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Abstract: We prove existence of solutions for a nonlinear fractiorsiltator equation with both left Riemann—Liouville andt
Caputo fractional derivatives subject to natural boundamyditions. The proof is based on a transformation of thélpro into an
equivalent lower order fractional boundary value problettofved by the use of an upper and lower solutions methoduToeed with
such approach, we first prove a result on the monotonicithefight Caputo derivative.
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1 Introduction

Fractional calculus is an interesting field of research duiéstability to describe memory properties of materials,and
therefore, providing a better representation of physicadets. Because of this, the study of nonlinear fractional
differential equations has attracted a lot of attentionmiathy papers and monographs are devoted to the suljecB].
Here, we are concerned with the solvability of a nonlineaactional oscillator equation involving both
Riemann-Liouville and Caputo fractional derivatives widitural boundary conditions:

w?u(t)—°DY DI.u(t) = f(tu(t)), 0<t<l weR, w#O, (1)
with the initial condition
u(0)=0 (2)
and the natural condition (se4, §])
Da.u(1) =0, (3)

where 0< p,g< 1, CDf, is the right side Caputo derivating+ denotes the left side Riemann—Liouville derivativés
the unknown function, anfl € C([0, 1] x R,R). We denote problenif—(3) by (P;). Note that ifp = g — 1, then problem
(P1) is a classical oscillator boundary value problesh [

Oscillator equations appear in different fields of scierstesh as classical mechanics, electronics, engineerimy, an
fractional calculus, being a subject of strong currentaese see, e.g.7[8,9] and references therein. Different methods
are used to solve such equations, for example, by the Lapktsform method or by using numerical methatld.[Since
some phenomena obey an equation of motion with fractionalateses, oscillator equations with fractional deriveis
are a particularly interesting subject to studyd,10,7,11,12).

Blaszczyk studied numerically the associated linear gmokdf (Pp) with f (t,u(t)) = Ag(t), see b]. In [4], Agrawal
discussed the relationship between transversality andaldioundary conditions in order to solve fractional difetial
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equations. Moreover, he gave some interesting examgle$d the best of our knowledge, most works in the literature
have studied problerfP;) only numerically and with a terrfi in the right-hand side of equatioth)(that does not depend
on u. Differently, here we study problerfP;) by the lower and upper solutions method, considering a meregl
situation where the nonlinear terfis a function ofu. This is important since the physical phenomena descrilgated
differential equations are mainly of nonlinear nature.

The method of upper and lower solutions is an efficient todshastudy of differential equation43]. Indeed, when
we apply this method, we prove not only existence of solytim we also get its location between the lower and upper
solutions. The method was first introduced by Picard in 188y developed by Dragoni, and then becoming a useful
tool to prove existence of a solution for ordinary as wellragfional differential equationdf,15,16,17,19].

The paper is organized as follows. Sectis devoted to some definitions on fractional calculus angeriies that
will be used later. We also define the upper and lower solatfon problem(Py). Our results are given in Sectiof3s
and4. The main result is Theore) which establishes existence of solution for problg¥). To prove it, we make use
of several auxiliary results. The first of them is given in tBet3, where we provide a monotonicity result for the right
Caputo derivative. In Sectiofy we convert problen{P;) into an equivalent Caputo boundary value problem of opler
that, under some conditions on the nonlinear térns used to prove existence of solutions for probl&h) between the
reversed ordered lower and upper solutions. Moreover, wstoact explicitly the upper and lower solutions. The new
results of the paper are then illustrated through an exam@ection5.

2 Preliminaries

This section is devoted to recall some essential definittonBactional calculusl,2,3]. We also define some concepts
related to upper and lower solutions.

Definition 1. Let g be a real function defined 4@, 1] and it > 0. Then the left and right Riemann-Liouville fractional
integrals of orderu of g are defined respectively by

Bot)= - (1 /:( 90 g

u) Jo (t—s)t
and L 1 9
u _ a(s
190 =7 ) woprnts
The left Riemann—Liouville and the right Caputo fractiodativatives of orded < u < 1 of function g are
d /i
Df.9(t) =  (15-"9) ©
and .
DY g(t) = —1;" (1),
respectively.

With respect to the properties of Riemann—Liouville and @agractional derivatives, we recall here two of them.
LetO< p < 1andf €L1]0,1]. Then,

1. 15DEf(t) = f(t)+ct~ ! almost everywhere ofd), 1];
2. 1ECDE f(t)=f(t)—f(D).
Now, we give the definition of lower and upper solutions fooldem (P;). By AC?[0,1] we denote the following
space of functions:
AC?[0,1] := {u€ C![0,1] | is an absolutely continuous function ¢ 1]} .

Definition 2. Functionsa, 3 € AC?[0, 1] are called, respectively, lower and upper solutions of feab(Py) if

1. w?a(t)-CD} Dd.a(t)—f(t,a(t)) <0Oforallt €[0,1]andallr € [p,1) and, moreover (0) >0, Dy, a (1) > O;

2. w?B(t)-CD}_Dg,B(t)—f(t,B(t)) >0forallt €[0,1] andallr € [p,1) and, moreoveiB (0) < 0, D, B (1) <O.
Functionsa and are lower and upper solutions in reverse ordeuwift) > B (t),0<t < 1.

