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Abstract: In the present article, using a family ofn positive functions(n∈N), the Erdèlyi-Kober integral operator of fractional type is
employed to get generalization of certain classes of integral inequalities. As applications, certain special cases and consequent results
of the main inequalities obtained in this paper are also discussed.
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1 Introduction, Motivation and Preliminaries

Fractional calculus, particularly in mathematical analysis, is playing a very important role to perform differentiation and
integration with the real number or complex number powers ofthe differential or integral operators. Because of the
significant importance of fractional calculus operators, many research papers have studied and investigated the verity of
extensions and applications for these operators. It is fairly well-known that there are a number of different definitions of
fractional calculus operators and their applications. Each definition has its own advantages and suitable for applications
to different type of scientific or engineering problems. Formore details about verity of operators of fractional calculus,
reders are refer to see the monographs of Baleanuet al. [1], Kiryakova [2], Miller and Ross [3] and Samkoet al. [4].

In current years, FDEs are one of the most important topics inmathematics and have received consideration due to the
options of unfolding nonlinear systems, thus attracting much consideration and growing curiosity due to its prospective
physics and engineering applications, see [3,5,6,7]. Integral inequalities are taken up to be important as these are useful
in the study of existence and uniqueness of different classes of differential and integral equations [8,9]. Due to this fact,
this subject has earned the attention of many researchers and mathematicians during last few decades [10,11]. However,
there is a large number of the fractional calculus operatorsin the literature, but due to their important applications in many
fields, the Riemann-Liouville and Hadamard fractional integral operators have been studied extensively [12,13,14,15,16,
17,18,19,20]. Moreover, for the integral inequalities involving generalized fractional operators, one can see the recent
papers [21,22,23,24,25,26,27,28,29,30,31,32,33] and references therein.

We obtain a generalization of all the results of [17]. By taking Erdèlyi-Kober fractional integral operators, we
investigate certain new classes of integral inequalities for a family of n positive functions, which are defined on the
interval[a,b]. Interesting new inequalities can also be obtained as particular cases of the main results.

Firstly, we introduced the necessary definition and mathematical notations of fractional calculus operators which are
used in our analysis [2].

For real valued continuous functionf (t), the fractional integral operators of Erdèlyi-Kober type, that isIη,α
β is defined

by

Iη,α
β { f (t)}=

t−β (η+α)

Γ (α)

∫ t

0
τβ η

(

tβ − τβ
)α−1

f (τ)d(τβ )
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=
β t−β (η+α)

Γ (α)

∫ t

0
τβ (η+1)−1

(

tβ − τβ
)α−1

f (τ)dτ, (1)

whereα > 0 (order of integration),β > 0 andη ∈ R. We also give the following properties of the operators, forthe
convenience of investigating the main results:

I τ,σ
β I γ,δ

β { f (t)}= I γ,δ
β I τ,σ

β { f (t)} (τ ≥ 0, σ ≥ 0) , (2)

and
I γ+δ ,σ
β I γ,δ

β { f (t)}= I γ,σ+δ
β { f (t)} (σ ≥ 0, δ ≥ 0) . (3)

The aim of this paper is to establish certain new integral inequalities involving fractional integral operators of Erd`elyi-
Kober type, for a family ofn positive functions, defined on the interval[a,b]. Our results generalize, improve and extend
the recent results of [17]. Special cases are also presented.

2 Fractional Integral Inequalities

In this segment, we will investigate certain classes of integral inequalities involving the fractional operator (1), for a
family of n positive functions. The special cases of these results are also reduces in terms of certain known inequalities in
literature. Our main results of this paper are the followingtheorems:

Theorem 1.Consider n positive functions f1, f2, · · · , fn, which are continuous and decreasing on the interval[a,b] and
a< t ≤ b,α > 0,δ > 0,ζ ≥ γp > 0 where p is fixed integer in{1,2, ...,n}. Then the following inequality holds true

Iη,α
β

[

∏n
i 6=p f γi

i f ζ
p (t)

]

Iη,α
β

[

∏n
i=1 f γi

i (t)
] ≥

Iη,α
β

[

(t −a)δ ∏n
i 6=p f γi

i f ζ
p (t)

