%ﬁg 127

Appl. Math. Inf. Sci. Lett. 5, No. 3, 127-135 (2017)

Applied Mathematics & Information Sciences Letters
An International Journal

http://dx.doi.org/10.18576/amisl/050306

Characterization and Bayesian Estimation of Generalized Standard Inverted
Exponential Distribution

Kawsar Fatima” and S. P. Ahmad
Department of Statistics, University of Kashmir, Srinagar, India.

Received: 10 Sep. 2016, Revised: 2 Dec.2016, Accepted: 28 Dec.2016.
Published online: 1 Sep. 2017.

Abstract: In this paper, some structural properties of generalized standard inverted exponential distribution (GIED) have
been established. Bayesian method of estimation has been employed to estimate the parameters of GIED using a class of
one non-informative (extension of Jeffrey’s) prior and one informative (gamma) prior under the assumption of three loss
functions, namely, Square error loss function, Al-Bayyatis loss function and LINEX loss function. These methods are
compared by using mean square error for real life data as well as simulation study with varying sample sizes in R software.

The expression for survival function has also been established under extension of Jeffrey’s prior and gamma prior.
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1 Introduction

The exponential distribution is the most widely used
lifetime model in reliability theory, because of its simplicity
and mathematical feasibility. If a random variable X has

1
an exponential distribution, then Y =Yhas an inverted

exponential distribution (IED). IED has been discussed as a
lifetime model by Lin et al. (1989) in detail. They obtained
maximum likelihood estimates (MLEs), confidence limits
and uniformly minimum variance unbiased estimators for
the parameter and reliability function of IED with complete
samples. Later IED has been considered by Killer and
Kamath (1982) and among many others. The exponential
distribution was generalized, by introducing a shape
parameter, and studied extensively by Gupta and Kundu
(1999), (2001). Ragab and Madi (2005) studied generalized
exponential distribution (GED) from a Bayesian point of
view.

On the same lines, Abouammoh and Alshingiti (2009)
introduced a shape parameter in the IED to obtain
generalized inverted exponential distribution (GIED). They
derived many distributional properties and reliability

Bayesian Estimation of the Shape Parameter of the
Generalized Exponential Distribution under different loss
functions. Hare Krishna and Kapil Kumar (2012) have
studied the reliability estimation based on progressive type-
I censored sample under classical setup. Singh et al (2013)
studied the estimation of parameters of generalized inverted
exponential distribution for progressive type-11 censored
sample with binomial removals.

Let X, X,,...,X

inverted exponential random variables, with the shape
parameter o« and scale parameter 1, the cumulative
distribution function becomes

n be iid. generalized standard

-1

F(x;a)=1—£1—exJ ,x>0,a>0

€.3)

with the corresponding probability density function (PDF)
given by

characteristics of GIED. Assuming it to be a good lifetime -1 et
model they obtained maximum likelihood estimators, least f(x.a)= %e x|1—gx  Xx>0,a>0
square estimators and confidence intervals of the two X
parameters involved. Sanku Dey (2010) discussed the
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1.2)

where ¢ is a shape parameter. When o =1, the GIE
distribution reduces to the standard inverse exponential
distribution.

The graphs of density function and cumulative distribution
function are plotted for different values of shape parameter
o are given in Figure 1 and 2 respectively.

= aipha: y,
\ /
<1 | f
- N Ny
: : ‘ :
.

Figure 1 and 2 illustrates some of the possible shapes of the
pdf and cdf of the GIED distribution for different values of

the parameter ¢ .

2 Statistical the GSIE

Distribution

Properties of

This section provides some basic statistical properties of the
generalized standard inverted exponential distribution.

2.1 Reliability Analysis

The reliability (survival) function of X is

1\%

S(x)= 1-ex for x>0,>0

2.0)

and the hazard function is

1 a1

H(x):%e? 1-ex for x>0,a>0
X

(2.2)

The plots for the reliability (survival) and hazard functions
are shown in Figure 3 and Figure 4 respectively;

7
1

X x
Fig.3 The graph of sunival nction Fig 4 The graph of hazard ate uncion

Figure 3 and 4 illustrates some of the possible shapes of the
survival function and hazard function of the GIED
distribution for different values of the parameter « .

