discuss lifting transform in Bayesian framework in Section 4 followed by
computational procedure and some results relating to the application of lifting in change point detection in Section 5 and
6 respectively. Section 7 concludes the paper.

2 Overview of Change point methods

A change point is the time at which some feature of the distribution of a variable changes; the most common features
usually considered are changes in the mean structure in the form of shifts in trends, or changes in the variance structure.
Detection of change points is a complicated problem in practice as neither the occurrence nor the possible multiplicityof
change points is known.
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The change point problem was originally addressed in Bayesian statistics by Smith (1975), followed by Carter and
Blight (1981). Bayesian methods were applied considering single or multiple changes in conjunction with a known or
an unknown number of change points. Gelfand et al. (1990) considered a known number of change points and discussed
Bayesian analysis of a variety of normal data models, including regression and ANOVA, which allowed some unequal
variances. Stephens (1994) carried out a Bayesian analysisof a multiple change point problem where the number of
change points was assumed to be known, but the times of occurrence of the change points remained unknown. Examples
of such approaches using a known number of change points include Carlin et al.(1992), Tanner (1993) and Rasmussen
(2001). Other authors considered the problem in such a way that the data series contained at most one change point (i.e.,
the authors emphasized the presence of zero or one change point in the data series).

3 Wavelets and Detection of Change points

Wavelets are functions that satisfy certain mathematical properties and since the resulting wavelet transforms are localized
in time and space, they can be used to detect sharp changes in discontinuous functions. The main purpose here is to
estimate the number, locations and sizes of a function’s abrupt changes. The general idea is to detect a change point by
using a wavelet approach. Jumps are identified by “unusual” behavior in the wavelet coefficients at high resolution levels
at the corresponding location. Use of wavelet in change point analysis was first introduced by Wang (1995).

Bayesian methods were introduced by Richwine (1996) followed by Ogden and Lynch (1998). A prior distribution
was placed on a location of the change point and the posteriordistribution of the change point was formulated on the basis
of the estimated wavelet coefficients.

In describing the use of wavelets for detection of change points, we first present a brief introduction to wavelet
transforms.

3.1 Overview of Wavelets

Wavelets are special functions consisting of dilation and translation indices. Larger values of dilation indices correspond to
higher frequency components, and larger values of translation indices correspond to rightward shifts. In practice we use a
discrete wavelet transform (DWT) to map a data vectory = (y1, .....,yn), for n = 2J, to a vector of wavelet coefficientsw =
(w1, .....,wn) via an orthogonal matrix W. Choice of wavelet functions determines W. Since higher frequency components
occur for larger values of dilation, detection of change points involves examination of these higher frequency coefficients
in w.

Computation of the discrete wavelet transform is carried out using the popular Mallat’s pyramid algorithm which
consists of low-pass and high-pass filters through which, ateach stage, the input values of the function are decimated.
When the data are of sizen = 2J the DWT requiresJ levels of decomposition. Denotingn j = n/2j, the output of a
DWT is a set of ‘detail’ coefficientsd j = (d j,1,d j,2, ....,d j,n j) at levels j = 1,2, ...,J along with ‘smooth’ coefficients
sJ = (sJ,1,sJ,2, ....,sJ,nJ ), corresponding to the high-pass and low-pass filters, respectively. The detail wavelets coefficients
contain the high-frequency content and are used in the change point detection procedure.

A classical approach towards detecting a change point is to choose a levelj and examine the corresponding detail
coefficients,d j. Specifically, one can choose a threshold value based on the sample size and an estimated sample variance,
compare the coefficients ind j to this threshold value and decide whether any coefficients are ‘large’ enough to indicate
the existence of a change point. Such a procedure is similar to wavelet-based outlier detection procedures in Wang (1995)
and Bilen and Huzurbazar (2002).

All the applications discussed above suggest a very essential first step, that is, to transform the data into empirical
wavelet coefficients through the discrete wavelet transform (DWT). DWT has its own limitations. Such a transformation
is only possible under the following conditions:

(a) the time points (i.e.ti’s of equation (1)) should be equally spaced, and

(b) total number of observationsn should be a power of 2.

Various methods have been proposed for adjusting irregularly spaced data. Cai and Brown (1998) proposed a method
which takes into account the irregularity by using the correspondenceti = H−1(i/n), whereH is a strictly increasing
function which needs to be estimated. The motivation was to use the approximationt(i) to be distributed asE(t(i)) =
i/(n+1), and the observations(i/(n+1), fi) are considered as alternates instead of(ti, fi). Kovac and Silverman (2000)
made a mapping of irregularly spaced data,f , to a regular grid,̃f , by linear interpolation of the original noisy values;f̃ =
R f , where the matrixR describes the interpolation. To simultaneously handle thechoice of wavelets, primary resolution
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level and threshold for estimating the true function, Nason(2002) developed a fast cross-validation algorithm for irregular
grids using the Kovac-Silverman procedure. Antoniadis andFan (2001) formulated a penalized least squares problem in
terms of unknown wavelet coefficients ofg(i/n). Assuming a regular grid andn = 2J , and imposing certain conditions
on the penalty function, they arrived at a unique solution. They also introduced a new universal threshold which produced
estimators with smaller risk than that of universal threshold.