]

Iη,α
β

[

(t −a)δ ∏n
i=1 f γ

i (t)
] . (4)

Proof.Since f1, f2, · · · , fn are continuous and decreasingn positive functions on the interval[a,b], hence one can write

(

(ρ −a)δ − (τ −a)δ
)(

f
ζ−γp
p (τ)− f

ζ−γp
p (ρ)

)

≥ 0,

which implies that

(ρ −a)δ f
ζ−γp
p (τ)+ (τ −a)δ f

ζ−γp
p (ρ)≥ (τ −a)δ f

ζ−γp
p (τ)+ (ρ −a)δ f

ζ−γp
p (ρ) . (5)

Form the conditions, we haveζ ≥ γp > 0, δ > 0, τ, ρ ∈ [a, t] ; a< t ≤ b, wherep∈ {1, . . . ,n} is any fixed quantity.
Now, let us consider the functional

Np(t,τ) =
β t−β (η+α)τβ (η+1)−1

(

tβ − τβ)α−1

Γ (α)

n

∏
i=1

f γi
i (τ). (6)

We observe thatα,β > 0 before, and hence each factor of the functional (6) is positive in view of the valid conditions
mentioned with Theorem1, which implies that the functional defined above is positive, i.e.Np (t,τ) ≥ 0 for all τ ∈ (0,
t) (t > 0).

By multiplyingNp (t,τ) (whereNp(t,τ) is given by (6)) to both sides of relation (5), making integration with respect
to τ between the interval(0, t), and hence using the operator (1), we have

(ρ −a)δ Iη,α
β

[

n

∏
i 6=p

f γi
i f ζ

p (t)

]

+ f
ζ−γp
p (ρ)Iη,α

β

[

(t −a)δ
n

∏
i=1

f γi
i (t)

]

≥

(ρ −a)δ f
ζ−γp
p (ρ) Iη,α

β

[

n

∏
i=1

f γi
i (t)

]

+ Iη,α
β

[

(t −a)δ
n

∏
i 6=p

f γi
i f ζ

p (t)

]

. (7)
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Again, on multiplyingNp(t,ρ) to both the sides of (7) and taking integrating along the variableρ from ρ = 0 to ρ = t,
and hence on using the operator (1), we arrive at

Iη,α
β

[

n

∏
i 6=p

f γi
i f ζ

p (t)

]

Iη,α
β

[

(t −a)δ
n

∏
i=1

f γi
i (t)

]

≥

Iη,α
β

[

(t −a)δ
n

∏
i 6=p

f γi
i f ζ

p (t)

]

Iη,α
β

[

n

∏
i=1

f γi
i (t)

]

, (8)

This completes the proof of inequality (4).

Remark.It is remarked that, if the functionsf1, f2, · · · , fn are increasing on[a,b], then the inequality (4) will be reversed.

Remark.Takingη = 0,α = 1,β = 1,n= 1 andt = b, we get Theorem 3 in [17]. Therefore, this result extend and improve
Theorem 3 of [17].

Theorem 2.Suppose n positive functions f1, f2, · · · , fn are continuous and decreasing on the interval[a,b] and a< t ≤
b,α > 0,δ > 0,ζ ≥ γp > 0,ω > 0 , Then following inequality holds true

Iη,α
β

[

∏n
i 6=p f γi

i f ζ
p (t)

]

Iη,ω
β

[

(t −a)δ ∏n
i=1 f γi

i (t)
]

+ Iη,ω
β

[

∏n
i 6=p f γi

i f ζ
p (t)

]

Iη,α
β

[

(t −a)δ ∏n
i=1 f γi

i (t)
]

Iη,α
β

[

(t −a)δ ∏n
i 6=p f γi

i f ζ
p (t)

]

Iη,ω
β

[

∏n
i=1 f γi

i (t)
]

+ Iη,ω
β

[

(t −a)δ ∏n
i 6=p f γi

i f ζ
p (t)

]

Iη,α
β

[

∏n
i=1 f γi

i (t)
]

≥ 1, (9)

where p∈ {1,2, ...,n} is any fixed integer.