2.2 Moments

The r" moment of a continuous random variable X is given
by;

o = E(Xf):j:x'f(x)dx
(2.3)

Now using equation (1.2) in eq. (2.3), we have

y: S A
E(X") :J.xr‘zae x [1—e x J dx
0
(2.4)
Using the expansion of

A a-1
l-ex

& (Yir@) )
Lt i

expression (2.4) takes the following form:

=-(j+1)
e *x dx

& Da@F 1
Hy _J_ZO T(a—-j)j! ,c[xl—r+1

On solving the above equation, we get

&)@+l TA-r) (2.5)
ﬂr_,-z_(; Ta-j)j' (j+)*

We observe that Equation (2.5) only exists whenr <1,
The implication is that the first moment, second moment
and other higher-order moments does not exist.

2.3 Harmonic mean of GISE distribution

The harmonic mean (H) is given as:
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~N = 3129

1 1) %1,
== E(ﬂ: k f (x;a)dx

1 1 a-1

i:J' 2 ex|1-ex | dx
H 0

X2+1

After some calculations,

1 -)'T(a+1l) 1
_,Zo Ta—j)j! (j+1)?

(2.6)

3  Moment Generating Function and

Characteristic Function
Theorem 3.1. Let X have a GSIE distribution. Then

moment generating function of X denoted by M (t)is
given by:

X&)t T(@+) T@-r)
M 022 2 Fa it (e
(ChY

r=0 j=0

Proof: By definition
M, (t)=E(*)= Ietx f (x;a)dx
0

Using Taylor series

MX(t)=T[1+tx+(b2(—)|2+---]f(x;a)dx
0

r

0 1
N M, (t) Z j f (x;a)dx
=y

= Mx(t)=itr_E(x )
& & ( )T+ rE-r)
M 0= 2 2 e (j+n*"

This completes the proof.

Theorem3.2. Let X have a GIE distribution. Then
characteristic function of X denoted by ¢, (t)is given
by:

1)) T(e+1) T@A-r)
Ca—-j)jirt  (j+)&"
(3.2)

)= 3

r=0 j=0
Proof: By definition
. 1 .
y () =E(e'™) =je"x f (x;c)dx
0
Using Taylor series

Ix (t)=T(1+itx+“t2%)2+---]f(x;a)dx
0 |

= Px (t:i(i:)l jxrf(x)dx
r=0 0

= 4 (t)=i%E(Xf)
r=0 -

- = (1)l it) a+1) ri-r)
- 9= Ta-pirt (j+)™

r=0 j=0

This completes the proof.

4 Quantile Function and Median

The Quantile function is given by;

QW =F)

Therefore, the corresponding quantile function for the
proposed model is given by;

Q) =[-togh-@-uy¥«J* (421

where U has the uniform U (0,1) distribution. We obtain the
median by substituting u=0.5. Hence, the median of the
proposed model is given by;

F1= [— Iog[l— (1-05)"" Irl

This can be simplified to give;
F2=[logh-5"[* 42
5 Estimation of Parameter

Let us consider a random sample X = ()(1,X2,...,Xn) of

size n from the generalized standard inverse exponential
distribution. Then the log-likelihood function for the given
sample observation is
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L(x,a)=a H X[ XJ
InL(x,&)=nha- ZZInx—Z[ j+(a 1)2In[1 e ]

=1

As the shape parameter o is assumed to be unknown, the
ML estimator of shape ¢ is obtained by solving the

1
8InL(xa) n X.
_— Inf1-e ™ |=0
o Z

IS}
Il

n B
Zln 1-e*
i=1

5.1)

6 Bayesian Inference Using Different Loss
Functions

The Bayesian inference requires appropriate choice of
prior(s) for the parameter(s). From the Bayesian viewpoint,
there is no clear cut way from which one can conclude that
one prior is better than the other. Nevertheless, very often
priors are chosen according to one’s subjective knowledge
and beliefs. However, if one has adequate information
about the parameter(s), it is better to choose informative
prior(s); otherwise, it is preferable to use non-informative
prior(s). In this paper we consider both types of priors: the
extended Jeffrey’s prior and the gamma prior under squared
error loss function, Al-Bayyatis loss function and LINEX
loss function.

The extended Jeffrey's prior proposed by Al-Kutubi (2005)
is given as

g(a)<[ila)f .

Where[ | (a) |=-nE {M} is the

CeR

oa?

Fisher’s information matrix. For the model (1.2),

(6.)