Remark. If a andf are, respectively, lower and upper solutions of prob(&g), then they are still lower and upper
solutions for the sequence of problems generated by thedaourconditions Z)—(3) and the fractional differential
equations obtained froni) by replacingp by r for all r € [p,1).
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3 Monotonicity for the Right Caputo Derivative

We begin by proving a useful monotonicity result for the tigaputo derivative. Theorefnprovides the right counterpart
of the main result of19], which was recently obtained for the left Caputo fractilm‘&rivativecD[)+ f (t). It will be needed
in the proof of our Lemmd.

Theorem 1. Assume that £ C*[0,1] is such that'D!_f (t) > Oforallt € [0,1] and all r € (p,1) with some e (0,1).
Then f is monotone decreasing. Similarlﬁﬁjrl, f (t) <Oforallt and r mentioned above, then f is monotone increasing

Proof. The proofis based on the following well-known propriety:

0< lim DL. f (t) = lim I277§/(t) = /(1)

o
r—1- r—1- 0

(see Theorem 2.10 o2{)]). For the right Caputo fractional derivati\?@'l, f (t), one can prove the following analogue
property:
0< lim °D_f(t) = lim — 11" f/(t) = —f'(t). (4)
r—1- r—1-

Using @), the proof follows in the same way as itd].

Remark. Property 4) and Theoreni can be obtained straightforwardly from the resultsaff 19] by using the duality
theory of Caputo—Torres between left and right fractionedrators 21].

4 Existence of Solutions
First we solve a Riemann-Liouville fractional problem oflerq:

Dl,u(t)=v(t), 0<t<1,
{uE)O):o. ()

Lemma 1. For0< q< 1, the solution of problentP) is given by

u(t) = ﬁ/ot (t—9) tv(s)ds 5)

Proof. We get 6) by applying the properties of the Riemann-Liouville dative and the initial condition (0) = 0.

LetE :=C(]0,1],R) be equipped with the uniform norfju|| = tm[c% |u(t)|. Define the operatdF on E by
€lo,

Tv(t) = L/Ot (t—9)% v(s)ds=1,v(t), te0,1].

Thus,u(t) = Tv(t). SinceDg+u (1) =0, problem(P,) is equivalent to the following Caputo boundary value prafile

2Tv(t)—CDP v(t) = f (1, Tv(t)), 0<t<1,
{\‘/*’(1)\/:(()1 V() =f(t,Tv(t)) P

Let us make the following hypotheses:
(H1) there exists a nonnegative constarguch that

wx—f(t,x) <A(L—t)""

foro<t<1,0<x< ﬁ, and for allr € [p,1);

(H2) there exists a constaBt< 0 such thaA > |B| and
wx—f(t,x) >B(1—t)""

forogtgl,ﬁgngandforre[p,l).
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Lemma 2. If hypothese$H;) and(Hy) hold, then probleniP;) has a lower and an upper solution.
Proof. Settingg (t) = A(1—1), it follows that

0<TP[O)=lg.9(t) = Atqr(?qilzgt) =T (qA+ 1)

Now we prove thatr (t) = T ¢ (t) is an upper solution of proble(i;). We have for alr € [p,1) that

W T (t) —“Di-¢ (1)~ f(t.TH (1))

P (L0 +TE 0~ 1 LTH )

AQL-—)Y "+ T ) — F(t,Th (1))

ININ
© |

In addition,a (0) =T¢ (0) =0 andng{ (1) =¢ (1) =0. Thus,a (t) = T¢ (t) is a lower solution of probleniPy).
Similarly, if we sety (t) =B(1—t), thenf (t) = T (t) is an upper solution of problef,).

)
Lemma 3. Under hypothesefH;) and (H), the upper and lower solutions of probleff;) satisfy (t) < a (t) and
Dg.B(t) <Dg.a(t)forall0<t < 1.

Proof. Sincea (t) =T¢ (t) andB (t) = Ty (t) are, respectively, lower and upper solutions of prob(p), then from

_A@Q+1-ttd

at) = _ B(g+1-t)td

>07 B(t)_

<0
rg+2 - ’

rQ+2 -

we get that
DI.a(t) =9 (t) =A(1-t) >B(1—t)=y(t) =D B(t).
This completes the proof.

We consider a sequence of modified problems

{;(C]S)_[L:\C/)(t) =Fv(t), 0<t<1, ((Pa)r)

forr € [p,1), where the operatdf : E — E is defined by
Fv(t) = —w?T min[¢, max(v, )] + f (t, Tmin[¢,max(v,¢)]), 0<t<1.
Next lemma gives the relation between the solution of a mediliroblem (Ps),) and the solution of problert; ).

