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Abstract: We are concerned here with the existence of a unique positive continuous solution for the quadratic

integral of fractional orders (1) = a(t) + ’1,[ (t- s)) (s, x(s ))dsj (tF(S)) f,(s,x(s))ds, tel

where f; and f, are Carathéodory functions. As an application the Cauchy problems of fractional order differential
equation *D“ /x(t) = f (t, (1)), t >0 with one of the two initial values X(0) =0 or 1"™*/x(t) =0  will be
studied. Some examples are considered as applications of our results.
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1. Introduction

Fractional differential and integral equations have received increasing attention during recent years due to
its applications in numerous diverse fields of science and engineering. In fact, fractional differential and
integral equations are considered as models alternative to nonlinear differential equations [20]. There has
been a significant development in fractional differential equations. We refer readers to the monographs of
Kilbas et al. [17] and the papers [1]- [18]. Quadratic integral equations are often applicable in the theory of
radiative transfer, the kinetic theory of gases, the theory of neutron transport, the queuing theory and the
traffic theory. Many authors studied the existence of solutions for several classes of nonlinear
quadratic integral equations (see e.g. [2], [7] and [9]-[15]. However, in most of the above literature, the
main results are realized with the help of the technique associated with the measure of noncompactness.
Instead of using the technique of measure of noncompactness we use the Banach contraction fixed point
Theorem.

Let 1=[0,T],C=CI[0,T] be the space of continuous functions on 1, and L =L[0,T] be the
space of Lebesgue integrable functions on 1.

Firstly, we deal with the quadratic integral equation of fractional order

(t (t-
x(t)=a(t)+4 f 1(S, X(s))ds. f ,(8,X(s))ds, tel Q)
e e
Where A isareal number.
Also, Egn. (1) can be written in operator form as:
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x(t) = a(t) + A(1“ f,(t, x(@©)))-(17 f,(t, x(1))), tel
where «, 3 €(0,1].

We prove the existence and unigueness of positive continuous solution of (1).
As an application of our results, the existence of a unique solution of the initial value problems

DA X() = f(6,x(1), t>0

(2)
x(0)=0.
and
DX = f (&, x(t), t >0
3
x(t) =
will be studied.

Let «,f be two positive real numbers, then the definition of the fractional (arbitrary) order integration
is given by :

Definition 1.1 Let f(t)el!, feR" . The fractional (arbitrary) order integral of the function f(t) of
order £ is defined as (see [19], and [20])

12r=] Lo (=)

When a=0 wecanwrite 17 f(t)=17 f(t).

s)/

) f (s)ds.

Definition 1.2 .The Riemann-Liouville fractional-order derivative of f(t) of order a < (0,1) is defined
as (see [11], [19])

(t=s)"
(t)—— j ra) f(s)ds

or

Dy f(t)——l1 “f(1).
2 Main Theorem

Consider the following assumptions:
(i) a:l =R, iscontinuouson 1.

(i) f:1xR_—R, aremeasurablein t forall xeR,, and satisfy the Lipschitz condition
with respect to the second argument X foralmostall tel .

i.e
it ) - fity) <L [x-y| L>0i=12 4)
foreach (t,x),(t,y)elxR..

(iif) There exist two functions m, el’ such that
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|f,(t, %) |[<m,(t), Vtel,i=12

Let y<max{e,f}, and M =max{l'm(t):tel,y<a},i=12.

Now, for the existence of a unique continuous positive solution of the quadratic integral equation (1) we
have the following theorem.

Theorem 2.1 Let the assumptions (i)-(iii) be satisfied. Moreover, if

[AILMT " ALMT 7
INa-—y+)I'(B+1) T(-y+DI'(ax+])

Then the quadratic integral equation (1) has a unique positive continuous solution XxeC.

Proof.
Equation (1) can be written as

x(t) =a(t)+ 17 (17 f,(t, x(t)-177 (17 f,(t, x(1))).