1
gl ((1) = 0{201

The conjugate prior in this case will be the gamma prior,
and the probability density function is taken as

2P
0p(@) =——e " a"*

., aba>0
I'b

(6.2)

With the above priors, we use three different loss functions
for the model (1.2).

7 Bayesian Estimation of @ and Sunder the
Assumption of Extended Jeffrey’s’ Prior

7.1 Baye’s estimator of a

Combining the prior distribution (6.1) and the likelihood
function, the posterior density of « is derived as follows:

1 1 a-1

n
—a I 1—e 1/ Xi )

my(ar| X)=Ka"*%e i=
m(a|x) =Ko *1e

where K is independent of

-1
1
n =
_ A X -L_[*  n-2e,-0p
o ;Inl e and K '[Oa et da
4 I'(n—2c¢,+1)
1_ 1
=K"= ﬂn—201+1
1

Hence the posterior density of ¢ is given as

ﬂln—2q+1
I'(n—2c, +1)

n-2¢; e—aﬁl

m(a|X)=
(7.1

which is the pdf of distribution

G(B,,n—2c, +1)

gamma

7.1.1 Estimation under Squared Error loss function

By using squared error loss  function
A A 2 i
|(0{, Ot) = C(Ol —0!) for some constant ¢ the risk
function is given by
© ﬂ n—-2c;+1
R@a)=[c@-a) =2 ——a" e da
: I'(n—2c, +1)
n-2c1+1 © Ed ©
R(a,a)=c i : [d2_[a"'2°1+1'1e'mda +J'a”'zcﬁs'le'a/’lda—Zdja"'zcﬁz'le'“ﬂlda}
T(n—-2c;+1) 0 ° 0

I'(n-2c, +3)
,B n-2c1+3
1

n-2c1+1
R(@a) = c—2

[&2 r(n-26+1)
T'(n-2c,+1)

ﬂ n-2c1+1
1

=26+ 2)}

ﬂ n-2c1+2
1
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OR(a, N T L ) T2+ | T(n-26,+2) T(n-2c+])

Now  solving # =0, we obtain the R(“"’)’r(n-zwl)fq b Ay O R TR A g
Oc n-2cp+1
Baye’sestimator as . blg B 1 A (n=-2c,+])
R(a,a)=e1"| —— -ba+b—-1
1)1 b+ By B
. (n-2¢+1) . 4 % .
A5 =z ;where S, :Zln 1-e %  R(a,a) 0 '
1 i=1 Now solving————=VU, we obtain the Bayes
oa

(7'2) estimator as

by 2

i=1

1 i _ I i A n—2cy+1 n _1 -1
7.1.2 Estimation under Al-Bayyati's loss function S :ilog[b1+ﬁ1] ‘where 8, — Zln[l_e Xi]

. . . A » 2
By using Al-Bayyatis loss function |(0!,(Z) =a® (a—a)

the risk function is given by (7.4)

7.2 Baye’s estimator of S(x)

@ A n-2¢,+1
R(@,a) = ja°z (G-a)?—Tr — _grteh dg
0 [(n—2¢, +1) By using posterior distribution function (7.1), we can found

the survival function such that

n-20,+1 % @ %
R(d,a)= ﬂl dZJ'an—quZe—aﬂl da+jan—2q+czvze—uﬂl da _zdjan—zr(ﬂﬁlefaﬂl da . —l (24
T(n-2c,+1) : ] R -
SlEj (X): J' l1-eX ﬂl(a/)_()da
RG.) = B2t (.ZF(n—Zcﬁcz+1)+1“(n—2r,1+cz+3)72AF(n—ch+cz+2) 0
F(n—201+1)L ﬂ1n72c1+c2+1 ﬂln—2q+cg+3 ﬁln—2q+cz+2
N -1\¢
oR(a,a . % -1 n-2cq+1 o
Now solving#zo, we obtain the Bayes SlEj(x):J' 1-eX ﬂlia” 20g-0Adq
a 5 I'(n-2c; +1)
estimator
! 1
_ n - -
dlAB — M ’Whereﬂl — Zln 1—e X %4 ﬁl—ln 1-e X
B i1 R ﬂln—2c1+1 0 2e
SlEj(x)=7_[a le da
(7.3) r(n-2c;+1) g
Remark 1.1: Replacing c2= 0 in (7.3), we get the same n-2c;+1
Bayes estimator as obtained in (7.2) corresponding to the 4
SELF. . B n —
Sy (x)= : ,where 8, = > Inf1—¢
7.1.3 Estimation under LINEX loss function B —In[l—exj .
By using LINEX loss function

