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Abstract: In this article, we attempt to introduce a new count data model which is obtained by compounding two 
parameter discrete Weibull distribution with Minimax distribution. The proposed model has several properties, such as it 
can be nested to different compound distributions on specific parameter settings. We shall first study some basic 
distributional and moment properties of the new distribution. Then, certain structural properties of the distribution such as 
its unimodality, hazard rate behavior and index of dispersion are discussed. Finally, two real data sets are analyzed to 
investigate the suitability of the proposed distribution in modeling count data from medical genetics. 
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1 Introduction 
From the last few decades researchers are busy to obtain 
new probability distributions by using different techniques 
such as compounding [20], discretization [21,22], 
transmutation etc. but compounding of probability 
distribution has received maximum attention which is an 
innovative and sound technique to obtain new probability 
distributions.  The compounding of probability distributions 
enables us to obtain both discrete as well as continuous 
distribution. 
 Compound distribution arises when all or some parameters 
of a distribution known as parent distribution vary 
according to some probability distribution called the 
compounding distribution, for instance negative binomial 
distribution can be obtained from Poisson distribution when 

its parameter   follows gamma distribution. If the parent 
distribution is discrete then resultant compound distribution 
will also be discrete and if the parent distribution is 
continuous then resultant compound distribution will also 
be continuous i,e. the support of the original (parent) 
distribution  determines the support of compound 
distributions.  
In several research papers, it has been found that compound 
distributions are very flexible and can be used efficiently to 
model different types of data sets. With this in mind, many 
compound probability distributions have been constructed. 
In the early 1970s, Dubey [13] derived a compound 
gamma, beta and F distribution by compounding a gamma 
distribution with another gamma distribution and reduced it 
to the beta Ist and 2nd kind and to the F distribution by 
suitable transformations. Sankaran [1] introduced a 
compound of Poisson distribution with that of Lindley 

distribution for modeling count data. Gerstenkorn [14, 15] 
proposed several compound distributions, he obtained 
compound of gamma distribution with exponential 
distribution by treating the parameter of gamma distribution 
as an exponential variate and also obtained compound of 
polya with beta distribution. Ghitany, Al-Mutairi and 
Nadarajah [2, 3] introduced zero-truncated Poisson-Lindley 
distribution, who used the distribution for modeling count 
data in the case where the distribution has to be adjusted for 
the count of missing zeros. Zamani and Ismail [4] 
constructed a new compound distribution by compounding 
negative binomial with one parameter Lindley distribution 
that provides good fit for count data where the probability 
at zero has a large value. Rashid  and Jan [5] explored a 
mixture  of generalized negative binomial distribution with 
that of generalized exponential distribution which contains 
several compound distributions as its sub cases  and  proved 
that this particular model is better in comparison to others 
when it comes to fit observed count data set.  
In this paper, we propose a new count data model by 
compounding two parameter discrete Weibull distribution 
with Minimax distribution as there is a need to find more 
plausible discrete probability models or survival models in 
medical science and other fields, to fit to various discrete 
data sets. It is well known in general that a compound 
model is more flexible than the ordinary model and it is 
preferred by many data analysts in analyzing statistical 
data. Moreover, it presents beautiful mathematical exercises 
and broadened the scope of the concerned model being 
compounded. 
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2 Material and Methods 

A discrete analogue of the continuous Weibull distribution 
was introduced by Nakagawa and Osaki [6], and is defined 
by the probability mass function (pmf): 
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where 0 0 1and q     are its parameters. The first and 

the second moments of the DW random variable X are 
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Jones [7] studied two-parameter distribution on (0,1) which 

he has called the Minimax distribution, Minimax ( , )   

,where its two shape parameters   and   are positive. It 

has many of the same properties as the beta distribution but 
has some advantages in terms of tractability. Its probability 
density function is given by 
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where , 0   are shape parameters. The raw moments of 

Minimax distribution are given by 
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Minimax distribution is not very popular among 
statisticians because researchers have not analyzed and 
investigated it systematically in much detail.  Minimax 
distribution is similar to the beta distribution but unlike beta 
distribution, it has a closed form of cumulative distribution 
function, which makes it very simple to deal with. For more 
detailed properties one can see references [7,8] 

Usually the parameters and q  in DWD are fixed 

constants but here we have considered a problem in which 
the probability parameter q is itself a random variable 
following MD with pmf (3). 

