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Abstract: The motivation of the present work is to develop the finiten@®perty in our workq] by using Frenet formula2]. Some
special cases of ruled surfaces with pointwiséype Gauss map are studied.
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1 Introduction

The study of submanifolds of finite type began in the late 19tfough some author’s attempts to find the best possible
estimate of the total mean curvature of a compact submanifioch Euclidean space and to find a notion of "degree” for
submanifolds of a Euclidean space. The first results on tiifest have been collected i [and [4]. Since that time, the
subject has had a rapid development.

Although the class of submanifolds of finite type is largesdhsists of nice submanifolds of Euclidean spaces. For
example, all minimal submanifolds of a Euclidean space dnehiaimal submanifolds of hyperspheres are eft¢pe
and vice versa. Also, all parallel submanifolds of a Euditspace and all compact homogeneous Riemannian manifolds
equivariantly immersed in a Euclidean space are of finite tfjurthermore, similar to minimal submanifolds, finiteeyp
submanifolds and finite type maps are characterized by ati@ral minimal principle in a natural way.

On one hand, the study of finite type submanifolds providestaral way to combine spectral theory with the geometry
of submanifolds and also with the geometry of smooth mapgsaiticular, with the Gauss map. On the other hand, the tools
of geometry of submanifolds can be applied to the study oftsplegeometry via the study of finite type submanifolds.
The notion of finite type immersion is naturally extendedamtizular to Gauss map onM in Euclidean spacéd], such
that finite type Gauss map is an especially useful tool in thdysof submanifolds€] and [7]. As is well known, the
theory of Gauss map is always one of interesting topics in did@an space and a pseudo-Euclidean space and it has
been investigated from the various viewpoints by many défidial geometersg]-[ ?]. Also, Gauss map is important for a
variety of applications in computer science as computeganaomputer graphics, ... etc.

In this paper, we deal with special cases of ruled surfacdisdothe conditions which determine these surfaces of
pointwise I-type Gauss map of the first kind. Some examples are given.

2 Preliminaries

Let a surfaceM : X = X(s,v) in an Euclidean 3 space=3. The mapG : M — $(1) c E3 which sends each point of

M to the unit normal vector t¥ at the point is called the Gauss map of a surfdgevhereS’(1) denotes the unit sphere
of E3. Then the Gauss map is given by

Xs x Xy

G=—1——,
| Xsx Xy |

1)
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whereXs andXy are the first partial derivatives with respect to the paransesfX. For the matrixgij ) of the Riemannian
metric onM we denote byg'') the inverse matrix angdis the determinant of the matrigjj ). The Laplaciam associated
with the induced metrig on M is given by

1 17} ij 0
RV DI ARl &
The mean curvaturd of the surface is defined by
12 5
H=§i1]z= g"Lij, 3)

1

whereL;; are the coefficients of the second fundamental form.

An isometric immersiorX : M — E2 of a submanifoldM in E2 is said to be of finite type iK (identified with the
position vector field oM in E3) can be expressed as a finite sum of eigenvectors of the liapla®f M, that is,

X=Xo+ 3 X @

whereXg is a constant map a¥ly, Xo, ... ,Xj non-constant maps such that
AXi=AXi, AeR 1<i<| )

If A1,A2, ..., Aj (eigenvalues) are different, théis said to be of—type. If in particular, one ol; is zero therM is said
to be of null j—type. Similarly, a smooth mag of a 2—dimensional Riemannian manifold (surfadé)of E3 is said to
be of finite type if@ is a finite sum oE3—valued eigenfunctions af [3] and [4].

LetM be a connected (not necessary compact) surfage.ifihen the position vectof and the mean curvature vector
H of M in E? satisfy
AX =—-2H, (6)

whereH = HG [4]. This formula yields the following well-known result: A gaceM in E is minimal if and only if all
coordinate functions dE3, restricted taM, are harmonic functions, that is,
AX =0. )

We recall theorem of T.TakahasHiq] and [18] which states that a submanifdidl of a Euclidean space is of-lype, i.e.
the position vector field of the submanifold in the Euclidepace satisfies the differential equation

AX = AX, ©)

for some real numbek, if and only if either the submanifold is a minimal submanifalf the Euclidean spag@ = 0)
or it is a minimal submanifold of a hypersphere of the Euditlspace centered at the origh+# 0).