Proof.Multiplying both sides of (7) by
β t−β(η+ω)ρβ(η+1)−1(tβ−ρβ)

ω−1

Γ (ω) ∏n
i=1 f γi

i (ρ),ω > 0, and making integration of the

improved inequality with respect toρ between the interval(0, t) (a < t ≤ b), hence on using the Fubini’s theorem, we
arrive at

0≤

∫ t

0

∫ t

0

β t−β (η+ω)ρβ (η+1)−1
(

tβ −ρβ)ω−1

Γ (ω)

n

∏
i=1

f γi
i (ρ)N p (t,τ)dτdρ

=Iη,α
β

[

n

∏
i 6=p

f γi
i f ζ

p (t)

]

Iη,ω
β

[

(t −a)δ
n

∏
i=1

f γi
i (t)

]

+Iη,ω
β

[

n

∏
i 6=p

f γi
i f ζ

p (t)

]

Iη,α
β

[

(t −a)δ
n

∏
i=1

f γi
i (t)

]

−Iη,α
β

[

(t −a)δ
n

∏
i 6=p

f γi
i f ζ

p (t)

]

Iη,ω
β

[

n

∏
i=1

f γi
i (t)

]

−Iη,ω
β

[

(t −a)δ
n

∏
i 6=p

f γi
i f ζ

p (t)

]

Iη,α
β

[

n

∏
i=1

f γi
i (t)

]

. (10)

On further simplification, one can easily arrive at the inequality of Theorem2.

Remark.By letting α = ω in Theorem2, we obtain Theorem1.

Remark.Again, by settingδ = 0,α =ω = 1, β = 1,n= 1 andt = b in the Theorem2, we obtain the well known inequality
of Theorem 3 in [17].

To generalize the above theorems, we obtain the another class of integral inequalities involving the fractional operator
(1), as under:
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Theorem 3.Suppose f1, f2, · · · , fn and g be continuous functions, such that f1, f2, · · · , fn are decreasing and g is increasing
on the close interval[a,b], for a< t ≤ b, α > 0, β > 0, ζ ≥ γp > 0. Then the following inequality holds true

Iη,α
β

[

∏n
i 6=p f γi

i f ζ
p (t)

]

Iη,α
β

[

gδ (t)∏n
i=1 f γi

i (t)
]

Iη,α
β

[

gδ (t)∏n
i 6=p f γi

i f ζ
p (t)

]

Iη,α
β

[

∏n
i=1 f γi

i (t)
]

≥ 1, (11)

where p∈ {1,2, ...,n} is any fixed integer.

Proof.Following the valid conditions stated with Theorem3, we have

(

gδ (ρ)−gδ(τ)
)(

f
ζ−γp
p (τ)− f

ζ−γp
p (ρ)

)

≥ 0, (12)

for all p= 1, . . . ,n, a< t ≤ b, α > 0, δ > 0, ζ ≥ γp > 0; τ,ρ ∈ [a ,b].
Now, let’s consider the quantity

Lp(t,τ) =
β t−β (η+α)τβ (η+1)−1

(

tβ − τβ)α−1

Γ (α)

n

∏
i=1

f γi
i (τ)

((

gδ (ρ)−gδ(τ)
))(

f
ζ−γp
p (τ)− f

ζ−γp
p (ρ)

)

. (13)

It is clear that
Lp (t,τ)≥ 0, (14)

therefore

0≤

∫ t

0
Lp (t,τ)dτ =gδ (ρ) Iη,α

β

[

n

∏
i 6=p

f γi
i f ζ

p (t)

]

+ f
ζ−γp
p (ρ) Iη,α

β

[

gδ (t)
n

∏
i=1

f γi
i (t)

]

−Iη,α
β

[

gδ (t)
n

∏
i 6=p

f γi
i f ζ

p (t)

]

−gδ (ρ) f
ζ−γp
p (ρ) Iη,α

β

[

n

∏
i=1

f γi
i (t)

]

. (15)

Consequently

Iη,α
β

[

n

∏
i 6=p

f γi
i f ζ

p (t)

]

Iη,α
β

[

gδ (t)
n

∏
i=1

f γi
i (t)

]

≥

Iη,α
β

[

gδ (t)
n

∏
i 6=p

f γi
i f ζ

p (t)

]

Iη,α
β

[

n

∏
i=1

f γi
i (t)

]

, (16)

which arrives at the result of Theorem3.