Another approach is to address the shortcoming of DWT. The most popular of these methods are lifting technique. We
describe method of lifting in the next section.

3.2 Adaptive Lifting

Lifting transform is relatively new in statistics literature and there are no applications of lifting in change point detection.
The algorithm was first introduced by Sweldens (1996) which facilitated for a wavelet construction of non-standard data,
including irregular data on a grid. Jansen (2004) introduced a new lifting algorithm which was modified by Nunes et al.
(2006). An imputation method based on lifting was later introduced by Heaton and Silverman (2008). Lifting essentially
consists of three steps: splitting the data, predicting theremoved data and updating the remaining data. In this section we
describe the different lifting algorithms.

As a first step, the data is subsampled into two disjoint subsets: points representing the even positions in the grid,
and points representing the odd positions in the grid (Swelden 1996). Jansen (2004) and Jansen et al. (2001) proposed
generating just one wavelet coefficient at each step. Nunes et al. (2006) used a flexible lifting scheme that suggests
removing one coefficient at a time in order to build up adaptive prediction steps and embedding them into the lifting
algorithm.

The second step is to predict the function values corresponding to the odd positions by using polynomial regression
of the corresponding function values to the even positions.The error in prediction (the difference between the true and
predicted functional values of odd positions) is then quantified in a vector referred to as the set of wavelet (or detail)
coefficients.

In the final step, the function values of the even positions are updated by using linear combinations of the current
function values of the even positions and the vector of detail coefficients obtained at the previous step.

The split-predict-update steps can be re-iterated on the updated data set, and the initial data set is replaced by the
remaining updated subsample (which reproduces the coarse scale features of the initial signal). The detail coefficients
are accumulated throughout this process. This is similar tothe DWT method, discussed above, which replaces the initial
signal by a set of scaling and wavelet coefficients. The procedure is easily inverted by undoing the update stage, the
prediction stage and then merging the subsamples.

Jansen (2004) and Jansen et al. (2001) introduced the concept of lifting just one coefficient in each step. The split
step of the lifting algorithm suggests choosing a point which can be removed. The odd/even split, however, poses some
problems in higher dimensions. Jansen (2004) and Jansen et al. (2001) proposed removing the points in an order guided
by the configuration, namely, that the points belonging to denser areas be removed first. Again, each location is supposed
to be associated with an interval values: the shorter the interval, higher the densely sampled area around the location.
Once a point has been selected for removal, identify its set of neighbors. The next step is to predict scaling coefficientsby
using regression over the neighboring locations. The prediction error will be the detail coefficient corresponding to that
location. In the update step, only the function-values of the neighboring points are updated by using a linear combination
with the detail coefficients. At this stage, the lengths of the intervals associated with the neighboring points are alsogetting
updated, accounting for the decreasing number of scaling points within the range of same interval. The procedure is then
repeated on the updated data set, and with each repetition a new wavelet coefficient is added. Hence after say(n− L)
removals, we haveL scaling coefficients and(n−L) wavelet coefficients.

Nunes et al. (2006) proposed a modification to the LOCAAT (Lifting One Coefficient At a Time) lifting scheme which
is called “Adaptive Lifting”. This algorithm is primarily based on lifting one coefficient at a time without imposing any
restriction on a choice of prediction or a choice of neighborhood at the beginning of the procedure. The adaptive lifting
scheme is called “adaptive” because at each step a choice of prediction or a choice of neighborhood is made. Two types
of neighbor choices are used in adaptive lifting. We can choose symmetrical neighbors that is, same number of neighbors
on the left and right of the removed points or we can choose closest neighbors to the removed points irrespective of which
side they lie. This algorithm is computationally efficient than the LOCAAT lifting schemes suggested by Jansen et al
(2001).

We know that the DWT scale is a discrete dyadic quantity. In “one coefficient at a time” lifting, this scale becomes
more of a continuous type. In this adaptive lifting scheme the finest level contains half of the wavelet coefficients, the next
coarser level represents a quarter and so on.

A few modifications of the resulting coefficients are needed to apply adaptive lifting in Bayesian change point detection
procedure. In the framework of nonparametric regression, use of waveletsε j,k follows independent normal distribution
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with constant variance. This may not be true in case of lifting. In fact, in this case of lifting there will be a correlation
between coefficients and different coefficients will have different variances. To overcome this, we normalize the resulting

coefficients by multiplying[diag(W̃W̃ T )]
−1/2

for each step wherẽW is the the matrix associated with the transform.

