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Abstract: The aim of this paper is to present new fixed point results in the framework of Branciari metric spaces. Some examples are
presented to support the results proved herein. These results unify, generalize and complement the results of Jleli andSamet [J. Inequal.
Appl. 2014, Article ID38(2014)]. We also provide an exampleof our result, where the comparable result in the existing literature is not
applicable. As an application of our results, we obtain a fixed point results involving a cyclic mapping, not necessarilycontinuous.
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1 Introduction

One of the most important result in metric fixed point
theory is Banach contraction principle ([3]) which states
that, if a metric spaceX is complete andT : X → X
satisfies

d(Tx,Ty)≤ kd(x,y)

for all x,y in X and for somek ∈ (0,1). Then T has a
unique fixed point.

Extensions of Banach contraction principle have been
obtained either by generalizing the domain of the mapping
or by extending the contractive condition on the mappings
( see [1]-[30]).

In metric fixed point theory, contractive conditions on
mappings play vital role in finding the solution of fixed
point problems.

Rakotch [29] extended this principle replacing the
contraction factork in above inequality with some
function onX×X taking values in(0,1).

Geraghty [16] introduced the class of mappings:

S=
{

ψ : [0,∞)→ [0,1) : lim
n→∞

tn = 0 whenever lim
n→∞

ψ(tn) = 1
}

and obtained an interesting extension of Banach
contraction principle as follows.

Theorem 1.Let X be a complete metric space and T: X →
X. If there existsψ ∈ S such that

d(Tx,Ty)≤ ψ(d(x,y))d(x,y)

holds for all x,y ∈ X. Then T has a unique fixed point
x∗ ∈ X and for each x∈ X, the sequence{Tn(x)} ( called
Picard sequence ) converges to x∗.

Nadler [23] replaced the range of a mapping with
CB(X) and proved the multivalued version of Banach
contraction principle using the Hausdorff metric.

In 2000, Branciari [2] introduced the concept of
generalized metric spaces. Since then, several fixed point
results have been obtained in the setup of such spaces (see
[4],[5],[7]-[14]) and the references therein.

In this paper, we obtain several fixed point results of
cyclic (α,β )- admissible mappings satisfying generalized
contractive conditions and hence unify the comparable
results in the existing literature.

In the sequel, the lettersN, andR will denote the set
of natural numbers, and the set of all real numbers,
respectively.

Consistent with [2] and [13], the following definitions
and results will be needed in the sequel.

Definition 1.[2] Let X be a nonempty set and
d : X×X −→ [0,∞). If for any x,y∈ X and u,v∈ X, each
of them different from x and y, the following conditions
hold:
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(i) d (x,y) = 0 if and only if x= y;
(ii) d (x,y) = d (y,x) ;
(iii) d (x,y)≤ d (x,u)+d (u,v)+d (v,y) .
The pair(X,d) is called a generalized metric space.

Definition 2.Let (X,d) be a generalized metric space. (a)
A sequence{xn} in X is said to be convergent to x∈ X if
d (xn,x) −→ 0 as n−→ ∞. In this case, we say that
xn −→ x as n−→ ∞. (b) A sequence{xn} in X is said to
be Cauchy if d(xn,xm) −→ 0 as n,m−→ ∞.(c) (X,d) is
said to be complete if and only if every Cauchy sequence
in X converges to some point in X.

Lemma 1.[5] Let (X,d) be a generalized metric space,
and {xn} a Cauchy sequence in X. If d(xn,x) −→ 0 as
n −→ ∞ for some x∈ X. Then d(xn,y) −→ d (x,y) as
n −→ ∞ for all y ∈ X. In particular, {xn} does not
converge to y if y6= x.

We set

Θ = {θ : (0,∞)−→ (1,∞) : θ satisfiesΘ1,Θ2 andΘ3},

where
(Θ1) θ is nondecreasing,
(Θ2) for each sequence{tn} in (0,∞), lim

n−→∞
θ (tn) = 1

if and only if lim
n−→∞

tn = 0+, and

(Θ3) there existsr ∈ (0,1) and ℓ ∈ (0,∞] such that

lim
t−→0+

θ (t)−1
tr = ℓ.

