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Abstract: In this article we study a new family of distributions in the real line. The proposed model can be seen as a suitable model
for fitting symmetric and kurtotic datasets. It arises as a mixture of the Laplace and bilateral gamma densities. We studysome of its
analytical properties and estimate the unknown parametersusing maximum likelihood method. Algorithm of simulation and
applications to the real dataset of monthly interest rate data are presented. An asymmetric generalization of the new model is
discussed.
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1 Introduction

The success and accuracy of the statistical data analysis depends mainly on the assumption of the underlying probability
distribution. In recent years there has been a growing interest in studying different symmetric and their asymmetric
parametric families of distribution. One reason for this isthat many of the existing symmetric families of distributions
are not able to model the kurtotic, skewed and heavy tailed data sets arising in various real life situations. Also, we can
see that many of the symmetric family of distributions are unimodal so that it is unable to model the bimodality inherent
in the dataset. So there came the importance in the search of new family of symmetric distributions. One easy way to
tackle this problem is by the symmetrization of distributions with positive support. In this paper, our aim is to investigate
a probability distribution that can be derived from the Lindley probability distribution and is to be found a suitable model
to fit many data sets.

Lindley(1958,1965) introduced a new family of continuous distributions to a random variableX with positive real line
as support. A random variableX is said to follow Lindley distribution with parameterθ if its p.d.f is given by

f (x) =
θ 2

(θ +1)
(1+ x)e−θx x > 0,θ > 0 (1.1)

Ghitany et.al (2008) studied about this distribution in detail and discussed its reliability properties. From (1.1) it is clear
that Lindley distribution is a mixture distribution of exponential(θ ) and gamma distribution with parameter(2,θ ). Also
the distribution is unimodal and positively skewed. They have shown that even though the Lindley distribution is similar
to the exponential distribution it can be used as a better model than the exponential distribution in many situation.

Different extensions of Lindley distribution can be seen instatistical literature. Nadarajah et.al (2011) introduced
a generalized form of Lindley distribution and shown that this distribution is better alternative to Gamma,Lognormal
and exponetiated form of different distributions. Zakerzadeh and Dolati (2009) studied a more flexible form of Lindley
distribution. Some other extensions are Power Lindley distribution of Ghitany et.al (2013), generalized Poison-Lindley
distribution of Mahmoudi and Zakerzadeh (2010).

Since, Lindley distribution shares many advantages in modelling its extension into the real line as support produces a
competitive model for many different class of symmetric distributions with support on(−∞,∞). In this work, we propose
the symmetric extended Lindley distribution and study the important properties. Estimation of the unknown parameters
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of the distribution are done using the method of maximum likelihood. As an application, we successfully fitted the model
to the monthly interest data set which has been considered bymany authors see Vandorp and Kotz(2002).

The paper is organized as follows. Section 2 is devoted to thenewly introduced Double Lindley distribution and its
properties like moments, skewness, kurtosis and the entropy measures. In Section 3, we obtained the Maximum likelihood
estimator of the unknown parameter. Simulation procedure is discussed in Section 4. The new model is fitted to a real data
set in Section 5. An asymmetric generalization of the newly introduced distribution is considered in Section 6.

2 Double Lindley Distribution

If f (x) is a probability density function corresponding to a r.v X having support on(0,∞) then it can be converted into
symmetric about zero by defining

g(x) = k f (|x|), −∞ < x <+∞ (2.1)

wherek is the normalizing constant. Now we extend the Lindley distribution into the complete real line as support, by
taking f(x) as the p.d.f of Lindley distribution given in(1.1). We obtain a new family of distributions which we termed
it as double Lindley distribution and denote correspondingrandom variable asX → DLD(θ ). The probability density
function (pdf) of a DLD random variableX with a scale parameterθ is given by

f (x) =
θ 2

2(θ +1)
(1+ |x|)e−θ |x| −∞ < x < ∞,θ > 0 (2.2)

Note that the probability density function ofDLD(θ ) random variable can be viewed as mixture of two probability
densities with representation

fθ (x) = β f1(x)+ (1−β ) f2(x), (2.3)

whereβ = θ
1+θ , f1(x) =

θ
2 e−θ |x|, the probability density function of a Laplace random variable with mean zero and

variance 2θ 2 and f2(x) = θ2

2 |x|e−θ |x|, the probability density function of a two sided gamma randomvariable with shape
parameter 2 and scale parameterθ .
The probability density function is unimodal for the valuesof θ ≥ 1 with mode located at the point zero and it is bimodal
for the values ofθ < 1 with modes concentrated at the points±

(

1− 1
θ
)

.
The distribution function is

F(x) =

{

1
2(θ+1)(1+θ (1− x))eθx

, if x ≤ 0;

1− 1
2(θ+1)(1+θ (1+ x))e−θx, if x > 0.