4 Lifting Transformation in Bayesian framework

In this section, we derive the marginal posterior distribution of change point using lifting-based wavelet coefficients. From
our discussion in previous section we know that the lifting coefficients are not independently distributed with constant
variance as we expect in case of wavelet coefficients derivedfrom DWT. If we assume initial independence of data then
the resulting lifting coefficients are independent but do not have homogeneous variances. To make the variance constant,
we have to normalize coefficients at each step by multiplyinga transformation matrix. Even if the initial data has a
covariance structure, normalizing lifting coefficients ateach step by multiplying a transformation matrix will marginally
affect detection of change points.

In the general change point problem, as mentioned by Ogden and Lynch (1998)Y1, .....,Yn are the ordered observed
data such thatYi ∼ N( f (i/n),σ2) for some functionf defined on [0,1]. Hence,f has the form

f (u) =

{

µ if 0 ≤ u < τ
µ +△ if τ ≤ u < 1

(1)

for some change pointτ ∈ [0,1]. Our objective is to estimate the parametersτ, µ , △ andσ2. Estimation of change-point
τ is important here. Later we will choose suitable priors forµ , △ andσ2.

In previous section we defined lifting transformation. In the lifting-based procedure after(n−L) removals, we have
L scaling coefficients and(n−L) wavelet coefficients. These lifting coefficients are independent but with a non constant

variance. To overcome this, we normalize the resulting coefficients by multiplying[diag(W̃W̃ T )]
−1/2 for each step where

W̃ is the matrix associated with the transform. After normalization we denote these transformed empirical lifting
coefficients asw. Since the empirical lifting coefficients are independent with constant varianceσ2, the joint distribution
can be written as:

p(w|τ,△,σ2) = ∏ j ∏k p(w j ,k |τ,△,σ2)

wherew represents the vector of coefficients. As before, the posterior distribution of the parameter is
p(τ,△,σ2|w) ∝ ∏ j ∏k p(w j ,k |τ,△,σ2) ·π(τ,△,σ2)

for a joint prior distributionπ on τ,△ andσ2. The distribution of a single lifting-based wavelet coefficient was taken to
be

w j,k |τ,△,σ2 ∼ N(△q j,k (τ),σ2/n).

Ogden and Lynch (1998) defined the mean functionq j,k (τ) as

q j,k (τ) = 2j/2/n×
{

2− jk− [nτ] if 2− jk ≤ τ < 2− j(k+1)/2
−(n2− j(k+1)− [nτ]) if 2− j(k+1)/2≤ τ < 2− j(k+1)

(2)

for τ ∈ [0,1]. Theq j,k function is continuous and piecewise linear, shaped like aninverted hat; it is zero outside the support
of the corresponding wavelet and goes to a peak at the midpoint in support ofψ j,k. To get the values ofq j,k for all j and
k we can apply lifting scheme to the vector of 0 and 1 ([nτ]−1 zeros andn− [nτ]+1 ones).

Hence, the posterior density will be

p(τ,△,σ2|w) ∝ σ−(n−1)/2π(τ,△,σ2)× exp(−∑
j
∑
k

(w j ,k−△q j,k (τ))2/(2σ2)) (3)

The analytical result may vary according to the choice of theprior distributionπ on τ,△ andσ2.
Each empirical wavelet coefficient contains information regarding the changes of a function in a localized region. For

this reason, we use more localized or higher level coefficients to compute the posterior density. The posterior density is
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thus computed using only the wavelet coefficients with dilation index j ≥ j0. Ogden and Lynch (1999) used Jeffreys’
non-informative joint prior forτ,△ andσ such that

π(τ,△,σ2) ∝ 1/σ .

Thus the joint posterior density is given by

p(τ,△,σ2|w) ∝ σ−(n+1)/2×
exp(−∑ j≥ j0 ∑k(w j ,k −△q j,k (τ))2/(2σ2))

Integrating out△ andσ , the marginal posterior of change pointτ will be (see Appendix for detailed derivation)

p(τ|w) ∝ C−1/2(A−B2/C)−(n+9)/4 (4)

whereA = ∑ j≥ j0 ∑k w j ,
2
k ,B = ∑ j≥ j0 ∑k w j ,k q j,k (τ), andC = ∑ j≥ j0 ∑k q2

j ,k (τ). Mode of above posterior probability
distribution ofτ will give us the change point.

5 Computation

Computation of marginal posterior probabilities with lifting-based procedures involves three steps: computing lifting
coefficients from the original data, computing lifting coefficients from the mean function and finally, computing posterior
probabilities using both lifting coefficients in previous two steps.