Example 1.[13] Let i ∈ {1,2,3}. Define
θi : (0,∞)−→ (1,∞) by

(1) θ1 (t) = e
√

t ,

(2) θ2 (t) = e
√

tet
,

(3) θ3 (t) = 2− 2
π arctan

(

1
tγ
)

, 0< γ < 1, t > 0.
Thenθi ∈Θ .
Recently, Jleli et al. [13] obtained the following

generalizations of the Banach contraction principle.

Theorem 2.[13] Let (X,d) be a complete generalized
metric space and T: X −→ X. If there existθ ∈ Θ and
k∈ (0,1) such that for any x,y∈ X

d (Tx,Ty) 6= 0 implies thatθ (d (Tx,Ty))≤ (θ (d (x,y))k
.

Then T has a unique fixed point.

Theorem 3.[14] Let (X,d) be a complete generalized
metric space and T: X −→ X. If there existθ ∈ Θ and
k∈ (0,1) such that for any x,y∈ X

d (Tx,Ty) 6= 0 implies thatθ (d (Tx,Ty))≤ (θ (M (x,y))k
,

where

M (x,y) = max{d (x,y) ,d (x,Tx) ,d (y,Ty)}

andθ is continuous. Then T has a unique fixed point.

Definition 3.[1] Let X be a nonempty set andα,β : X −→
[0,∞). A selfmapping T on X is called a cyclic(α,β )-
admissible mapping if for any x∈ X,

α (x)≥ 1 implies thatβ (Tx)≥ 1,

andβ (x)≥ 1 implies thatα (Tx)≥ 1.

The aim of this paper is to extend Theorems2 and3
using the concept of cyclic(α,β )-admissible mappings.

2 Main Results

We start with the following result.

Theorem 4.Let (X,d) be a complete generalized metric
space,α,β : X −→ [0,∞) and T : X −→ X cyclic(α,β )-
admissible mapping. Suppose that there existsθ ∈ Θ and
k∈ (0,1) such that for any for x,y∈X with d(Tx,Ty) 6= 0,
we have

α (x)β (y)θ (d (Tx,Ty))≤ [θ (R(x,y))]k ,

where

R(x,y)=max{d(x,y),d(x,Tx),d(y,Ty),
d(x,Tx)d(y,Ty)

1+d(x,y)
}

andθ is continuous. If there exists x0 ∈X such thatα (x0) ,
β (x0) , β (Tx0) ≥ 1, and one of the following conditions
holds:

(i) T is continuous,
(ii) if {xn} is a sequence inX such thatxn −→ x as

n−→ ∞ andβ (xn)≥ 1 for all n∈N, thenβ (x)≥ 1.
ThenT has a fixed point. Furthermore, ifα (x) , β (x) ≥ 1
for every fixed pointx∈X, thenT has a unique fixed point.

Proof.Let x0 be a given point inX such thatα (x0) ,
β (x0) , β (Tx0) ≥ 1. Define a sequence{xn} in X by
xn = Txn−1 = Tnx0 for all n ∈ N. If there exists some
n0 ∈ N for which Tn0x0 = Tn0+1x0, thenTn0x0 is a fixed
point of T and hence the result follows. Assume that
d
(

Tnx0,Tn+1x0
)

> 0 for everyn ∈ N. SinceT is cyclic
(α,β )-admissible mapping,

α (x0) ≥ 1 implies thatβ (Tx0) = β (x1)≥ 1 and

β (x0) ≥ 1 implies thatα (Tx0) = α (x1)≥ 1.