Lemma 4. If vis a solution of problent(P4),), then u= Tv is solution of probleniP,) satisfying

B(t)<u(t)<a(t) and Of

i (t) < DY u(t) < DY, a (t)

forall0<t <1

Proof. Firstly, forr € [p,1), we prove that ifv; is a solution of problem();), theny (t) < v (t) < ¢ (t). Putting
e(t) = v (t) — ¢ (1), and using the initial conditiong (1) = ¢ (1) = 0, it yieldse (1) = 0. Suppose the contrary, i.e.,
that there exist$; € [0, 1] such thatv; (t1) > ¢ (t1). From the continuity of, we conclude that there exibte [t1,1)
anda € [0,t;] such that (b) = 0 ande (t) > O,t € [a,b]. Applying the right Caputo fractional derivative and tagiimto
account the definition of lower solution, we get

Dy () =“Di-vr (t) - D3¢ (t)
= W?T min[¢, max(vr, )] — f (t, T min[¢, max(v,, y)]) — “D}- DY, a (t)
<0
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fort € [a,b]. Thanks to Theorerh, we know that is increasing ofia, b]. Sincee (b) = 0, we conclude that; (t) < ¢ (t),
t € [a,b], which leads to a contradiction. Similarly, we prove thgt) < v (), t € [0,1]. From the above discussion yf
is a solution of probleni(P4)), then

—CDP v(t) = (FV) (t) = —w?Tv(t) + f (t, Tv(t)).
Thus,v is a solution of P3) and, thereforey = Tvis a solution of(P;). Finally, the monotonicity of operatdr implies
TY)<Tv(t)<T¢(), te][0,1].
This achieves the proof.

Now we are ready to formulate and prove our main result oterise of solution for problertP;).

Theorem 2. Assume that hypothes@d;) and(Hz) hold. Then, probleniP;) has at least one solution u such that

Bt)<u(t)<af(t)
and
DY, B (t) < DY u(t) < DI a(t)

forall0<t<1.
Proof. Define the operatdR onE by Rv(t) = |lF[ Fv(t),0<t <1.Set
Q:={veC1],y(t) <v(t)<$(1),0<t <1},

where
M = max{|w?x— f(t,x)|,B(t) <x<a(t),0<t<1}.

Letv € Q. Taking into account thgk (t) < T (min[¢, max(v, ¢)]) < a (t), then

IRV(t)] < 1P |—w?T (min[¢,max(v, g)]) + f (t, Tmin[¢, (max(v, y))])|
M
S Tlo+1)

Thus,R(Q) is uniformly bounded an&(Q) C Q. For simplicity, denote

g(t) = —w?T (min[¢,max(v, )]) + f (t, Tmin[¢,max(v,)]).
For0<t; <ty <1, we have

IRV(t1) — Rv(t2)| < |12 g(t1) — 11 g(t2) |

< % / “(s—t)" tg(9)]ds
+ﬁ/:((s—tl)pl—(s—tz)pl) lg(s)|ds
M

<——((1-t)P—(1-1)P) = 0 ast; — ty.

—I'(p+1)(( )" —(1-1)") 1—1t

ThereforeR(Q) is equicontinuous. We conclude, by the Arzela—Ascoli teegrthatR is completely continuous. Then,
by Schauder’s fixed point theoreR has a fixed point € Q. We conclude that = T vis a solution of(P,) satisfying, by
Lemmad, B(t) <u(t) < a(t) andDy. B (t) < Dg, u(t) < Dg.a(t), 0<t < 1. The proof is complete.
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5 An lllustrative Example

We present a simple example to illustrate our results. GengroblemP;) with w=1,p=q= % and

1 1
=X———(1-1)2 <t<1l
f(t,x) =x 100(1 )2, 0<t<1

_ A _ 1
If we chooseA = 155 andB = — 155, then we get

—H)I<A@Q-t)FT

1
2 — = —
wx— f(t,x) 100(1

and

1 1
2 -~ (1-t)2>0> _n\1-q
wx— f(t,x) 100(1 t)2>0>B(1-t)

for0<t <1 andforallr € [p,1). Then all assumptions of Theorehhold. Consequently, problem

u(t) —°pY2DY2u(t) = u(t) - 1%0(14)% . 0<t<1,

u(0)=0, Dy’u(1)=0,

has a solutiom such tha{3 (t) < u(t) < a (t). By direct computations we get

_A@+1-ne (3o __t(@-y
aO=—"Fgr2 00 ) =0 BO=—15 ) =0
and )
t2 2t
6 Conclusion

In this paper we have proved a useful monotonicity resulitferight Caputo derivative. We solved the Riemann-Lidavil
fractional problerTDg+ u(t) =v(t) of orderg, 0<t < 1, subject to the initial condition(0) = 0. Then, under hypotheses
(H1) and(H>), we proved that the nonlinear fractional oscillator probig)—(3) with both left Riemann—Liouville and
right Caputo fractional derivatives, denoted (), has a lower and an upper solution, respectively) andp (t), such
that B (t) < a(t) and Dg+B (t) < Dg+a (t) for all 0 <t < 1. A relation between the solution of problgif) and the
solution of a sequence of modified problems was establisti@idh allowed us to prove existence of solution for problem
(P1). We finished by considering a simple illustrative examplar @sults show the usefulness and effectiveness of the
upper and lower solutions method in the study of a generss@éfractional oscillator equations with physical relese.
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