 

 

3 Definition of Proposed Model                                                                                                               

If | ~X q DWD  ,q   where q is itself a random variable 

following Minimax distribution MD  ,  , then 

determining the distribution that results from marginalizing 

over q will be known as a compound of discrete Weibull 
distribution with that of Minimax distribution, which is 

denoted by DWMD   ,, . It may be noted that 

proposed model will be a discrete since the parent 
distribution DWD is discrete. 

Theorem 3.1: The probability mass function of a 

compound of DWD ( , )q   with MD ( , )  is given by 
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where 0,1,2,......x     and    , , 0     

Proof: Using the definition (3), the pmf of a compound of 

DWD  ,q  with MD ),(  can be obtained as 
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(5) 

Where 0,1,2,...x and , , 0    . From here a 

random variable X  following a compound of DWD with 

MD will be symbolized by DWMD  , ,   . 

Fig.1(a) to fig.1(i) provides a pmf plot of the proposed 

model DWMD  , ,    for different values of 

parameters. It is evident that the proposed model is right 
skewed with unimodel behavior. 
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Fig 1: pmf plot of Discrete Compound Weibull minimax distribution. 

 

Fig 2: CDF plot of Discrete Weibull Minimax distribution. 

  

0 2 4 6 8 10
0
.0

0.
4

(a)
x

p(
x)

  1.2,   3,   1

0 2 4 6 8 10

0
.0

0.
2

0.
4

(b)
x

p(
x)

  1.2,   3,  2

0 2 4 6 8 10

0.
00

0.
1
5

0
.3

0

(c)
x

p(
x)

  1.2,   3,   5

0 2 4 6 8 10

0.
0
5

0.
1
5

(d)
x

p
(x

)

  2,   0.4,   3

0 2 4 6 8 10

0.
00

0.
1
5

(e)
x

p
(x

)

  2,  0.7,  3

0 2 4 6 8 10

0.
0
0

0.
2
0

(f )
x

p
(x

)

  2,   1.2,   3

0 2 4 6 8 10

0
.0

2
0.

06

(g)
x

p(
x)

  2,   0.1,   1

0 2 4 6 8 10

0
.0

5
0.

1
5

(h)
x

p(
x)

  5,  0.1,  1

0 2 4 6 8 10

0.
0

0.
2

0.
4

(i)
x

p(
x)

  9,   0.1,   1

0 2 4 6 8 10

0.
75

0.
90

(a)
x

F
(x

)

  1.2,  3,   1

0 2 4 6 8 10

0.
6

0.
8

1.
0

(b)
x

F
(x

)

  1.2,   3,   2

0 2 4 6 8 10

0.
3

0.
6

0
.9

(c)
x

F
(x

)

  1.2,  3,   5

0 2 4 6 8 10

0.
2

0.
5

0.
8

(d)
x

F
(x

)

  2,   0.4,   3

0 2 4 6 8 10

0.
2

0
.6

(e)
x

F
(x

)

  2,   0.7,   3

0 2 4 6 8 10

0.
3

0.
6

0.
9

(f )
x

F
(x

)

  2,   1.2,   3

0 2 4 6 8 10

0.
10

0.
25

0.
40

(g)
x

F
(x

)

  2,   0.1,   1

0 2 4 6 8 10

0.
1

0
.4

0.
7

(h)
x

F
(x

)

  5,   0.1,   1

0 2 4 6 8 10

0.
2

0.
6

(i)
x

F
(x

)

  9,   0.1,   1



116        B. A. Para, T. R. Jan: Compound of discrete Weibull … 
 

 
 
© 2017 NSP 
Natural Sciences Publishing Cor. 
 

The Cumulative distribution function of the DWMD

 , ,   is given by 
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Fig.2(a) to fig.2(i) provides a CDF plot of the proposed 

model DWMD  , ,    for different values of 

parameters. The initial rise of the CDF plot decreases as 
increases but as    and   increases, initial rise of the CDF 

plot increases. 

4 Nested Distributions  

In this particular section, we show that the proposed model 
can be nested to different models under specific parameter 
setting.  

Proposition 4.1: If  ~ , ,X DWMD    then by 

setting 1  , we get a compound of geometric distribution 

with Minimax distribution. 

Proof: For 1  in (1) DWD reduces to geometric 

distribution (GD) hence a compound of GD with MD is 

followed from (5) by simply substituting 1  in it. 
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Which is the probability mass function of a compound of 
GD with MD. 

Proposition 4.2: If  ~ , ,X DWMD    then by 

setting, 1   we obtain a compound of DWD 

distribution with uniform distribution. 

Proof: For 1   in MD reduces to Uniform (0,1) 

distribution, therefore a compound DWD with uniform 
distribution is followed from (5) by simply putting 

1    in it. 
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Proposition 4.3: If  ~ , ,X DWMD    then by 

setting 1 and 1  we obtain a compound of 
geometric distribution with uniform distribution. 