Continuing this way, we haveα (Tnx0) ≥ 1 and
β (Tnx0)≥ 1 for all n∈ N and hence

α
(

Tn−1x0
)

β (Tnx0)≥ 1 and (2.1)

α
(

Tn−1x0
)

β
(

Tn+1x0
)

≥ 1 (2.2)

hold for alln∈ N. By given assumption, we have

θ
(

d
(

Tnx0,T
n+1x0

))

≤ α
(

Tn−1x0
)

β (Tnx0)θ
(

d
(

Tnx0,T
n+1x0

))
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≤






θ






max











d
(

Tn−1x0,Tnx0
)

,d
(

Tn−1x0,TTn−1x0
)

,

d (Tnx0,TTnx0) ,
d(Tn−1x0,TTn−1x0)d(Tnx0,TTnx0)

1+d(Tn−1x0,Tnx0)























k

=

[

θ

(

max

{

d
(

Tn−1x0,Tnx0
)

,d
(

Tnx0,Tn+1x0
)

,
d(Tn−1x0,T

nx0)d(Tnx0,T
n+1x0)

1+d(Tn−1x0,Tnx0)

})]k

=
[

θ
(

max
{

d
(

Tn−1x0,T
nx0
)

,d
(

Tnx0,T
n+1x0

)})]k
.

(2.3)
If for somen∈N,

max

{

d
(

Tn−1x0,Tnx0
)

,

d
(

Tnx0,Tn+1x0
)

}

= d
(

Tnx0,T
n+1x0

)

,

then we have

θ
(

d
(

Tnx0,T
n+1x0

))

≤
[

θ
(

d
(

Tnx0,T
n+1x0

))]k
,

and hence

ln
[

θ
(

d
(

Tnx0,T
n+1x0

))]

≤ k ln
[

θ
(

d(Tnx0,T
n+1x0)

)]

,

a contradiction. Therefore

max
{

d
(

Tn−1x0,Tnx0
)

,d
(

Tnx0,Tn+1x0
)}

= d
(

Tn−1x0,Tnx0
)

for all n∈ N. From (2.3), we have

θ
(

d
(

Tnx0,Tn+1x0
))

≤
[

θ
(

d
(

Tn−1x0,Tnx0
)

)
)]k

for all n∈ N.

Now

1 ≤ θ
(

d
(

Tnx0,T
n+1x0

))

≤
[

θ
(

d
(

Tn−1x0,T
nx0
))]k

≤
[

θ
(

d
(

Tn−2x0,T
n−1x0

))]k2

≤ ...≤ [θ (d(x0,Tx0))]
kn
. (2.4)

On taking limit asn−→ ∞, we get

lim
n−→∞

θ
(

d
(

Tnx0,T
n+1x0

))

= 1,

and hence
lim

n−→∞
d
(

Tnx0,T
n+1x0

)

= 0.

As θ ∈Θ , there existr ∈ (0,1) andℓ ∈ (0,∞] such that

lim
n−→∞

θ
(

d
(

Tnx0,Tn+1x0
))

−1

[d (Tnx0,Tn+1x0)]
r = ℓ. (2.5)

If ℓ < ∞ then setB= ℓ
2 > 0. There existsn0 ∈N such that

∣

∣

∣

∣

∣

θ
(

d
(

Tnx0,Tn+1x0
))

−1

[d (Tnx0,Tn+1x0)]
r − ℓ

∣

∣

∣

∣

∣

≤ B for all n≥ n0,

which implies that

θ
(

d
(

Tnx0,Tn+1x0
))

−1

[d (Tnx0,Tn+1x0)]
r ≥ ℓ−B= B

for all n≥ n0. Thus

n
[

d
(

Tnx0,T
n+1x0

)]r ≤ An
[

θ
(

d
(

Tnx0,T
n+1x0

))

−1
]

,

for all n≥ n0, whereA= 1
B. Suppose thatℓ=∞. Let B> 0

be an arbitrary positive number. By (2.5), there existsn0 ∈
N such that

θ
(

d
(

Tnx0,Tn+1x0
))

−1

[d (Tnx0,Tn+1x0)]
r ≥ B for all n≥ n0.

That is,

n
[

d
(

Tnx0,T
n+1x0

)]r ≤ An
[

θ
(

d
(

Tnx0,T
n+1x0

))

−1
]

,

for all n≥ n0, whereA= 1
B. Thus in all cases, there exist

A> 0 andn0 ∈N such that

n
[

d
(

Tnx0,T
n+1x0

)]r ≤ An
[

θ
(

d
(

Tnx0,T
n+1x0

))

−1
]

,

for all n≥ n0. By (2.4),

n
[

d
(

Tnx0,T
n+1x0

)]r ≤ An
(

[θ (d(x0,Tx0))]
kn −1

)

,

(2.6)
for all n≥ n0. On taking limit asn−→ ∞, we obtain that

lim
n−→∞

n
[

d
(

Tnx0,T
n+1x0

)]r
= 0.