(2.4)

Figure 1 shows the shape of the pdf ofDLD(θ ) for different values ofθ . From the figure it is clear thatDLD(θ )
distribution is symmetric and becomes more peaked for larger values ofθ . Next we study the analytical properties of
DLD(θ ).

2.1 Moments and Related Measures

Therth moment about origin of aDLD(θ ) random variable X is given by

E(X r) =
Γ (r+1)

2(θ +1)θ r−1

(

1+
r+1

θ

)

(1+(−1)r),r = 1,2,3... (2.5)

Since it is a symmetric distribution, note that all the odd order moments are zero forDLD(θ ) distribution.

Also, in particular, we obtainE(X) = 0 andV (X) = 2(θ+3)
θ2(1+θ) .

The kurtosis coefficient is given by,

β2 =
6(θ +5)(θ +1)

(3+θ )2 (2.6)

Cumulants
The characteristic functionϕ(t) = E

(

eitX
)

of DLD(θ ) distribution can be easily derived using the mixture representation
of the density function.
Using (2.3), we can writeϕ(t) = β ϕ1(t) + (1− β )ϕ2(t), where ϕ1(t) and ϕ2(t) are the characteristic functions

c© 2017 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.6, No. 3, 577-586 (2017) /www.naturalspublishing.com/Journals.asp 579

−4 −2 0 2 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

f(
x)

DLD(5)

DLD(3)

−4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

x

f(
x)

DLD(1)

DLD(.5)

Fig. 1: Shape of the density function for different values ofθ
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Fig. 2: Peakedness of the DLD(θ ) distribution for the different values ofθ

corresponding tof1(x) and f2(x) respectively.

But we haveϕ1(t) =
θ2

θ2+t2
andϕ2(t) =

θ2(θ2−t2)
(θ2+t2)2

, then the characteristic function of aDLD(θ ) random variable as

ϕ(t) =
θ 2

(1+θ )(θ 2+ t2)

(

θ +
θ 2− t2

θ 2+ t2

)

(2.7)

2.2 Entropy Measures

Renyi Entropy
An entropy of a random variable X is a measure of variation of the uncertainity. Jaynes (1951) introduced one of the most
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powerful techniques employed in the field of probability andstatistics called the ”maximum entropy method”. Renyi
entropy is defined by

τ(γ) =
1

1− γ
log

(

∫

f γ (x)dx

)

, γ > 0,γ 6= 1.

∫

f γ (x)dx =

(

θ 2

2(θ +1)

)γ ∫ +∞

−∞
(1+ |x|)γe−γθ |x|dx

= cγ
∫ 0

−∞
(1− x)γeγθxdx+ cγ

∫ +∞

0
(1+ x)γe−γθxdx, wherec =

θ 2

2(θ +1)

= 2

(

θ 2

2(θ +1)

)γ
eγθ

(γθ )(γ+1)
Γ (γ +1,γθ )

τ(γ) =
1

1− γ
log

[

2

(

θ 2

2(θ +1)

)γ
eγθ

(γθ )(γ+1)
Γ (γ +1,γθ )

]

=−logθ +
1

1− γ
[θγ + logΓ (γ +1,γθ )− γlog2(θ +1)− (γ +1)logγ + log2]

Shannon’s Entropy
Shannon(1948) introduced the probabilistic definition of entropy which is closely connected with the definition of entropy
in statistical mechanics. Then the Shannon’s entropy is defined byE(−log f (x)),it is the particular case of Renyi entropy
for γ increases to 1. Limitingγ increases to 1 inτ(γ) and using L’hospital’s rule, we obtain

E(−log f (x)) =−logθ −θ +2−
eθ

θ +1
d
dr

Γ (γ +1,γθ ) (2.8)

whereΓ (., .) is the incomplete gamma function defined by

Γ (α,x) =
∫ ∞

x
tα−1e−tdt (2.9)

Next we compare the DLD with Laplace distribution with regard to the tail behaviour
Tail comparison
Here we compare the tail behaviour ofDLD(θ ) with Standard Laplace distributionL(θ ). For this purpose we use the
concept of limiting ratio (LR) of two probability distributions, The same idea is used by many authors see Sastry and
Deepesh (2016). Consider the random variablesX1 ∼ DLD(θ ) andX2 ∼ L(θ ), then the limit ratio(LR) of their density is
given by

LR = lim
x−→∞

fX1(x)
fX2(x)

(2.10)

= lim
x−→∞

θ2

2(θ+1)(1+ |x|)e−θ |x|

θ
2 e−θ |x|

(2.11)

Here,LR → ∞ asx −→ ∞ which means thatfX1(x) has thicker tail thanfX2(x). That is tails of theDLD(θ ) probability
density function is more thicker than that of the Standard Laplace probability density function. See Figure (3).