Remark.On puttingη = 0,α = 1, β = 1,n= 1 andt = b in the Theorem3, we easily obtain the known result of [17].

Now we provide another class of inequalities as follows:

Theorem 4.Consider f1, f2, · · · , fn and g be continuous functions, such that f1, f2, · · · , fn are decreasing and g is
increasing on the close interval[a,b]. Then the inequality

Iη,α
β

[

∏n
i 6=p f γi

i f ζ
p (t)

]

Iη,ω
β

[

gδ (t)∏n
i=1 f γi

i (t)
]

+ Iη,ω
β

[

∏n
i 6=p f γi

i f ζ
p (t)

]

Iη,α
β

[

gδ (t)∏n
i=1 f γi

i (t)
]

Iη,α
β

[

g(t)∏n
i 6=p f γi

i f ζ
p (t)

]

Iη,ω
β

[

∏n
i=1 f γi

i (t)
]

+ Iη,ω
β

[

g(t)∏n
i 6=p f γi

i f ζ
p (t)

]

Iη,α
β

[

∏n
i=1 f γi

i (t)
]

≥ 1, (17)

holds for all a< t ≤ b, ω > 0, α > 0, δ > 0, ζ ≥ γp > 0 and for any fixed p∈ {1,2, ...,n}.
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Proof.Using relation (15), we can write

0≤
∫ t

0

∫ t

0

β t−β (η+ω)ρβ (η+1)−1
(

tβ −ρβ)ω−1

Γ (ω)

n

∏
i=1

f γi
i (ρ)Lp(t,τ)dτdρ =

Iη,α
β

[

n

∏
i 6=p

f γi
i f ζ

p (t)

]

Iη,ω
β

[

gδ (t)
n

∏
i=1

f γi
i (t)

]

+Iη,ω
β

[

n

∏
i 6=p

f γi
i f ζ

p (t)

]

Iη,α
β

[

gδ (t)
n

∏
i=1

f γi
i (t)

]

−Iη,α
β

[

g(t)
n

∏
i 6=p

f γi
i f ζ

p (t)

]

Iη,ω
β

[

n

∏
i=1

f γi
i (t)

]

−Iη,ω
β

[

g(t)
n

∏
i 6=p

f γi
i f ζ

p (t)

]

Iη,α
β

[

n

∏
i=1

f γi
i (t)

]

. (18)

On some simplification, the above inequality yields to Theorem4 .

Remark.Settingα = ω for Theorem4, we get Theorem3.

Remark.Again, on lettingη = 0,α = ω = 1 , β = 1,n= 1 andt = b, Theorem3 reduces to the Theorem 4 of [17].

Theorem 5.Suppose the continuous functions f1, f2, · · · , fn and g be defined on the close interval[a,b]. Also assume that

for any fixed p∈ {1,2, ...,n} ,
(

f δ
p (τ)gδ (ρ)− f δ

p (ρ)gδ (τ)
)

(

f
ζ−γp
p (τ)− f

ζ−γp
p (ρ)

)

≥ 0; δ > 0, α > 0, ζ ≥ γp > 0;

τ,ρ ,∈ [a, t] , t ∈ (a,b] then we have

Iη,α
β

[

∏n
i 6=p f γi

i f ζ+δ
p (t)

]

Iη,α
β

[

gδ (t)∏n
i=1 f γi

i (t)
]

Iη,α
β

[

gδ (t)∏n
i 6=p f γi

i f ζ
p (t)

]

Iη,α
β

[

f δ
p ∏n

i=1 f γi
i (t)

]

≥ 1. (19)

Proof.It follows from the proof of Theorem 3, if we replace the quantity
(

gδ (ρ)−gδ (τ)
)

by
(

f δ
p (τ)gδ (ρ)− f δ

p (ρ)gδ (τ)
)

, one can easily prove the result (19).