Thus, there existsn1 ∈N such that

d
(

Tnx0,T
n+1x0

)

≤ 1

n
1
r

for all n≥ n1. (2.7)

Now, we claim thatT has a periodic point. Assume on
contrary that for alln,m∈ N with n 6= m, Tnx0 6= Tmx0 .
Now

θ
(

d
(

Tnx0,T
n+2x0

))

≤ α
(

Tn−1x0

)

β
(

Tn+1x0

)

θ
(

d
(

Tnx0,T
n+2x0

))

≤






θ






max











d
(

Tn−1x0,Tn+1x0
)

,d
(

Tn−1x0,TTn−1x0
)

,

d
(

Tn+1x0,TTn+1x0
)

,
d(Tn−1x0,TTn−1x0)d(Tn+1x0,TTn+1x0)

1+d(Tn−1x0,Tn+1x0)























k

=






θ






max











d
(

Tn−1x0,Tn+1x0
)

,d
(

Tn−1x0,Tnx0
)

,

d
(

Tn+1x0,Tn+2x0
)

,
d(Tn−1x0,Tnx0)d(Tn+1x0,Tn+2x0)

1+d(Tn−1x0,Tn+1x0)























k

=

[

θ
(

max

{

d
(

Tn−1x0,Tn+1x0
)

,d
(

Tn−1x0,Tnx0
)

,

d
(

Tn+1x0,Tn+2x0
)

})]k

(2.8)
Sinceθ is nondecreasing, we obtain from (2.8) that

θ
(

d
(

Tnx0,Tn+2x0
))

≤



max







θ
(

d
(

Tn−1x0,Tn+1x0
))

,

θ
(

d
(

Tn−1x0,Tnx0
))

,

θ
(

d
(

Tn+1x0,Tn+2x0
))











k

.

(2.9)
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Let I be the set of all thosen∈ N such that the following
holds:

un = max

{

θ
(

d
(

Tn−1x0,Tn+1x0
))

,θ
(

d
(

Tn−1x0,Tnx0
))

,

θ
(

d
(

Tn+1x0,Tn+2x0
))

}

= θ
(

d
(

Tn−1x0,T
n+1x0

))

.

If |I | < ∞, then thereN ∈N such that for alln≥ N,

max

{

θ
(

d
(

Tn−1x0,Tn+1x0
))

,θ
(

d
(

Tn−1x0,Tnx0
))

,

θ
(

d
(

Tn+1x0,Tn+2x0
))

}

= max
{

θ
(

d
(

Tn−1x0,T
nx0
))

, θ
(

d
(

Tn+1x0,T
n+2x0

))}

.

It follows from (2.9) that

1 ≤ θ
(

d
(

Tnx0,T
n+2x0

))

≤
[

max

{

θ
(

d
(

Tn−1x0,Tnx0
))

,

θ
(

d
(

Tn+1x0,Tn+2x0
))

}]k

for all n ≥ N. On taking limit asn −→ ∞ in the above
inequality and by

lim
n−→∞

θ
(

d
(

Tnx0,T
n+1x0

))

= 1,

we obtain that

lim
n−→∞

θ
(

d
(

Tnx0,T
n+2x0

))

= 1.

If |I | = ∞, we can find a subsequence{an} of {un} such
that for a large enoughn, we have

an = θ
(

d
(

Tn−1x0,T
n+1x0

))

.

By (2.9), we get that

1 ≤ θ
(

d
(

Tnx0,T
n+2x0

))

≤
[

θ
(

d
(

Tn−1x0,T
n+1x0

))]k

≤
[

θ
(

d
(

Tn−2x0,T
nx0
))]k2

≤ ...≤
[

θ
(

d
(

x0,T
2x0
))]kn

for largen. Taking limit asn−→∞ in the above inequality,
we obtain that

lim
n−→∞

θ
(

d
(

Tnx0,T
n+2x0

))

= 1, (2.10)

and hence lim
n−→∞

d
(

Tnx0,Tn+2x0
)

= 0 in both cases.