Step 1: As mentioned before, adaptive lifting does not follow assumptions of independence and the total number of
observations need not to be a power of 2. Also in section 3.4 wedescribed artificial leveling of detail coefficients which
we use in this step of our computation. At this initial step weuse adaptive lifting technique to denoise the data and to get
the lifting coefficients simultaneously. Denoising of the signal involves the estimation of noise variances of artificial levels.
We first use the transformation matrix to normalize the detail coefficients produced from the lifting transformation. The
coefficients are divided into artificial levels and the coarsest level is used to estimate the noise variances of the coefficients.
A particular package “adlift” in R can be modified to produce relevant results.

There are several options for modify the function as necessary. We can choose neighboring points at each step over
which the regression is performed. The neighbors are chosensymmetrically on both sides around the removal point;
otherwise closest neighbor is chosen. We can also select theresolution that conveys the number of scaling coefficients to
be kept in the final representation of the initial signal.

The output of this function denotes the denoised lifting coefficients with artificial assignment of detail coefficients.

Step 2: The mean functionq j,k (τ) is a continuous and piecewise linear function, as mentionedin section 4. To get the
values ofq j,k (τ) for all j andk, we can apply lifting procedure to the vector of 0 and 1 ([nτ]−1 zeros andn− [nτ]+1
ones). We do not denoise the resulting lifting coefficients but normalize them. Those normalized lifting coefficients are
used to estimate change points.

Step 3: We calculate posterior probabilities using liftingcoefficients obtained from both the original data andq j,k (τ)
for all j andk. Since, there is no hard and fast rule to select the number of coefficients, and it is not possible to prove
theoretically optimum number of coefficients needed to detect change points under different conditions, one can use
simulation technique to come up with some right numbers of coefficients.

5.1 Simulations

Statistical simulation studies provide powerful tools forthe analysis of many mathematical models and real data problems
when analytical solution is not possible. To recommend a suitable choice of lifting-based coefficients, it is essentialto
explore different cases of variable sample size, variable noise variances, variable jump sizes and variable time series
structures. The results of the study will provide us a guideline to choose lifting-based coefficients.

As mentioned earlier, there is no specific rule of selecting aspecific number of coefficients for detection of change
points. Due to lifting scheme of resolutionL, we haveL smooth and(n− L) detail coefficients. These(n− L) detail
coefficients are assigned with artificial levels into fine andcoarse levels. To detect change points we use only the fine level
detail coefficients.

In our simulation framework we will choosen = 2m wherem = 7 to make a comparison between DWT and lifting.
We simulate data for 4% of missing observations present in the dataset which will simulate a dataset with minimal
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number of data points missing. For a strong noise in the dataset and a correlated variance structure with high percentage
of missing observations, DWT does not perform well in terms of catching change point. We perform simulation under
similar conditions prevailing under lifting coefficients to see how well it performs under such circumstances. We choose
different sets of detail coefficients to find an optimum number of coefficients that can detect change points. We introduce
number of data points missing from minimum number of data points missing (4%) to maximum number of data points
missing (14%). We simulate data from AR(1) covariance structure and instead of modeling the AR(1) structure to detect
change points we select lifting coefficients that can detectchange points. We increase sample sizes tom = 8 and 9 to
study the possible effects on lifting coefficients. In lifting based scheme we can select the resolution levelL. We choose
L = 2 for the simulation.

6 Results

We decided on 1500 simulations. The principle was that for a fixed set of lifting coefficients, the percentage of detection
should stay constant even if we increase the number of simulations. Hence, we run 1500 simulations for different choices
of sample sizes, resolution levels and different sets of lifting coefficients. Following are the discussions of different cases
of simulations performed here.

(a) Comparison between DWT and lifting:
For 1500 simulations we first compare DWT-based coefficientsand lifting-based coefficients. In this case our sample

size isn = 27 and the resolution level is two. There are no missing observations. We considerd7, d6 andd5 wavelet
coefficients to calculate posterior probabilities. We divide our grid into equal spaced 128 points. If five highest posterior
probabilities match with any of five points on the grid ( i.e. actual change point and two nearest values on both sides of
the change point) we then consider it as a successful detection. Forn = 27, d7, d6 andd5 are the finest level coefficients
of DWT which should have information about jumps. For lifting-based scheme we have four artificially assigned levels
of detail coefficients. Out of these 126 detail coefficients,we choose all coefficients of two finest levels and 22 of 31
coefficients from the third finest level. We simulate data with error terms for three different choices of variances. As the
variance term goes up, noise in the data also goes up and detection of change points will be difficult. We carried out
simulation for two jump sizes. We can expect that with the bigjump size change point detection becomes relatively easier.
Following is the comparison table between DWT and lifting:

Table 6.1: Comparison between DWT and Lifting
Variance

0.5 1 1.5
Size of jump DWT Lifting DWT Lifting DWT Lifting
1 54.1 93.7 36.3 89.8 28.9 87.4
3 98 93.7 91.9 91.1 84.9 90.7

From the above table we can conclude that lifting-based procedure coefficients are performing consistently better than
DWT coefficients under the presence of different noise variances. In fact when the noise variance is high and jump size is
small, DWT coefficients can detect change points in 28.9% cases compared to 97.4% cases for lifting. Hence we strongly
recommend lifting-based procedure coefficients as the choice for detecting change points.