(e, @) = explby(G — )l —by(d —a)—-1 for some (7.5)
constant b; the risk function is given by . . .
8. Bayesian Estimation of @ and S under the

0 n-2c,+1 - .
R(a,6) :I(exp{bl(d—a)}—b1(d—a)—1) By 2" g Assumption of Gamma Prior

! I'(n-2c, +1)

8.1 Bayes estimator of o
A 1) N Combining the prior distribution (6.2) and the likelihood
2 e [o" e ) dg by o [o" P16 do function, the posterior density of ¢ is derived as follows:
R(d,a):ﬂi 0 0
F(n—201+1) T n-20+1,- T n-201 -
+blja 1= da—ja e oA dg
0 0
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1 A b Qs = (n+b) where 3 anln (1 e % )_1
L a _ _ 2S — L o\ ’ (i -
a|X Cx:anH X| 1 e X| Rl aaab 1 (a—l—ﬂl) -1
i<t % b (82)
» {a&m(kefﬂ“ )71} 8.1.2 Estimation under Al-Bayyati's loss function
m(a|x)=Ka"™"e "7 By using Al-Bayyati's loss function

l(a,a)=a” (d—a)z the risk function is given by

7,(a| X) = K" e A \where K is independent of
n 1 -
_;i © n+b
aaﬂl = Zln 1-e I(XCZ a+181) an+b—1 e—a(a+/}1) da
B 0 I'(n+b)
and K= Igoa”+b_1e‘a(a+ﬂ.1) da R(d,a)= (aznﬂi)b)[ Zj et gy y [ o ! mieert gulelgy g ia"*“r“ e'“‘“’“’da}
'(n+b M
Sk O )€ o) Hoodosd g, M)
(a+p,) F+b) | @+p)™ (@)™ @+p)™*
i i a s gi OR(a,a
Hence the posterior density of ¢ is given as Now solving ( 4 ) —0, we obtain the Bayes
n+b oa
(@] X) = (a + ﬁl) an+b—1 e—a(a+ﬂl) estimator as
I'(n+b) b n -
8.1 . nN+b+c %
®D ocZABzM where ;=" In|1-¢ "
which is the pdf of gamma distribution (a+ﬁ1) i—1
Gl((a+ ), (n+b)

(@+s, ) (8.3)
8.1.1 Estimation under Squared Error 10sS Remark 1.2: Replacing c2= 0 in (8.3), we get the same
function Bayes estimator as obtained in (8.2) corresponding to the

SELF.
By using squared error loss function
|(&, ) =¢(& — ) for some constant ¢ the risk 8.1.3 Estimation under LINEX loss function
function is given by By using LINEX loss function

l(a,a) = eXp{bl(d —a)}—bl(o?—a)—l for some

5 Tos 2 (a + B )n+b n+b-1 j-a(at+p)
R(a,a) = Ic(a —a) ————a e da  constant b; the risk function is given by
0 ['(n+b)

0 n+b
R(a,a)= J.(eXP{th(d —a)-b(a- a)_l)i(a;ﬁ)b) o™ gl gy
0

R(d,a):c(mﬂl)n l:azj[anhl uaﬁ]da +j[ n+b+2-1 za/) da- 2&] nhlleu(fuﬂ,)da}

blg n+b-1 ab1+a+/}l A n+b-1 aa+,/}1
I(n+b) 0 0 0 n+b ¢ J. a-ba ,[a
R(e,d)= (a;fl)b ’ . ! .
( * ) + '[ n+bl-1 aa+/}l dor— J‘ambl aa+,51
R@ @) =2t B)” [dz r(n+b)  T(n+b+2) _ &F(n+b+1)} : .
F+b) | @+p)" @+p)™" — (@+p)™" e ,6’1)"”{ s T(+b) ~ T(n+b)  T(n+b+l) T(n+h) }
(¢,0)= € 7ba ) Nl
I(n+b) (@+h + )" (a+ﬂ1) (a+ﬂ1) (a+ﬂ1)
OR(a,a
Rla.a) _,