3 Estimation of the parameter

Maximum Likelihood Estimation
Let x1, x2, ...xn be a random sample from the DLD(θ ) distribution. Then the Likelihood function is given by

L(θ ) =
n

∏
i=1

θ 2

2(θ +1)
(1+ |xi|)e

−θ |xi| (3.1)

Taking logarithm on both sides we obtain the log likelihood function in the form

logL(θ ) = 2nlog(θ )− nlog2− nlog(1+θ )−θ
n

∑
i=1

|xi|+
n

∑
i=1

log(1+ |xi|) (3.2)
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Fig. 3: Tail comparison of DLD(θ ) with Standard Laplace Distribution.

On differentiation and equating the log likelihood function we get the score function as

∂ logL(θ )
∂θ

=
2n
θ

−
n

1+θ
−

n

∑
i=1

|xi|= 0 (3.3)

which gives a quadratic equation inθ as

¯|x|θ 2+( ¯|x|−1)θ −2= 0,where ¯|x|=
1
n

n

∑
i=1

|xi| (3.4)

with roots

θ̂ =
−( ¯|x|−1)±

√

( ¯|x|−1)2+8 ¯|x|

2 ¯|x|
(3.5)

Sinceθ > 0, only positive value ofθ need to be taken.

4 Simulation

Making use of the mixture representation (2.3), random observationsXi can be generated using following algorithm.
step 1: GenerateUi −→U(0,1).
step 2: GenerateEki −→ Exp(θ ), i=1,2,...,n; k=1,2.
step 3: SetZi = E1i −E2i
step 4: GenerateGki −→ Gamma(2,θ ), i=1,2,...,n; k=1,2.
step 5: setYi = G1i −G2i, i=1,2,...,n; k=1,2.
step 6: IfUi ≤ β = θ

1+θ , then setXi = Zi, otherwise setXi = Yi.

Next we estimate the unknown parameter of the proposed distribution.
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Table 4.1: Parameter Estimates.

θ = 0.1 θ = 0.5 θ = 1.5 θ = 2
n θ̂ Bias MSE θ̂ Bias MSE θ̂ Bias MSE θ̂ Bias MSE
50 0.1317−.0317 0.30450.6211−.1211 3.104 1.7391−.2391 11.06732.2699−0.2699 15.195
100 0.1309−.0309 1.25760.6133−.1133 2.29191.7232−.2232 9.5899 2.2602−0.2600 14.700
500 0.1298−.0298 0.25100.6091−.1091 2.12361.7159−.2159 7.9003 2.2433 −.2433 10.559
10000.1297−.0297 0.24670.6084−.1084 2.11661.7120−.2120 7.7104 2.2431−0.2431 10.37

5 Application

As an application we have used on monthly interest rates for 30 year treasury maturity rates over the period from
1977-2001. The same data set is used by many authors see Van Dorp and Kotz (2002). Table 4.1 displays the maximum
likelihood estimates and the corresponding value of Kolmogorov- Smirnov statistic for the fitted model. Figure4
provides the histogram and curve of the probability densityfunction to the monthly interest data ( American. can, Martin.
Marieta and Value. Weighted CRSP. Index)

Table 5.1: Estimated parameter values and goodness of fit to the data.

Data m.l.e K − Sstatistic P− value
American.can 18.93276 0.1373 0.1896

Martin.Marieta 13.66158 0.11052 0.4255
Value.Weighted.CRSP.Index 30.75854 0.12213 0.3324

An asymmetric generalized form of the proposed distributionis considered in the next section.