(b) Constant variance with no missing observations:
For a sample size ofn = 27 we change noise variances from 0.5 to 1.5 with an increment of0.5. We try three different sets
of lifting coefficients to choose the best one for different noise levels in the data. Presented in Table 6.2 are the percentages
of detection for different noise variances and jump sizes. The first set of coefficients are the same as described in (a). For
the second set of coefficients we only consider all coefficients of the two finest levels. The last set of coefficients are chosen
arbitrarily using part of the three finest level detail coefficients. For a constant noise variance we note the percentages of
successful detection of change points for these three different choices of coefficients. Following are the percentagesof
successful change point detection under different scenario.

Table 6.2: Percentages of detection using lifting,n = 27

Variance
0.5 1

Jump size 73:126 96:126 77:124 73:126 96:126 77:124
1 93.7 68.5 42.2 89.8 59.5 37.8
3 93.7 64.9 43.1 91.1 63.8 41.3
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Variance
1.5

Jump size 73:126 96:126 77:124
1 87.4 55.6 35.3
3 90.7 62.7 42.1

Table 6.3: Percentages of detection using lifting,n = 28

Variance
0.5 1

Jump size 148:254 195:254 158:252 148:254 195:254 158:252
1 91.3 62.8 40.2 86.8 57 41.1
3 92 57.9 43.1 81 55.3 37.2

Variance
1.5

Jump size 148:254 195:254 158:252
1 85.2 54.2 39.2
3 78.3 51 37

Table 6.4: Percentages of detection using lifting,n = 29

Variance
0.5 1

Jump size 298:510 392:510 320:508 298:510 392:510 320:508
1 94.5 70.2 41.9 89.1 68.1 41
3 96 69.2 45.1 90.4 67.7 44.8

Variance
1.5

Jump size 298:510 392:510 320:508
1 87.6 66.9 40.6
3 90.3 65.8 44.2

Table 6.2 shows that the detection of change points seems to be difficult when the jump size is small. If we consider the
first set of lifting coefficients at the finest level i.e. 73 to 126 which accounts for 45% of all coefficients and low noise
level, the percentage of detection becomes 93.7% for both the jump sizes considered. The same set of coefficients perform
better compared to other choices of coefficients in the case of high error variance. We may thus conclude that for both
high and low noise-level in the data we can choose 45% of the finest level of detail coefficients which are able to detect
change points for at least 87.4% cases.

If we increase the sample size ton = 28, 45% of the finest level detail coefficients can detect changepoints 85% for
both the jump sizes (Table 6.3). This percentage, however, marginally decreases (i.e. 82%) with the increase in sample
size fromn = 28 to n = 29 (Table 6.4). It may be mentioned in this context that The onlydrawback of the lifting based
procedure takes much more run time for each simulation higher than DWT. For example, DWT takes approximately 10
minutes to run 1500 simulations. With a processor speed of 2.8 GHz, it takes 5 hours of CPU time to run a simulation of
1500 lifting procedures whenn = 27. The CPU time increases with the increase of sample sizen. Forn = 28 andn = 29,
CPU time is approximately 8 hours for 1500 simulations.

From the above observations we can now conclude that about 45% of the finest level lifting coefficients may be
considered as the best choice for detecting change points irrespective of any jump size and presence of noise in the data.

(c) Constant variances with 4% missing data:

We now consider the cases of missing data. We choose 4% of the simulated data missing at random. This means that
initially, we intent to study the simulation results of lifting based coefficients when small number of data points are
missing. These results may be compared with the situation ofno missing observations. Thus, following the same procedure
of lifting described in (b), we have presented in Tables 6.5,6.6 and 6.7 the percentages of detection of change points with
4% missing data by different sets of lifting coefficients forn = 27, n = 28 andn = 29 respectively.