Now solving

A >

n+b
we obtain the Baye’s R(Ot,o}):ebl"( a+p, ] -b, +b (n+b) -1
(24

a+bl+ﬂl ( +ﬂl)

estimator as
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Now solving

estimator as

~ 1
a2zt =—log

by

oR(a, )

a+b +p

a+pf;

]n+b

Table 1: MSE for ¢ under extension of Jeffery’s prior using different loss functions

1-e %

n
,where 8, = ZIn

i=1

=0, we obtain the Baye’s

1

T (8.4)

8.2 Baye’s estimator of S(x)

By using posterior distribution function (8.1), we can found

the survival function such that

MLE 2 %
N a C1 QA( &SL aAL au_
ML c=1.3 c=-1.3 bi=12 | bi=-12
05 0.5 0.009920 0.009920 0.011743 0.009561 0.009704 0.010230
' 1.0 0.008248 0.006692 0.008902 0.006098 0.006404 0.007087
25 10 0.5 0.265436 0.265436 0.277988 0.253211 0.259886 0.271141
1.0 0.050551 0.061059 0.047867 0.078292 0.067014 0.055367
15 0.5 0.298196 0.298196 0.409708 0.208053 0.219145 0.407304
' 1.0 0.600976 0.481697 0.639827 0.350146 0.359968 0.649817
05 0.5 0.008726 0.008726 0.007517 0.010199 0.009003 0.008456
' 1.0 0.007174 0.008188 0.006901 0.009747 0.008480 0.007904
50 10 0.5 0.026544 0.026544 0.023113 0.031110 0.028309 0.024933
1.0 0.026257 0.024287 0.027023 0.023062 0.023523 0.025429
15 0.5 0.101102 0.101102 0.087334 0.117070 0.110049 0.092561
' 1.0 0.039084 0.035488 0.040549 0.033772 0.033942 0.038852
05 0.5 0.002823 0.002823 0.003198 0.002542 0.002747 0.002906
) 1.0 0.002771 0.003027 0.002703 0.003427 0.003107 0.002949
100 10 0.5 0.023899 0.023899 0.027795 0.020431 0.022060 0.025888
1.0 0.011205 0.010305 0.011518 0.009464 0.009859 0.010844
15 0.5 0.072457 0.072457 0.083050 0.062870 0.064843 0.080931
' 1.0 0.066907 0.060298 0.069002 0.052574 0.054283 0.067081
Table 2: MSE for & under gamma prior using different loss functions
N a a=b '\O{JLE dSL ap s
ML c=1.3 c=-1.3 b1:1.2 b1:-1.2
05 0.5 0.009924 0.010148 0.012208 0.009520 0.009868 0.010522
' 1.0 0.008550 0.009547 0.013448 0.007193 0.008807 0.010417
25 10 0.5 0.264970 0.265044 0.277536 0.252877 0.259520 0.270723
1.0 0.050804 0.049616 0.040210 0.062808 0.054325 0.045275
15 0.5 0.296489 0.261076 0.360422 0.181495 0.192284 0.355974
' 1.0 0.597822 0.465531 0.607573 0.345912 0.354868 0.614678
05 0.5 0.008724 0.008444 0.007295 0.009854 0.008709 0.008185
' 1.0 0.007269 0.006781 0.005824 0.008005 0.007013 0.006558
50 10 0.5 0.026356 0.026228 0.022859 0.030711 0.027963 0.024645
1.0 0.026192 0.026058 0.029797 0.023768 0.024779 0.027730
15 0.5 0.100009 0.101579 0.087744 0.117561 0.110518 0.093029
' 1.0 0.038687 0.036446 0.042411 0.033623 0.034138 0.040530
05 0.5 0.002824 0.002885 0.003276 0.002587 0.002805 0.002972
' 1.0 0.002794 0.002678 0.002445 0.002987 0.002740 0.002621
100 10 0.5 0.023867 0.023690 0.027543 0.020261 0.021872 0.025656
1.0 0.011215 0.011167 0.012634 0.010063 0.010592 0.011837
15 0.5 0.072246 0.072246 0.079717 0.060260 0.062184 0.077639
' 1.0 0.066596 0.061969 0.070748 0.054137 0.055854 0.068835
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% -1\
ézg(x)=j 1-eX | ‘my(al/x)da
0
o -1\¢ n+b
§zg(X)=I 1-e* LJF’BJ o™t e dg
’ ['(n+b)