Proof: For 1  in (1), DWD reduces to geometric 

distribution and for 1   , Minimax distribution 

reduces to U(0,1) distribution, hence a compound of 
geometric distribution with uniform distribution can be 

obtained from (5) by simply substituting 1  and 

1   in it.  
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Proposition 4.4: If  ~ , ,X DWMD    then by 

setting 2  and 1   we obtain a compound of 

discrete Rayleigh distribution with uniform distribution. 

Proof: For 2  in (1), DWD reduces to discrete Rayleigh 

distribution and for 1   , Minimax distribution 

reduces to U(0,1) distribution hence a compound of 
geometric distribution with uniform distribution can be 

obtained from (5) by simply substituting 2   and 

1   in it.  
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Which is the compound probability function of discrete 
Rayleigh distribution with U(0,1) distribution. 

Proposition 4.5: If  ~ , ,X DWMD    then by 

setting 2  , we get a compound of discrete Rayleigh 

distribution with minimax distribution. 

Proof: For 2   in (1) DWD reduces to discrete Rayleigh 

distribution (DRD), hence a compound of DRD with MD is 

followed from (5) by simply substituting 2  in it. 
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Fig 3: Hazard rate function of Discrete Weibull Minimax distribution. 

5 Reliability Measures of Compound Discrete 
Weibull Minimax Distribution 

If  ~ , ,X DWMD    , then the various reliability 

measures of a random variable X are given by  

(a) Survival Function. 
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(b) Rate of Failure Function. 
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(c) Second Rate of Failure Function. 
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Where, B(.) refers to the beta function defined by
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Fig.3(a) to fig.3(i) provides a hazard rate function plot of 

the proposed model DWMD  , ,    for different values 

of parameters. 

Table 1: Index of Dispersion, Mean and Variance of  , ,DWMD     for different values of parameters 

 =1 

    
2.1 2.3 2.8 3.5 3.7 4.2 4.6 5.1 5.3 5.6 6.2 

0.5 Mean 0.344 0.279 0.183 0.117 0.105 0.082 0.069 0.057 0.053 0.048 0.040 

  Variance 9.006 2.517 0.686 0.273 0.226 0.151 0.117 0.088 0.080 0.069 0.054 

  IOD 26.207 9.024 3.750 2.332 2.148 1.840 1.682 1.546 1.504 1.450 1.367 

0.6 Mean 0.450 0.370 0.250 0.166 0.151 0.121 0.104 0.087 0.082 0.075 0.063 

  Variance 13.022 3.670 1.022 0.418 0.349 0.238 0.186 0.143 0.131 0.115 0.091 

  IOD 28.969 9.930 4.089 2.520 2.316 1.973 1.798 1.646 1.599 1.538 1.445 

0.8 Mean 0.674 0.564 0.397 0.277 0.255 0.211 0.185 0.160 0.151 0.140 0.122 

  Variance 23.264 6.623 1.893 0.802 0.675 0.472 0.375 0.295 0.271 0.240 0.195 

  IOD 34.517 11.744 4.767 2.894 2.649 2.240 2.029 1.846 1.789 1.716 1.602 

 =4 

    
1.900 2.300 2.800 3.500 3.700 4.200 4.600 5.100 5.300 5.600 6.200 

1.02 Mean 0.359 0.312 0.270 0.228 0.218 0.198 0.184 0.169 0.164 0.156 0.143 

  Variance 0.249 0.223 0.200 0.177 0.171 0.159 0.150 0.140 0.137 0.132 0.123 

  IOD 0.693 0.713 0.742 0.776 0.785 0.804 0.817 0.832 0.837 0.844 0.857 

1.5 Mean 0.478 0.430 0.386 0.341 0.331 0.308 0.292 0.276 0.270 0.261 0.246 

  Variance 0.286 0.263 0.245 0.228 0.224 0.214 0.208 0.200 0.197 0.193 0.186 

  IOD 0.598 0.612 0.636 0.668 0.677 0.696 0.710 0.726 0.732 0.740 0.755 

2.6 Mean 0.656 0.607 0.563 0.518 0.508 0.486 0.470 0.454 0.448 0.439 0.423 

  Variance 0.315 0.291 0.275 0.264 0.262 0.257 0.255 0.252 0.250 0.249 0.246 

  IOD 0.481 0.479 0.489 0.509 0.515 0.530 0.541 0.555 0.560 0.567 0.581 

 