Theorem 6.Suppose f1, f2, · · · , fn and g be continuous functions on the close interval[a,b]. Then for
(

f δ
p (τ)gδ (ρ)− f δ

p (ρ)gδ (τ)
)

(

f
ζ−γp
p (τ)− f

ζ−γp
p (ρ)

)

≥ 0; δ > 0, α > 0, ζ ≥ γp > 0; τ,ρ ,∈ [a, t] , t ∈ (a,b], the

following inequality holds true:

Iη,α
β

[

∏n
i 6=p f γi

i f ζ+δ
p (t)

]

Iη,ω
β

[

gδ (t)∏n
i=1 f γi

i (t)
]

+ Iη,ω
β

[

∏n
i 6=p f γi

i f ζ+δ
p (t)

]

Iη,α
β

[

gδ (t)∏n
i=1 f γi

i (t)
]

Iη,α
β

[

gδ (t)∏n
i 6=p f γi

i f ζ+δ
p (t)

]

Iη,ω
β

[

f δ
p ∏n

i=1 f γi
i (t)

]

+ Iη,ω
β

[

gδ (t)∏n
i 6=p f γi

i f ζ
p (t)

]

Iη,α
β

[

∏n
i=1 f γi

i (t)
]

≥ 1, (20)

provided p∈ {1,2, ...,n} , be any fixed number.

Proof.Following the similar procedure of Theorem4, provided the quantity
(

gδ (ρ)−gδ (τ)
)

replaced by
(

f δ
p (τ)gδ (ρ)− f δ

p (ρ)gδ (τ)
)

, we easily prove the Theorem6.

Remark.On substitutingα = ω , we observe that the Theorem6 reduces to Theorem3.

Remark.Again, Theorem6 for η = 0,α = ω = 1, β = 1,n= 1 andt = b, yields to the Theorem 5 of [17].
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3 Special Cases

Following Kiryakova [2], the operator Iη,αβ includes a number of generalized integration and differentiation operators as

its special cases, used by various researchers. Some important particular cases of the integral operator Iη,α
β are as follows:

1.Forη = 0, β = 1, the operator (1) yields to the fractional integral operator of Riemann-Liouville type, by means of
the following relationship:

Rα { f (t)}= tα I0,α
1 { f (t)}=

1
Γ (α)

∫ t

0
(t − τ)α−1 f (τ)dτ. (21)

2.If we takeη = 0, α = n∈ N andβ = 1, then the operator (1) leads the following ordinaryn-fold integrations:

ln{ f (t)}= tnI0,n
1 { f (t)}=

1
(n−1)!

∫ t

0
(t − τ)n−1 f (τ)dτ. (22)

3.Again if β = 1, then the operator (1) leads to the fractional integral operator, which originally considered by Kober
[34] and the Erdèlyi [35].

Iη,α { f (t)}= Iη,α
1 { f (t)}=

t−α−η

Γ (α)

∫ t

0
τη(t − τ)α−1 f (τ)dτ (α > 0,η ∈ R). (23)

4.If η = 0, α = 1 andβ = 1,then the operator (1) reduces to the Hardy-Littlewood (Cesaro) integration operator:

L1,0{ f (t)}= I0,1
1 { f (t)}=

1
t

∫ t

0
f (τ)dτ. (24)

5.Further, forβ = 2 the operator (1) leads the fractional integral operator of Erdèlyi-Kobertype (Iη,α , introduced by
Sneddon [36]):

Iη,α = Iη,α
2 { f (t)}=

2t−2(α+η)

Γ (α)

∫ t

0
τ2η+1(t2− τ2)α−1

f (τ)dτ. (25)

Now, by substituting the particular values of the parameters η , α andβ , the results presented in this article may
generate some more known and possibly new inequalities involving the various types of operators, by taking the relations
(21) to (25) into account.

4 Conclusion

Using a family ofn positive continous functions, here we have obtained certain new classes of integral inequalities,
associated with the Erdèlyi-Kober fractional integral operators. These results provides an important insight aboutthe use
of fractional integral operators to generate the well knownintegral inequalities. Further, in the generalized axially
symmetric potential theory and other related physical problems, the operatorIη,α

β has number of applications, therefore,
the results derived here are expected to find certain applications in this theory and for studying the uniqueness of
solutions in FDE’s. Additionally, certain new integral inequalities involving the various types of integral operators, can
be easily found as special cases of our main results.
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