o

S

0

9 Simulation Study

In our simulation study, we chose a sample size of n=25, 50
and 100 to represent small, medium and large data set. The
shape parameter @ is estimated for generalized standard
inverted exponential distribution by using the Bayesian
method of estimation under extension of Jeffrey’s and
gamma priors by using different loss functions. Here, we

have considered @=051.0&15 .The values of

extension  were ¢,=05&10 and
a=b=05&1.0

parameters were

Jeffrey’s hyper

. The values for the

loss parameters 2 = t1.3and b =212 qpic s

iterated 1000 times and the parameter for each method was
calculated. A simulation study was conducted in R-software
to examine and compare the performance of the estimates
for different sample sizes with different values for the
(extension of Jeffrey’s and gamma) priors and the loss
functions. The results are presented in tables for different
selections of the parameters.

10 Real Data Example

Table 3: Posterior Mean and Posterior Variance of a
generalized standard inverted exponential distribution
under extension of Jeffery’s prior and gamma prior

n+b

S’\ZQ(X): axh

n R
n ,Whereﬂl—ZIn[le X‘J
a+ﬁ1—ln[1—exJ =

(8.5)

In this section, we consider the real life data set which
already has been used by Smith and Naylor (1987). This
data represents the strengths of 1.5 cm glass fibers,
measured at the National Physical Laboratory, England.
The data is given below:

0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68,
1.73,1.81, 2.0, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59,1.61,
1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50,
1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81,1.13,
1.29,1.48, 1.5,1.55,1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84,
1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78,
1.89

The MLE of the above data works out to be

oy, =1.402551 and its variance is 1.398119.The table
below provides the posterior mean and posterior variance
under the two priors, viz. extension of Jeffrey’s prior and
Gamma prior.

11. Results

i. In table 1, Bayes estimation with Al-Bayytai’s Loss
function under extension of Jeffrey’s prior provides the
smallest values in most cases especially when loss
parameter C, is (-1.3). Similarly, in table 2, Bayes
estimation with Al-Bayytai’s Loss function under
gamma prior provides the smallest values in most cases
especially when loss parameter C; is (-1.3) whether the
extension of Jeffrey’s prior is 0.5 & 1.0 and hyper
parameters of gamma prior is 0.5 & 1.0. Moreover,
when the sample size increases from 25 to 100, the
MSE decreases quite significantly.

ii. The posterior mean and posterior variance under the
assumed priors is calculated by assuming the different
values of hyper parameters. From table 3, it is clear that
the posterior variance under the Gamma prior are less as
compared to extension of Jeffrey’s prior, which shows
that this prior is efficient as compared to extension of
Jeffrey’s prior and this less variation in posterior
distribution helps in making more precise Bayesian
estimation of the true unknown parameter o of

Hyper Jeffrey’s Extensi,on Ga}mma
@ | Parameters | Extension | Mean/p.v | Jeffrey’s prior
z prior
a=b C1
05 Mean 1.402551 1.398119
05 0.5 ) post.var 0.03122458 | 0.030783
’ 10 Mean 1.380288 1.393784
1.0 ) post.var 0.03072895 | 0.030353
05 05 Mean 1.402551 1.398119
10 post.var 0.03122458 | 0.030783
1.0 1.0 Mean 1.380288 1.393784
post.var 0.03072895 | 0.030353
05 Mean 1.402551 1.398119
15 0.5 ’ post.var 0.03122458 | 0.030783
’ 10 Mean 1.380288 1.393784
1.0 ’ post.var 0.03072895 | 0.030353
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generalized standard inverted exponential distribution.

12. Conclusion

In this paper, we have addressed the problem of Bayesian
estimation for the generalized standard inverted exponential
distribution under different loss functions each in the
worked example as well as in the simulation study. From
the results, we observe that in most cases, Bayesian
estimator under Al-Bayyati’s loss function provides the
smallest MSE values under extension of Jeffrey’s prior and
gamma prior as compared to other loss functions and the

classical estimator when the loss parameter c,is +1.3.

Thus we can say that Al- Bayyati’s loss is better than other
loss functions. Also Bayesian estimator under the Gamma
prior has the less posterior variance. It is also observed that
among the priors, Gamma prior provides the Bayes
estimators with least MSE.
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