Table 6.5: Percentages of detection when 4% data missing,n = 27

Variance
0.5 1 1.5

Jump size 68:121 91:121 68:121 91:121 68:121 91:121
1 84.9 65.7 80.6 53.2 79.6 48.3
3 83.1 61.5 81.8 60.8 80.2 61.2
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Table 6.6: Percentages of detection when 4% missing,n = 28

Variance
0.5 1 1.5

Jump size 138:244 185:244 138:244 185:244 138:244 185:244
1 87.2 59.7 87.5 58.1 86.8 57.7
3 89.5 62.6 88.2 62.7 89.2 60.1

Table 6.7: Percentages of detection when 4% missing,n = 29

Variance
0.5 1 1.5

Jump size 277:489 371:489 277:489 371:489 277:489 371:489
1 90.6 68.3 87.5 68.1 87.2 67.2
3 92.5 70.0 90.1 67.6 88.6 64.2

Comparison of results presented in Table 6.2 and Table 6.5 shows that the detection of change points is not easy when 4%
of the observations are missing compared to no missing observations. If we consider the first set of lifting coefficients at the
finest level i.e. 68 to 121, accounting for 45% of all coefficients and low noise level, the change point detection is possible
for 85% cases for both the jump sizes. Same set of coefficientsperform better compared to other choice of coefficients
when the error variance is high. Interestingly if we increase sample sizes, percentage of detection remains almost same. It
is, however, true that the percentages of detection in the case of missing data are relatively lower compared to the situation
of no missing observations, as observed in Tables 6.2, 6.3 and 6.4.

(d) AR(1) variance structure with no missing data:
Keeping in mind the problem of change point detection in timeseries data an attempt has been made in our simulation

study, we generate data from a simple time series structure as autoregressive (1) or AR(1). Following are few cases where
we recommend lifting-based procedure to detect change points under AR(1) structure.

Correlated variance structure is very common in real data problems. To study the detection procedure under correlated
variance structure, we simulate three different AR coefficients 0.2, 0.6 and 0.85 denoted byα. There are no missing
observations in the dataset. We use the same sets of lifting coefficients shown in Table 6.2 and choose the best one for
different AR coefficients. Note that the higher the value ofα means the stronger correlation structure in the data. Noise
variance is constant at 1 for these sets of simulations. Simulation results are presented in Tables 6.8, 6.9 and 6.10.

Table 6.8: Percentages of detection with AR(1) structure, no missing data,n = 27

α
0.2 0.6 0.85

Jump size 68:121 91:121 68:121 91:121 68:121 91:121
1 81.3 82.3 82.9 83.7 81.7 81.1
3 87.1 75.6 87.7 75.2 88.3 74.9

Table 6.9:Percentages of detection with AR(1) structure, no missing data,n = 28

α
0.2 0.6 0.85

Jump size 148:254 195:254 148:254 195:254 148:254 195:254
1 86.2 82.6 87.0 83.6 83.4 82.2
3 92.4 77.0 89.6 76.4 90.1 78.8

Table 6.10:Percentages of detection with AR(1) structure,no missing data,n = 29

α
0.2 0.6 0.85

Jump size 298:510 392:510 298:510 392:510 298:510 392:510
1 87.1 68.5 88.5 70.2 87.6 66.7
3 90.6 73.2 91.1 73.4 91.5 72.6

It is interesting to note from Tables 6.8, 6.9 and 6.10 that the percentages of detection remain the same across different
values ofα for the same set of coefficients. If we consider the first set oflifting coefficients at the finest level i.e. 68 to
121 which accounts for 45% of all coefficients and having low noise level, the detection of change points becomes 87%
cases irrespective of any jump size. It is thus clear that irrespective of high or low values of AR(1) coefficients, we can
choose 45% of the finest level of detail coefficients which successfully catch the change points for at least 82% cases. It is
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also seen from the same tables percentage of detection remains same across different sample sizes. If we compare results
between constant variance and a variance structure like AR(1), we find that irrespective of jump sizes and sample sizes,
the percentage of detection drops 6% on an average due to the introduction of a variance structure across all the jump
and sample sizes. Undoubtedly, our method is simplistic butat the same time effective in comparison to model the AR
structure. Apparently, the effect of the presence of variance structure affects minimally to detect change point.

Now, with a processor speed of 2.8 GHz, it takes more than 5 hours of CPU time to run a simulation of 1500 lifting
procedures whenn = 27. Forn = 28 andn = 29, CPU time is few hours more. For DWT, irrespective of sample sizes, it
takes approximately 10 minutes to run 1500 simulations.

(e) AR(1) variance structure with 4% missing data:
Now, incorporating 4% missing observations in the dataset we simulate three different AR coefficients 0.2, 0.6 and 0.85
from AR(1) variance structure. We use three different sets of lifting coefficients as shown in Table 6.11 and choose the
best one from different AR coefficients. Higher value ofα means the stronger correlation structure in the data. Noise
variance is constant at 1 for these sets of simulations. Results are presented in Tables 6.11, 6.12 and 6.13.