Define the operator F by:

t (t— A1
Fx(t) = a(t) + jo (tr(so)[ ())dsj (r(;z f,(s, x(s))ds

The operator F maps C into itself. For this we have, let t,t, el,t <t, suchthat |t,—t |<J,then

| Fx(t,) - Fx(t) [H a(t,) -a(t,)

[ (b S)Hf(s X()ds|" (b ())ﬂlf(s,x(s))ds

J~t1 (t, r‘(S))Ol lf G (S))dSJ- (tlr( )) _1]: (6.X()s|

= a(t,)—a(t,)
l(_[ (o9 F( ) f(s x(s))ds+j (L9 F( ) f(s x(s))ds)

(j““r(sﬂ))ﬁ o9 g (o uspyas+ [ & S))ﬂlf(s’x(s»ds)

u(t,—s)"" (L, —s)"
j @) 22 (s, (s))dsj

S| a(tz) - a(tl) |

s)’”

) ———1,(s,X(s))ds|
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H1al S

+|ﬂ|jt2(t2 ))al

(t S)al
121 )
<Ja(t,) - a(t)|

(t, —
HA] () l
IlJ‘ (t S)a

l

I |‘[ (t )al

l

<a(t,) - a(t)l

)a—;/ l

| £,(5,X(5)) |ds-[.

[ £,65.X(5) s " (=8

m,(s)ds j

—s)*
r'(p)
4 (tz S)ﬂ B
r'(s)
—s)*

r'(B)

ONLN &9 ¢ (s x(s))|ds

| (s, %(s)) |ds

| f,(s,x(s))|ds

2 (t, —
F(,B) mz(s)ds

)ﬁ1

s e

jt g )ﬁ G- Sds

m, (s)ds

t (t —S)ﬂ = 1

-, -
L r(a )

a;/—l
+1AIM j —9)

v I(B- 7)
Itl (t —S)'B 7= l

“ Da-7y)
S)a;/l

(8- 7)

b (t,—s)’ 7

2 (1,
+|A|M L -

<a(t,)-a(t)|

ds
w T(B-7)

2 707 = (1, t)‘”] (t,-t)"”

FAIMY ]
INa—-y+1) r(g-y+1)
(t )a ! T'B g (tz _tl)ﬁ !
M e A T ey )
a-y p-r
HAIM [(t LY T Ul |

a-y+) T(B-y+])

Which provesthat F:C —C. Now, toshow that F iscontraction. Let X,y eC,

(t S)al
()

(t—s)’™
L(p)

| Fx(®) - Fy(@) | A, f,(s, x(s))ds| f,(s,X(s))ds

(t—s)“* ( _g)Pt
_zj ) f,(s, (s))dsj ) 20 £ (s, y(s))ds|
= .[o (tF(S); lf (s, x(s ))dSI ( (;: 1fz(s,x(s))ds

then we have
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(t-s)" (t-s)""
-, Ty Ve ))ds|; mog) VNS
a-1 B-1
e, s xonas], s e
(t—s)"" S)“l (t—s)™
—zj ) = £ (s, (s))dsj ) f,(s, y(s))ds|
1] (tr( );1”(5 x(s) 1ds] & (%ﬂfz(s,x(s»—fz(s,y(s)nds
Al “F(S;: 16yl 2 5,006 - 5 XD s
a1, [ S S)al m,(s)ds|. (tF(ﬂ) |X(9)- y(s) | ds
(t-s)"" S)’“ t=s)""
HAIL[ r(p ™) s =2 — F() ~1X(s) - y(s) | ds
<|,1||_|v|4| i j(t 9" s
I'(a r'(p)
- (t s)"‘1
A M4|I
M g M
s|ﬁ|L2M4|I oyl 1
[(a-y+1) r(p+1)
Tﬂy T“
+HAILM ol x—f
T(B-y+1) (o +1)
S AILMT LM T Y
B MNa—-y+)r'(p+1) T (L-y+)I'(a+l)
Since
[AILMT"  JAlLMT 7
IMNa-—y+)r(p+1) T(f-y+DHI'(a+1l)
Then F is contraction. Therefore, by the Banach contraction fixed point Theorem [16], the operator F

has a unique fixed point X eC (i.e. the quadratic integral equation (1) has a unique solution xe€C ).

which completes the proof.

As particular cases of Theorem 2.1 we have the following corollaries.

Corollary 2.2 Let the assumptions (i) and (iii) be satisfied. If ~ f, :[0,T]xR, >R ,i=12
continuous and satisfy Lipschitz condition (4), then the quadratic integral equation (1) has a unique

continuous solution xeC.
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Corollary 2.3 Let the assumptions of Theorem 2.1 be satisfied (with «,fand y >1LA=1).If
2LMT <1, L=max{L,L,}, then the quadratic integral equation

t t
x(t) =a(t) + jo f,(s, X(s))ds. jo f, (s, (s))ds
has a unique continuous solution x eC,
which is the same equation studied in [11].

Corollary 2.4 Let the assumptions of Theorem 2.1 be satisfied (with f,=f,=f and a=/), then
the quadratic integral equation

x(t) = (1 f (t, x(1)))* (5)

has a unique continuous solution xeC.