6 Asymmetric DLD Distribution

Since the DLD distribution is a symmetric family of distribution, it limits the applicability to real data sets which canbe
skewed. There are different methods of introducing skewness in to a symmetric family of distribution see for example
Kozubowski and Ayebo (2003), Kotz et. al (2001) and Azzalini(1985). For an application to so formed distributions see
Julia and Vives Rego (2005) and Kozubowski and Podgorski (2001). Here we introduce an asymmetric form of DLD
distribution using the idea of inverse scale factors of Fernandez and Steel (1998). In this method a new parameter is
added which acts as a skewing parameter in the symmetric family of distribution. The probability density function of an
asymmetric Double Lindley Distribution( ADLD) distribution with parametersθ > 0 andκ > 0 is given by

f (x;θ ,κ) =
θ 2

(θ +1)
κ

(1+κ2)

{

(1− x
κ )e

θx
κ if x ≤ 0

(1+κx)e−θκx if x > 0
(6.1)

We denote the random variable having the above probability density function asX ∼ ADLD(θ ,κ). Note that for all
values ofκ other thanκ = 1 the above distribution is asymmetric and whenκ = 1 gives symmetricDLD(θ ) distribution.
The Figure5 shows the shape of (6.1) for different values ofθ andκ . The raw moments ofADLD(θ ,κ) can be derived
as

E(X r) =
θ 2

(θ +1)

(

∫ 0

−∞
xr
(

1−
x
κ

)

e
θx
κ dx+

∫ ∞

0
xr(1+ kx)e−θκxdx

)

(6.2)

=
θ (1−r)

(θ +1)
κ

1+κ2Γ (r+1)

(

1+

(

r+1
θ

))[

(−1)rκ r+1+
1

κ r+1

]

In particular, whenr = 1, we obtain

E(X) =
θ +2

θ

(

1−κ2

κ

)

(6.3)
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r = 2,

E(X2) =
(θ +3)2

(θ 2)(θ +1)
κ

1+κ2

(

κ3+
1

κ3

)

(6.4)

r = 3,

E(X3) =
θ 2

θ +1
κ

1+κ2

(

κ4+
4κ5

θ
−

1
κ4 −

4
θκ5

)

(6.5)

r = 4

E(X4) =
θ 2

θ +1
κ

1+κ2

(

κ5+
5κ6

θ
+

1
κ5 −

5
θκ6

)

(6.6)

Since the central moments are in lengthy form, their expressions are omitted here. We numerically calculate the values
of the first four central moments, moment measures of skewness and kurtosis for different values ofθ andκ using R
programming and they are given in Table 6.1. Apparently the same inference about the skewness and kurtosis can be
drawn from the form of the pdf given in Figure 5.
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Table 6.1: Moment measures of skewness and kurtosis for different values ofθ andκ .

Parameters (θ ,κ) central moments Skewness Kurtosis Inference

3,3
µ2 = 1.4692

µ3 =−3.1796
µ4 = 16.6625

-1.7856 7.7198 Negatively skewed and lepto kurtic

3,0.5
µ2 = 0.6826
µ3 = 0.9363
µ4 = 3.4758

1.6242 7.2443 positively skewed and leptokurtic

3,1
µ2 = 0.333

µ3 = 0
µ4 = 0.5926

0 5.3345 Symmetric and leptokurtic

0.5,0.6
µ2 = 27.26

µ3 = 146.2038
µ4 = 3729.493

1.0270 5.0177 positively skewed and leptokurtic

The distribution function and characteristic function ofX → ADLD(θ ,κ) is given by

F(x) =







k2e
θx
k

(θ+1)(1+k2)
[1+θ (1− x

k )], if x ≤ 0;

1− e−θkx

(θ+1)(1+k2)
(1+θ (1+ kx)), if x > 0.

φ(t) =
θ 2k

(θ +1)(1+ k2)

[

1

it + θ
k

(

1+
1

k(it + θ
k )

)

+
1

it −θk

(

1+
k

it −θk

)

]

=
θ 2k

(θ +1)(1+ k2)

[

θ +1+ kit

k(it + θ
k )

2
+

it − k(θ −1)
(it −θk)2

]

The Suvival and hazard functions are

S(x) =







1− k2e
θx
k

(θ+1)(1+k2)
[1+θ (1− x

k )], if x ≤ 0;
e−θkx

(θ+1)(1+k2)
(1+θ (1+ kx)), if x > 0.

and

H(x) =











θ2e
θx
k (k−x)

(θ+1)(k2)(1−e
θx
k )+θ(1+ke

θx
k )+1

, if x ≤ 0;

θ2k(1+kx)
1+θ(1+kx) , if x > 0.