Table 6.11:Percentages of detection with AR(1), 4% missingdata,n = 27

α
0.2 0.6 0.85

Jump size 68:121 91:121 68:121 91:121 68:121 91:121
1 84.2 72.7 84.2 74 82.5 73.6
3 89.5 79.5 88.3 79.4 88.9 78.4

Table 6.12: Percentages of detection with AR(1), 4% missingdata,n = 28

α
0.2 0.6 0.85

Jump size 138:244 185:244 138:244 185:244 138:244 185:244
1 79.4 78.9 80.3 78.2 77.6 72.4
3 85.3 75.7 84.6 75.4 83.2 72.5

Table 6.13: Percentages of detection with AR(1), 4% missingdata,n = 29

α
0.2 0.6 0.85

Jump size 277:489 371:489 277:489 371:489 277:489 371:489
1 83.4 76.3 83.6 75.8 83.1 72.4
3 87.1 79.5 86.7 78.1 86.5 79.2

Based on the results presented in Tables 6.11, 12 and 13, we find that the detection of change points become once again
difficult if we consider 4% missing data and small jump size. However, the percentages of detection remain the same across
different values ofα for the same set of coefficients. Now, considering the first set of lifting coefficients at the finest level
i.e. 68 to 121 which accounts for 45% of all coefficients and having low noise level, the detection of change points is
possible for 84% cases for the jump sizes considered here. Ifwe change sample size ton = 28 the detection percentage is
still close to 80%. Forn = 29 detection percentage increases marginally to 83%. If we compare our results with constant
variance case, irrespective of any sample size, percentageof detection drops 6% on an average for considering AR(1)
variance structure.

(f) AR(1)variance structure with 14% missing data:
If we enlarge the percentage of missing data (14%) and simulate three different AR coefficients 0.2, 0.6 and 0.85 from
AR(1) variance structure, we find that the detection of change points do not provide any fruitful result in the case of small
jump size.

Table 6.14:Percentages of detection, AR(1) structure, 14%missing data,n = 27

α
0.2 0.6 0.85

Jump size 55:108 78:108 55:108 78:108 55:108 78:108
1 29.6 58.9 28.8 58.4 31.1 56.9
3 34 61.4 34.7 61.1 34 57.7
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Table 6.15:Percentages of detection, AR(1) structure, 14%missing data,n = 28

α
0.2 0.6 0.85

Jump size 124:218 159:218 124:218 159:218 124:218 159:218
1 24.5 46.7 24.8 45.9 23.8 44.7
3 25.8 47.2 25.3 46.1 25.1 45.2

Table 6.16:Percentages of detection, AR(1) structure, 14%missing data,n = 29

α
0.2 0.6 0.85

Jump size 249:440 321:440 249:440 321:440
1 30.1 49.7 29.7 49.3 29.1 48.8
3 33.8 51.4 32.1 50.8 28.6 49.1

For n = 27, considering the first set of lifting coefficients at the finest level i.e. 55 to 108 which accounts for 45% of all
coefficients and having low noise level, the detection of change points is possible only for 32% cases irrespective of any
jump size. The percentages of detection is found to be moderately high if we take the second set of lifting coefficients i.e.
78 to 108 for both the jump sizes. If we increase sample sizes from n = 27 to n = 28 andn = 29 no striking difference of
the results from the earlier one is noticed. Thus, percentage of detection remains more or less same across sample size.
(Tables 6.14, 6.15 and 6.16).

From the above observations Hence, we can draw conclusion that 45% of all coefficients can detect change points
irrespective of any jump size and error variance. In the presence of missing data those set of coefficients work well if a
huge number of data points are not missing. If a considerablenumber of data points are missing, 32% of detail coefficients
work better than 45% of all detail coefficients.

We may now turn to provide a real data example to substantiateour observations based on simulation results.

7 St. Lawrence Streamflow Data

Our case study, for purposes of comparison, uses annual streamflow data from the St. Lawrence River at Ogdensbourg,
New York from the years 1860 to 1950. A description of the datais given in Rasmussen (2001). Here we note that using
lifting-based coefficients, we found the mode of the posterior distribution for the time of the change point to be 1891. For
this example, the original data had 90 observations. We do not need to augment it to 2J to apply wavelet transform. Lifting
transform can perform with any number of data points. Using 45% of fine detail coefficients we get our change point
as 1891. Plot of the posterior pdf (Figure 1) shows multiple modes. Lifting-based coefficients are detecting the correct
change point. It is not unusual to have a posterior pdf with multiple modes using lifting-based coefficients. There are two
possible reasons for the multiple modes in the plot. Our procedure is useful for finding single change point in the data set
but if there exists multiple change points, we can not be ableto find them. Secondly, lifting based coefficients are based
on polynomial regression which does not take into account the time dependence of the data which may contribute to the
calculation of lifting coefficients and hence to the posterior pdf.