Following arguments similar to those given above, there
existsn2 ∈ N such that

d
(

Tnx0,T
n+2x0

)

≤ 1

n
1
r

for all n≥ n2. (2.11)

Puth= max{n0,n1}. We consider the following cases:
Case 1: Ifm> 2 is odd, thenm= 2L+1 for someL ≥ 1.
From (2.7), we have

d
(

Tnx0,T
n+mx0

)

≤ d
(

Tnx0,T
n+1x0

)

+d
(

Tn+1x0,T
n+2x0

)

+...+d
(

Tn+2Lx0,T
n+2L+1x0

)

≤ 1

n
1
r

+
1

(n+1)
1
r

+ ...+
1

(n+2L)
1
r

≤
∞

∑
i=n

1

i
1
r

,

for all n≥ h.
Case 2: Ifm> 2 is even, thenm= 2L for someL ≥ 2.
From (2.7) and (2.11), we have

d
(

Tnx0,T
n+mx0

)

≤ d
(

Tnx0,T
n+2x0

)

+d
(

Tn+2x0,T
n+3x0

)

+...+d
(

Tn+2L−1x0,T
n+2Lx0

)

≤ 1

n
1
r

+
1

(n+2)
1
r

+ ...+
1

(n+2L−1)
1
r

≤
∞

∑
i=n

1

i
1
r

for all n ≥ h. Thus , for all n ≥ h, and m ∈ N,

d (Tnx0,Tn+mx0) ≤
∞
∑

i=n

1

i
1
r

. As
∞
∑

i=n

1

i
1
r

is convergent

(indeed 1
r > 1), {Tnx0} is a Cauchy sequence. By

completeness ofX, there exists z ∈ X such that
Tnx0 −→ zasn−→ ∞. If T is continuous, then

z= lim
n−→∞

Tn+1x0 = lim
n−→∞

T (Tnx0) = T
(

lim
n−→∞

Tnx0

)

= Tz.

Now if condition (ii ) holds, thenβ (z) ≥ 1. Without any
loss of generality, we can assume thatTnx0 6= z for some
large enoughn. If d (z,Tz)> 0, then by given assumption,
we have

θ
(

d
(

Tn+1x0,Tz
))

≤ α (Tnx0)β (z) .θ
(

d
(

Tn+1x0,Tz
))

≤
[

θ

(

max

{

d (Tnx0,z) , d
(

Tnx0,Tn+1x0
)

,

d (z,Tz) ,
d(Tnx0,T

n+1x0)d(z,Tz)
1+d(Tnx0,z)

})]k

=

[

θ
(

max

{

d (Tnx0,z) , d
(

Tnx0,Tn+1x0
)

,

d (z,Tz)

})]k

.

On taking limit asn −→ ∞ in the above inequality, we
obtain

θ (d (z,T z))≤ [θ (d (z,Tz))]k < θ (d (z,T z)) ,

a contradiction. Hencez is a periodic point ofT of period
q (say). Ifq> 1 andd (z,Tz)> 0, then we have

θ (d (z,Tz)) = θ
(

d
(

Tqz,Tq+1z
))

≤ α
(

Tq−1z
)

β (Tqz) .θ
(

d
(

Tqz,Tq+1z
))

≤ [θ (d (z,Tz))]k
q
< θ (d (z,T z)) ,

a contradiction. Thus the set of fixed points ofT is non-
empty. To prove uniqueness: Suppose thatz,u∈ X are two
fixed points ofT such thatd (z,u) = d (Tz,Tu) > 0. By
given hypothesis,α (z)≥ 1 andβ (u)≥ 1. Now

θ (d (z,u)) = θ (d (Tz,Tu))≤ α (z)β (u) .θ (d (Tz,Tu))

≤ [θ (d (z,u))]k < θ (d (z,u)) ,

gives a contradiction. Hence the result follows.
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Example 2.Let X = {0,1,2,3,4}. Defined : X×X −→ R
by

d (x,x) = 0, for all x∈ X,

d (1,2) = d (2,1) = 3,

d (2,3) = d (3,2) = d (1,3) = d (3,1) = 1, and

d (x,y) = |x− y| , otherwise.