If a submanifoldV of a Euclidean space has-fype Gauss ma, then
AG=A(G+C), forsome A€eR, 9)

and some constant vect@r However, the Laplacian of Gauss maps of several surfacgsasihelicoid, catenoid and
right cones irE3, and also some hypersurfaces has the form of the product

AG = f(G+C), (10)

for some non-zero smooth real functibron M and some constant vectér A surfaceM of a Euclidean spadg? is said

to have pointwise 1-type Gauss map if its Gauss Bagatisfies 10). A pointwise 1-type Gauss map is called proper if
the functionf defined by £0) is non-constant. A surface with pointwise 1-type Gauss maaid to be first kind if the
vectorC in (10) is zero vector. Otherwise, the pointwise 1-type Gauss mapid to be second kind cité][[19] - [23].
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Let a = a(s) : | ¢ R— E® be an arbitrary curve of arc-length parameter s arige containing zero. And let
{t(s),n(s),b(s)} be the moving Frenet frame aloagthen the Frenet formula is given by

t/ 0 k 0\ /[t q
nl=-kor ni|, '=—, (11)
b/ 0-10) \b ds

wheret,n andb are tangent, principal normal and binormal vector alongespectively, alsds andt are the curvature
and torsion of the curve, respectively P].

3 Darboux developable ruled surfaces with pointwisd—type Gauss map of first kind
Let M; be Darboux developable ruled surface which has the pareai@dn as the following:
M1 : X(s,v) = b(s) + vt(s), (12)

wheret and b are the tangent and binormal of space curvespectively. Thus,

G=h. (13)
Hence
(glj) :diag((T_Vk)zv 1)a g= (T_Vk)zv (14)
where diag(, ) is an 2 2—diagonal matrix. Therefore, the formula of the Laplacatakes the following form:
vk -1 0 1 0? k a 02
A= NkCTPas k-12a® vketav awv VKT (15)
Consequently
2 / o /
A T kt v(kt — 1K) (16)

— t
V=128 " Wk T T vke e "
For G has pointwise +type Gauss map of the first kind, it must investigate the falhgy condition:
kT v(kT — 1K)

(vk— r)2t+ (Vk—T1)3 n=0 0

Sincet andn are linearly independent. Then,

kt vkt — 1K)

(Vk—T1)2 0 (vk—1)3 0 (18)
Solving these simultaneous equations, wekget0 or T = 0. Since,
T —1b
H=—  Ax= ) 1
2(vk—1)’ X=Vk—1 (19)
Then, we get
AG=0, H=0, Ax=0. (20)

That is,M; is minimal surface of Ztype and has pointwise-itype Gauss map of the first kind.

Theorem 1The Darboux developable ruled surface kbas pointwisel—type Gauss map of the first kind if and only if
the base curve of this surface is a plane curve or a straigiet li

Example 1Let o be circle curve and the parametrization of it is
a = (coss, sins, 0).

Then,

t = (—sins, coss, 0), b=(0,0,1).
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Consequently, the Darboux developable ruled surface anpeterized by

X(s,v) = (—vsins, vcoss, 1).

That's means, the surface is a part of plane. Then, we find
G=(0,0,—1), H=0, AG=0, Ax=0.

Hence,G has pointwise Ztype Gauss map of the first kind ady is a minimal surface of Xtype.

Fig. 1: My, se [0, 3 ve [-10,13

4 Tangential Darboux developable ruled surfaces with—type Gauss map

Let M, be the tangential Darboux developable ruled surface. Ttherparametrization d¥l, is written as follow:

Tt(s) +kb(s)

My @ X(s,v) =vn(s) +

(21)

Then,
(vn®+p)(kb+1t)

N /32K n2 12 - \2(kK8 - 18) + 2vpun3 + p?’
where,n? = 12+ k% +# 0 andu = Tk — k1’. Therefore,

3 2
(gij):diag((vnnit“),l),

G=— (22)

3 2
_ (vnntm . (23)

Thus, the formula of the Laplaciah of M5 is given by

1

02
A= 292,74(29'7 082+29(vn + 1) FIv —n*gs5-

3}
Js

17}
+ v+ p) (4g0° = (VP4 ) gy) o). (24)
wheregs = ds’ Ov= and are given by

2(u+vnd

2
%=1 (u+vn® (nu'+n'(n®v—2p)), o= .
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Therefore,
oo H . (25)
2,/32K2N212 + V2 (K8 + 16) +2vpun3+ p2
Consequently,
(kb4 1t)
AX=——p =, 26
n(vn3+u) (20)

Now, we study some cases.
(@Fort=0
According to Eqgs.Z2)-(26), we get
G=-b, AG=0, H=0, AX=0.
Hence,G has pointwise +type Gauss map of the first kind aidis 1—-type.