8 Conclusion

In this paper, we have investigated the choice of lifting coefficients in the context of detecting change points. We find
that the detection of change points depends on the choice of lifting coefficients. We simulate time series data with AR(1)
structure in the presence of missing observations and also with no missing observation. Lifting-based coefficients work
when number of missing observations are not large. We presented some results based on sample sizen = 27. Further
increase of sample size ton = 28 or n = 29 we find that the results are not different from the smaller sample size. For a
large number of missing observations with moderately high noise in the data, lifting performs moderately well. Overall,
lifting coefficients perform very well in terms of finding change points for noisy data and data with smaller number of
missing observations.
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Fig. 1: Plot of the St. Lawrence streamflow data (top) with change point at year 1891 and posterior pdf (bottom)

We confirm our findings by applying them to a real dataset whichhad previously known change points. Lifting
transformation and associated detail coefficients have never been used to detect change points in Bayesian settings or
otherwise. We propose Bayesian change point detection method using lifting wavelet coefficients. We also come up with
estimated percentages of lifting coefficients which can be used to detect change points in real dataset through
simulations. Since change point problems occur regularly in other disciplines such as Ecology, Glaciology, Hydrology
etc, it is suggested that our proposed algorithm should be used to get useful results for other fields of research. In the
future we would like to apply this algorithm concerning withreal data change point problems for other disciplines.

In our simulation results, we are concerned with one resolution level. However, for lifting transformation the resolution
level can be changed for the detection of relatively undocumented small changes. In our simulation study, we keep the
resolution level at two which is the default resolution level. For relatively small jump size and presence of noise in the
data, change in resolution level may result a better percentage of detection of change points. This, however, is not true
for the case of large number of missing observations with thepresence of moderate noise in the dataset. In this case, the
resolution level needs to be increased to increase the percentages of detection.

Change point detection is a common problem in time series data. In our case study we encounter time series data
with relatively high noise. In such a situation, it is appropriate to choose AR(1) structure of simulation to examine the
effectiveness of our algorithm and find that it is quite useful. We also observe that the percentage of detections remain
unchanged even if we increase the correlation in variance structure. This percentage changes as and when the size of the
jump or the noise in the dataset changes.

Another important observation regarding the lifting technique is that it depends on polynomial regression to get the
detail wavelet coefficients. Polynomial regression may notbe an appropriate technique when the real data is very noisy.A
correlated data structure may influence negatively to predict the detail coefficients on the basis of polynomial regression.
We may have a better time series predictive approach towardslifting technique.

9 Appendix: Calculation of the marginal posterior distribu tion of τ

From section 4.2 the joint posterior density is given by
p(τ,△,σ2|w) ∝ σ−(n+1)/2×

exp(−∑ j≥ j0 ∑k(w j ,k −△q j,k (τ))2/(2σ2))

= σ−(n+1)/2× exp((A−2△B+△2C)/(2σ2))

whereA = ∑ j≥ j0 ∑k w j,
2
k ,B = ∑ j≥ j0 ∑k w j,k q j,k (τ), andC = ∑ j≥ j0 ∑k q2

j ,k (τ).
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Ogden and Lynch (1999) used the same joint posterior densityto derive the marginal posterior distribution forτ. But in
the final expression, after integrating out△ andσ , they came up with a different number in the exponent. We redid the
integration and our exponent is different from what they came up with. But using our final expression we get sensible
answer for all the change point problems. Following is the detailed derivation.

p(τ|w) ∝
∫ ∞

0

∫ ∞
−∞ σ−(n+1)/2exp(−C/(2σ2)(△2−2△B/C+A/C)) d△ dσ

=
∫ ∞

0 σ−(n+1)/2∫ ∞
−∞ exp(−C/(2σ2)[(△−B/C)2−B2/C2+A/C] d△ dσ

=
∫ ∞

0 σ−(n+1)/2∫ ∞
−∞ exp(−C/(2σ2)(△−B/C)2exp((−1/(2σ2)(A−B2)/C) d△ dσ

=
∫ ∞

0 σ−(n+1)/2exp((−1/(2σ2)(A−B2)/C)
∫ ∞
−∞ exp(−C/(2σ2)(△−B/C)2 d△ dσ

=
∫ ∞

0 σ−(n+1)/2exp((−1/(2σ2)(A−B2)/C)( σ√
C
)(
√

(2π))
∫ ∞
−∞(

1√
(2π)( σ√

C
)
)exp(−C/(2σ2)(△−B/C)2 d△ dσ

Using property of the normal distribution the inside integral is 1 and choosingk = 1
2(A−B2)/C we can write

p(τ|w) ∝ 1/
√

C
∫ ∞

0 σ−(n−1)/2exp((−k/σ2))dσ

Substitutingm = k/σ2 and calculating the Jacobian we get

p(τ|w) ∝ 1/
√

C
∫ ∞

0 (k/m)(n−1)/4exp(−m)m3/2(dm/−2k5/2)

∝ 1/
√

Ck−(n−1)/4−5/2∫ ∞
0 m(n+1)/4+3/2exp(−m)dm

The integral is a proper Gamma integral and hence a constant.So, our end result after replacingk

p(τ|w) ∝ 1√
C
((A−B2)/C)−(n+9)/4
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