Note that(X,d) is a complete generalized metric space,
but not a metric space. Indeed,

3= d (1,2)> d (1,3)+d (3,2) = 1+1= 2.

Let T : X −→ X be defined by

T (x) =

{

2 if x∈ {0,1,2,3}
0 if x= 4.

Define

α (x) = β (x) =

{

1 if x∈ {0,1,2,3} ,
0 otherwise.

Also defineθ : (0,∞) −→ (1,∞) by θ (t) = e
√

t . Clearly,
θ ∈ Θ andT is a cyclic(α,β )-admissible mapping. Now
if {xn} is a sequence inX such thatxn −→ xasn−→∞ and
β (xn) ≥ 1. Thenβ (x) ≥ 1. For x∈ {0,1,2,3} andy= 4,
we have

α (x)β (1) .θ (d(T (x) ,T (1))) = α (x)β (1) .θ
(

d

(

1
2
,0

))

≤ [θ (R(x,1))]k ,

for all k∈ (0,1). Thus, all the conditions of Theorem4 are
satisfied. Moreover,x= 2 is a fixed point ofT.

Following are some corollaries of Theorem4.

Theorem 5.Let (X,d) be a complete metric space,
α,β : X −→ [0,∞) and T : X −→ X cyclic
(α,β )-admissible mapping. Suppose that there exists
θ ∈ Θ and k∈ (0,1) such that for any x,y ∈ X with
d (Tx,Ty) 6= 0, we have

α (x)β (y)θ (d (Tx,Ty))≤ [θ (R(x,y))]k ,

where

R(x,y)=max{d(x,y),d(x,T x),d(y,Ty),
d(x,Tx)d(y,Ty)

1+d(x,y)
}

andθ is continuous. If there exists x0 ∈X such thatα (x0) ,
β (x0) , β (Tx0) ≥ 1, and one of the following conditions
holds:

(4.1) T is continuous,
(4.2) if {xn} is a sequence inX such thatxn −→ x as

n−→ ∞ andβ (xn)≥ 1 for all n∈ N, thenβ (x)≥ 1.
ThenT has a fixed point. Furthermore, ifα (x) , β (x) ≥ 1
for every fixed pointx∈X, thenT has a unique fixed point.

Theorem 6.Let (X,d) be a complete generalized metric
space, and T: X −→X. If there existsθ ∈Θ and k∈ (0,1)
such that for any x,y∈ X with d(Tx,Ty) 6= 0, we have

θ (d (Tx,Ty))≤ [θ (R(x,y))]k ,

where

R(x,y)=max{d(x,y),d(x,T x),d(y,Ty),
d(x,Tx)d(y,Ty)

1+d(x,y)
}

andθ is continuous. Then T has a unique fixed point.

Proof.The result follows by settingα (x) = β (x) = 1 for
all x∈ X in Theorem4.

The following corollary is a fixed point result in [14].

Corollary 1.[14] Let (X,d) be a complete generalized
metric space, and T: X −→ X. If there existsθ ∈ Θ and
k ∈ (0,1) such that for any for any x,y ∈ X with
d (Tx,Ty) 6= 0, we have

θ (d (Tx,Ty))≤ [θ (M(x,y))]k ,

where

M(x,y) = max{d(x,y),d(x,Tx),d(y,Ty)}

andθ is continuous. The n T has a unique fixed point.