The Renyi entropy takes the form

∫

f γ (x)dx =

(

θ 2

2(θ +1)

)γ
eγθ

(γθ )(γ+1)
Γ (γ +1,γθ )

[

κ +
1
κ

]

τ(γ) =−logθ +
1

1− γ
[θγ + logΓ (γ +1,γθ )− γlog2(θ +1)− (γ +1)logγ + log(κ +

1
κ
)]

7 Conclusion

We have introduced a new family of symmetric distributions on real line, which is a generalization of the Lindley
distribution. Properties of the newly introduced Double Lindley Distribution are studied and estimation of the parameters
is done. Comparison with Laplace distribution is done regarding the behaviour of tail probability. Application of the
distribution is illustrated with the help of a real data set.An asymmetric generalization is also provided for modelling
skewed data sets.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


586 Nitha K U, Krishnarani S D: A new family of heavy tailed symmetric...

References

[1] Azzalini. A., 1985. A class of distributions which includes the normal ones.Scandanavian Journal of Statistics,32,159-188.
[2] Fernandez.c and Steel.M.F.J., 1998. On bayesian modelling of fat tails and skewness,Journal of American Statistical Association,93,

359-371.
[3] Ghitany,M.E., B.Atieh and S.Nadarajah., 2008. Lindleydistribution and its application,Mathematics and computers in simulation78,

493-506.
[4] Ghitany, M. E., D.K. Al-Mutairi, N. Balakrishnan and L.J. Al-Enezi., 2013. Power Lindley distribution and associated inference,

Computational Statistics and Data Analysis, 64, 20-33.
[5] Jaynes. E. T., 1957. Information theory and statisticalmechanics,The physical review, 106 (4), 620-630.
[6] Julia. O. and Vives Rego. J., 2005. Skew Laplace distribution in gram negative bacterial axenic cultures: new insights into imtrinstic

cellular hetrogeneity.Microbiology,151, 749-755.
[7] Kotz. S, Kozubowski .T.J. and K. Podogorski., 2001. The Laplace distribution and generalizations: a revisit with applications to

Communications, Economics, Engineering and Finance,Birkhauser, Berlin.
[8] Kozubowski .T.J and Ayebo. A., 2003. Asymmetric generalization of Gaussian and Laplace laws.Journal of Probability and

Statistical Science , 1,pp 187-210.
[9] Kozubowski .T.J. and Podogorski.K., 2001. Asymmetric Laplace laws and modeling financial data.Mathematical and Computer

modelling, 34, 1003-1021.
[10] Lindley. D. V., 1958. Fiducial distributions and Bayestheorem.Journal of the Royal Statistical Society, Series B, 20, 102-107.
[11] Lindley. D. V .,1965. Introduction to Probability and Statistics from a Bayesian Viewpoint, Part II: Inference, Cambridge University

Press, New York.
[12] Mahmoudi. E and H.Zakerzadeh., 2010. Generalized Poisson -Lindley distribution.Communications in Statistics- Theory and

Methtods, 39(10), 1785-1798.
[13] Nadarajah. S, Bakouch, H. S and T. Rasool., 2011. A generalized Lindley distribution,Sankhya B ,73, 331-359.
[14] Sastry. DVS, Deepesh. B., 2016. A new Logistic distribution: Properties and Applications.Brazilian Journal of Probability and

Statistics, 30 (2), 248-271.
[15] Shannon. C., 1948. A mathematical theory of communication. The Bell system technical journal, 27, 379-423.
[16] Van Dorp, J.R and Kotz, S., 2002. The standard Two sided Power distribution and its Properties:With Applications inFinancial

Engineering.The American Statistician, 56(2), 90-99.
[17] Zakerzadeh , H. and Dolati, A., 2009. Generalized Lindley distribution,Journal of Mathematical extension,3, 13-25.

Krishnarani, S. D. is an Assistant Professor at the PG and Research
Department of Statistics, Farook College affiliated to the University of Calicut,
Kerala, India. She holds Masters Degree in both Statistics and Mathematics and possesses
a Bachelors Degree in Education from the University of Calicut. She did her M.Phil.
at the Department of Statistics, Cochin University of Science and Technology, Kerala, India
and acquired her Ph. D. degree from Department of Statistics, University of Calicut. Her
research interests are in Time Series, Distribution Theoryand Applied Probability Models.
She has published works in reputed international and national journals. She is a life member
of Indian Society for Probability and Statistics (ISPS) andKerala Statistical Association.

Nitha, K. U. is a research scholar in the Department of Statistics, Farook College affiliated
to the University of Calicut, Kerala, India and working as Statistical Investigator Gr II in the
Directorate of Economics and Statistics, Govt. of Kerala. She completed her Masters Degree
in Statistics from Department of Statistics, University ofCalicut.

c© 2017 NSP
Natural Sciences Publishing Cor.


	Introduction
	Double Lindley Distribution
	Estimation of the parameter
	Simulation
	Application
	Asymmetric DLD Distribution 
	Conclusion