Corollary 2.5 Let the assumptions of Theorem 2.1 be satisfied (with o —0,f, =1 f,=1f ), thenthe

integral equation
X(t) =a(t)+ 17 f(t, x(t), tel (6)
has a unique continuous solution X eC.

Proof. Let f =1,f,=1f in(1), and taking the limit as ¢ — 0, we have
Iingx(t):a(t)+Iing(l”‘l)-(lﬂf(t,X(t))), tel
x(t)=a(t)+ 17 f(t,x(t), tel.

3 Fractional order differential equations

Lemma 3.1 Let

(i) f:1xR_—R_, be measurablein tel forany xeR_, andcontinuousin xeR,_ for
almostall tel.
(ii*) There exists an integrable function me L', suchthat | f (t,x)|<m(t),
then
1“f(t,x)],_,=0.

Proof: Let O<y<a, let M =max|’m(t).

Now
1 (t,x)= 1717 f (t, X)),
then
o<I*f 1“7M Mt | ,=0
<19f@,x)]_ <19 = 0=
( ) |t70 |t70 r(1+ o— }/) |t70

this implies that
1“f (t,x) |,_,=0.
We shall prove the following corollary.
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Corollary 3.2 Let the assumptions (i) and (ii’) be satisfied. If

[ft,x)—fty)|<L|x-y]|], L>0, (t,x)elxR,.

Then the initial value problem (2) has a unique continuous solution xeC.

Proof. Equation (2) can be written as

%Il_amz f(t, x(t)) .

By integrating both sides, we obtain
1 x(t) = If (t, x(t)) +c,

operating by 1% on both sides, we get

a

I x(t) = 17 (1, x(1) + Tia)

o

i)

differentiating equation (7), we get

JX@® = 19F (@4, x(1) +a

a-1

I'l+a)

letting t=0, thenby Lemma 3.1 we deduce that ¢=0, then

Jx(t) = (1 f (&, x(1)))
and we obtain equation (5).
Conversely, let

x(®) = (1" f (t, x(1)" ,

then
,/x(t) =1“f(t, x(t))
operatingby 1" to both sides, we get
1= Jx(t) = If (t, x(t))
and
% 1= Jx(t) = f (t,x(1)).
Finally

X(0) = (1 (t, x(t)) 0)* = 0.

Then, the initial value problem (2) and the quadratic integral equation (5) are equivalent.
Consequently, from Corollary 2.4 we deduce that the initial value problem (2) has a unique continuous

solution xeC..

Also, the following corollary can be proved (see [13]).

(7)

(8)

(9)

Corollary 3.3 Let the assumptions of Corollary 3.3, then the initial value problem of equation (3) has a

unique continuous solution x eC.



26 NSE El-Sayed, Hashem, Omar: Quadratic integral equation...

Example:1
Consider the following quadratic integral equation

X(t)=t+ |2 [Vt? +5 +1(] |Og(X(t)+3)|+l)].|3[1—:I|-r—02t+et %], tel =[0,1]. (10)
Set
f (t,x) =Vt* +5+t(| log(x(t) +3) | +1), te |
42t X2
fz(t,X) —T'F 30

Then we have:

(i) | f.(t,2) = fi(t,y) H Nt +5 + (| log (z(t) +3) | +1) —Vt* +5 —t(l log (y(t) +3) | +1) |
<t[(/log(z(t)+3)[+1) - ([log(y(t) +3) | +1)|

1
<—|z-
027Vl
. 1+t 7> 1+t x?
i)| f,(t,z)- X)) |H—+e'———-e"' —
()| 1,6 2) - LX) H et o et
£i|e“z2 —e'%?|
30
2| x+2z| 2
< [ X—z|<—|x-2].
30 30
Example:2
Consider the following Cauchy problem
: 1
D2 x(t) =t+§|x(t)|, tel =[0,1] (11)
with the initial condition
x(0)=0

Set
f(t,x)=t+%|x(t)|,tel
Then easily we can deduce that:
F@2)- a2y,

Example:3
Consider the following Cauchy problem

*D;\/@:H%sin x(2t), tel =[0,1]

(12)
with the initial condition

N

12 /x(@) =0

Set
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f(t, x) :t+%sin x(2t), tel

Then easily we get

1 £(t2)—f(t,%) |:|t+%sin z(2t)—t—%sin X(21) |
< % | sin z(2t) —sin x(2t) |

£1|z—x|.
4
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