Theorem 7.Let (X,d) be a complete generalized metric
space,α,β : X −→ [0,∞) and T : X −→ X cyclic(α,β )-
admissible mapping . Suppose that there existsθ ∈Θ and
k∈ (0,1) such that for any x,y∈ X with d(Tx,Ty) 6= 0, we
have

α (x)β (y)θ (d (Tx,Ty))≤ [θ (d(x,y))]k ,

where θ is continuous. If there exists x0 ∈ X such that
α (x0) , β (x0) , β (Tx0) ≥ 1, and one of the following
conditions holds:

(i) T is continuous,
(ii) if {xn} is a sequence inX such thatxn −→ x as

n−→ ∞ andβ (xn)≥ 1 for all n∈N, thenβ (x)≥ 1.
ThenT has a fixed point. Furthermore, ifα (x) , β (x) ≥ 1
for every fixed pointx∈X, thenT has a unique fixed point.

Theorem 8.Let (X,d) be a complete metric space,
α,β : X −→ [0,∞) and T : X −→ X cyclic
(α,β )-admissible mapping . Suppose that there exists
θ ∈ Θ and k∈ (0,1) such that for any x,y ∈ X with
d (Tx,Ty) 6= 0, we have

α (x)β (y)θ (d (Tx,Ty))≤ [θ (d(x,y))]k ,

where θ is continuous. If there exists x0 ∈ X such that
α (x0) , β (x0) , β (Tx0) ≥ 1, and one of the following
conditions holds:
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(i) T is continuous,
(ii) if {xn} is a sequence inX such thatxn −→ x as

n−→ ∞ andβ (xn)≥ 1 for all n∈N, thenβ (x)≥ 1.
ThenT has a fixed point. Furthermore, ifα (x) , β (x) ≥ 1
for every fixed pointx∈X, thenT has a unique fixed point.

Example 3.Let X = [0,1] and d : X ×X −→ R given by
d (x,y) = |x− y| for all x,y∈X. Let T : X −→X be defined
by

T (x) =

{

1
2 if x∈ [0,1)
0 if x= 1.

,

Suppose that

α (x) = β (x) =

{

1 if x∈ [0,1)
0 otherwise .

Defineθ : (0,∞) −→ (1,∞) by θ (t) = e
√

tet
. Clearly,θ ∈

Θ and T is a cyclic (α,β )-admissible mapping. Now if
{xn} is a sequence inX such thatxn −→ x asn−→ ∞ and
β (xn)≥ 1. Thenβ (x)≥ 1. Forx∈ [0,1), y= 1, we have

α (x)β (1) .θ (d(T (x) ,T (1))) = α (x)β (1) .θ
(

d

(

1
2
,0

))

≤ [θ (d(x,1))]k wherek∈ (0,1) .

Thus, all the conditions of Theorem7 (or Theorem8) are

satisfied. Moreover,x=
1
2

is a fixed point ofT. Note that

the result in [13] can not applied toT. Indeed, forx = 1
2,

y= 1, we have

θ
(

d

(

T

(

1
2

)

,T (1)

))

= θ
(

d

(

1
2
,0

))

= θ
(

1
2

)

= e

√

1
2e

1
2
�

[

e

√

1
2e

1
2

]k

=

[

θ
(

d

(

1
2
,1

))]k

,

for all k∈ (0,1) .

Set α (x) = β (x) = 1 for all x ∈ X in Theorem7 to
obtain the following result.

Corollary 2.[13] Let (X,d) be a complete generalized
metric space and T: X −→ X. Suppose that there exists
θ ∈ Θ and k∈ (0,1) such that for any x,y ∈ X with
d (x,y) 6= 0, we haveθ (d (Tx,Ty)) ≤ [θ (d (x,y))]k . Then
T has a unique fixed point.

3 Some cyclic contractions via cyclic
(α,β )-admissible mapping

Kirk et al. [6] introduced the concept of cyclic mappings
and cyclic contractions as follows:

Let A and B be nonempty subsets of a metric space
(X,d).

Definition 4.[6] A mapping T: A∪B −→ A∪B is called
(a) cyclic if T(A)⊆ B and T(B)⊆ A (b) cyclic contraction
if there exists k∈ (0,1) such that d(Tx,Ty)≤ kd(x,y) for
all x ∈ A and y∈ B.

Note that a Banach-contraction mapping is continuous
while a cyclic contraction need not be continuous. This
signifies the role of cyclic mappings in metric fixed point
theory ([17]-[28]).

In this section, we apply Theorem4 to prove fixed
point results involving a cyclic mapping in the setup of
generalized metric spaces.