(b) For a space curve (helixk and T are constants.

In this case, we get

~_ nP(kb+tt)
VK +3n2k2 124 16

AG=0,H=0, AX =0.

This means andX are 1-type also.

Theorem 2The finite type of tangential Darboux developable ruledaeefV in E2 with plane curve or circular helix
as a base curve it—type and has pointwisk—type Gauss map of the first kind.

5 Rectifying developable ruled surfaces

Let M3 be the rectifying developable ruled surface. Then, thematdazation ofM3 is expressed as the following:
Tt(s)+kb(s)

M3 : X(s,v) =a(s)+Vv 27
Then,
G=-n. (28)
Therefore,
1+ (vpu(=2kn+vu)/n* &
(9ij) = . :
n 1
(29)
kn—vp)?
QZM’ (30)
n
where,n? = 124+ k% # 0 andu = 1K — k1. Then, the formula of the Laplaciah of Mz is given by
o —1 4 02 4 2 02 3 a
A—W(Zgn ﬁ—f—Zg(r] —2nkvpu+V )W—n (ngs—rgv)a—SJr
17} 92
AL B B 2, .3 J 3 07
(=n*gv—2knp(g—vg)+Vv(49—VG) K=+ N°TGs) 5= —4gn Tdsdv)’ (31)
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where
-1
gszﬁ(ZnZTT’(ntnT2—vku)—2n(n k—vu) (—vn?tk’ +n°K
+2vkpK +vn?kt’ +2vutt)),

gV:_n—25“ (KR—vntK +k(r?+vnT)).

Therefore,
nB
2(vp —kn) (32)
Consequently,
n3n
AX = .
T (33)
Here, we study two cases:
(a) For a is a plane curve.
Puttingt = 0 in the previous equations, we get
G=-n, AG=KG-Kt. (34)

This meansG has pointwise +type Gauss map of the first kind kf = 0, i.e, k is a constant. Then we conclude the
following theorem:

Theorem 3The rectifying developable ruled surfaceg Was pointwisel—type Gauss map of the first kind with a base
plane curve if and only if the base curve is a circle or strdilie.

Additionally, we get

H= 2. AX=—kn. (35)

For X be finite type we get the following theorem:
Theorem 4The finite type ruled surface Mvith a base plane curve has one of the following properties:

()If A1 =2A2=0,then M is a part of plane ofL—type.
@iDlf A=Ay #£0, then My is a null2—type.
(iii)if A1 # A, then My is less or equal to nulB—type.

Proofin view of Egs. @) and &) we can write 27) as a spectral decomposition in vector form as the following

X1= (alaoao)a X2= (07 02,0), X3 = (ana\_li(aiaé/_ai/aé))' (36)

After some computations one can get
a .
Ai=——; i=12 A3=0.
Since,Aj must be constant, there are three possibilitie efhich are stated in the theorem.

(b) For a space curvek and 1 are constants.

Substitutingr andk in Egs. 8)-(31), we get

4
G=-n, AG:Z—ZG, k0. 37)

ConsequenthyG is pointwise 1-type of the first kind.
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Theorem 5The rectifying developable ruled surface; Mas pointwisel—type Gauss map of the first kind if the base
plane curve is a circular helix.

Example 2_et o be a helix curve which has the parametrization as follow:

1 .
a = ——(3coss, 3sins, 2s). 38
Ve ) %9
Thenk = \/%3 andt = \/Lﬁ Consequently, the rectifying developable ruled surfagaismeterized by
1
X = ——=(3c¢0ss, 3sins, 2s+VvV/13).
T3( )
Hence,
. 1 VAl
G =(coss, sins, 0), AG= 336, H= —Ts.

ThereforeG is pointwise 1-type of the first kind. Then,

V13

AX = T(coss, sins, 0).

Using Eq. §), we get

—3\/11_3((13— 9A1) coss, (13— 9A2) sins, —A3 (6s+ 3vv/13)) = 0.

Solving this equation, we gat = A, = 1@3, andAz = 0. Thus, the surfachkls is a null 2-type. Look Figure.

Fig. 2: Mg, s€ [0,271],v € [-5,5]
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