Theorem 9.Let A and B be two closed subsets of a
complete generalized metric space(X,d) such that A∩B
6= /0 and T : A∪B −→ A∪B a cyclic mapping. If for all
x∈ A and y∈ B, we have

θ (d (Tx,Ty))≤ [θ (R(x,y))]k ,

where

R(x,y) = max
{

d (x,y) ,d (x,Tx) ,d (y,Ty) , d(x,Tx)d(y,Ty)
1+d(x,y)

}

,

θ ∈ Θ is continuous and k∈ (0,1). Then T has a unique
fixed point in A∩B.

Proof.Defineα,β : X −→ [0,∞) by

α (x) =

{

1, if x∈ A
0, otherwise andβ (x) =

{

1, if x∈ B
0, otherwise.

Forx∈ A andy∈ B, we have

α (x)β (y) .θ (d (Tx,Ty))≤ [θ (R(x,y))]k ,

where

R(x,y) = max
{

d (x,y) ,d (x,Tx) ,d (y,Ty) , d(x,Tx)d(y,Ty)
1+d(x,y)

}

.

Also note thatT is a cyclic (α,β )-admissible mapping.
As A∩B 6= /0, there existsx0 ∈ A∩B such thatα (x0)≥ 1,
β (x0) ≥ 1 andβ (Tx0) ≥ 1. Let {xn} be a sequence in
X such thatxn −→ x as n −→ ∞ and β (xn) ≥ 1 for all
n ∈ N. Thusxn ∈ B for all n ∈ N and hencex ∈ B which
implies β (x) ≥ 1. Thus, all the conditions of Theorem4
are satisfied. SoT has a unique fixed pointz (say) inA∪B.
If z∈ A, thenz= Tz∈ B. Similarly, if z∈ B, thenz= Tz∈
A. Thereforez∈ A∩B.

Corollary 3.Let A and B be two closed subsets of a
complete metric space(X,d) such that A∩ B 6= /0 and
T : A∪B−→ A∪B a cyclic mapping. If for all x∈ A and
y∈ B, we have

θ (d (Tx,Ty))≤ [θ (R(x,y))]k ,

where

R(x,y) = max
{

d (x,y) ,d (x,Tx) ,d (y,Ty) , d(x,Tx)d(y,Ty)
1+d(x,y)

}

,

θ ∈ Θ is continuous and k∈ (0,1). Then T has a unique
fixed point in A∩B.
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Example 4.Let X = R be endowed with the usual metric
d(x,y) = |x− y| andT : A∪B−→ A∪B defined byTx=
− x

6 whereA= [−1,0] andB= [0,1]. Defineθ : (0,∞)−→
(1,∞) by θ (t) = et . Note that for allx ∈ A andy∈ B, we
have

θ (d (Tx,Ty)) = e|Tx−Ty| = e
|x−y|

6 =
[

e|x−y|
] 1

6

≤
[

max

{

d (x,y) ,d (x,Tx) ,d (y,Ty) ,
d(x,Tx)d(y,Ty)

1+d(x,y)

}]k

,

wherek∈
[ 1

6,1
)

. Thus all the conditions of Theorem9 (or
Corollary3) are satisfied. Moreover,x= 0 is a fixed point
of T.

Similarly, we can prove the following theorem.

Theorem 10.Let A and B be two closed subsets of a
complete generalized metric space(X,d) such that A∩B
6= /0, T : A∪B −→ A∪B a cyclic mapping andθ ∈ Θ . If
for all x ∈ A and y ∈ B, we have
θ (d (Tx,Ty)) ≤ [θ (d(x,y))]k, where k∈ (0,1). Then T
has a unique fixed point in A∩B.

Corollary 4.Let A and B be two closed subsets of a
complete metric space(X,d) such that A∩ B 6= /0,
T : A∪B−→ A∪B a cyclic mapping andθ ∈Θ . If for all
x∈ A and y∈ B, we have

θ (d (Tx,Ty))≤ [θ (d(x,y))]k ,

where k∈ (0,1). Then T has a unique fixed point in A∩B.
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