6 Moment Generating and Probability   
Generating Functions of  , ,DWMD     

(a)  The moment generating function of the Compound 
discrete Weibull Minimax distribution is 
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First four moments of the proposed model are given by 
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(b)  Probability generating function of the Compound 
discrete Weibull Minimax distribution is 
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At t=1, 
'
[ ] ( )xG t , 

''
[ ] ( )xG t gives first and second factorial 

moments 
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Table1 exhibits the index of dispersion, 

)(/}))(()({ 22 XEXEXEIOD  , mean and 

variance for different values of the parameters   ,  and 

  for three parameter discrete Compound Weibull 

Minimax distribution. It can be seen that this variance to 
mean ratio indicates that discrete Compound Weibull 
Minimax model is overdispersed as well as under-
dispersed. 

7 Parameter Estimation 

In this section the estimation of parameters of 

 , ,DWMD     model will be discussed through 

method of moments and maximum likelihood estimation. 

7.1 Moments Method of Estimation 

In order estimate three unknown parameters of 

 , ,DWMD    model by the method of moments, we 

need to equate first three sample moments with their 
corresponding population moments.  

1 1m  ; 2 2m  and 3 3m   

Where i  is the ith sample moment and im  is the ith 

corresponding population moment and the solution for 

ˆ ˆ,   and ̂  may be obtained by solving above equations 

simultaneously through numerical methods. 

7.2 Maximum Likelihood Method of Estimation 

The estimation of parameters of  , ,DWMD    model 

via maximum likelihood estimation method requires the log 

likelihood function of  , ,DWMD     
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  (9)  

The maximum likelihood estimate of  ˆˆ ˆ, ,
T

    can 

be obtained by differentiating (9) with respect unknown 

parameters ,  and , respectively and then equating 

them to zero. 
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These three derivative equations cannot be solved 

analytically, therefore ˆ ˆ,   and ̂  will be obtained by 

maximizing the log likelihood function numerically using 
Newton-Raphson method which is a powerful technique for 
solving equations iteratively and numerically. We can 
compute the second partial derivatives, which are useful to 
obtain the Fisher’s information matrix as follows. 
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One can show that the discrete Weibull Minimax 
distribution satisfies the regularity conditions (see, e.g., 
Ferguson, 1996, p. 121 [19]). Hence, the MLE vector 

 ˆˆ ˆ, ,
T

     is consistent and asymptotically normal; 

that is,      
1

2 ˆˆ ˆ, , , , , ,
T T

yI             
converges in distribution to a normal distribution with the 
(vector) mean zero and the identity covariance matrix. 

Also, the Fisher’s information matrix can be computed 
using the approximation 
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Where ˆ ˆ,   and ̂  are the MLEs of ,  and  , 

respectively (see, e.g., G´omez-D´eniz [18]. Using this 
approximation, we may construct confidence intervals for 
parameters of the discrete Weibull Minimax model. 

8 Application of Discrete CWMD in Medical 
Genetics 

The term “Medical Genetics” has been variously defined as 
the science of human biological variation as it relates to 
health and disease. Heredity includes those traits or 
characteristics which are transmitted from generation to 
generation, and is therefore fixed for a particular individual. 
Variation, on the other hand, is mainly of two types, 
namely hereditary and environmental. Hereditary variation 
refers to differences in inherited traits whereas 
environmental variations are those which are mainly due to 
environment. 

Much quantitative works seem to be done in genetics but so 
far no works has been done on fitting of discrete Log-
logistic model for count data in genetics. Various 
mathematical/ statistical models have been used in radiation 
research for studying variations in the frequency of 
chromosome aberrations. In the analysis of data observed 
on chemically induced chromosome aberrations in cultures 
of human leukocytes, Loeschke & Kohler [9] suggested the 
negative binomial distribution while Janardan & Schaeffer 
[10] suggested modified Poisson distribution. Shanker & 
Hagos [11] have detailed study on the applications of 
Poisson Lindley distribution (PLD) to model data from 
genetics. 

Shanker , Hagos and Teklay [12] have suggested Poisson 
Akasha distribution (PAD) as another model for studying 
variations in the frequency of chromosome aberrations. In 
this section an attempt has been made to fit to data relating 
to genetics as given in table 2 and table 6, using discrete 
Weibull Minimax distribution in comparison with discrete 
Weibull, PAD, PLD and other classical discrete models.  

In order to give an impression of the typical form of our 
observed distribution and the deviations from the expected 
ones, table 6 shows the observed chromatid aberrations X 
per cell in a culture of human leukocytee. This culture was 
treated with 0 .02γ Chinon I over a period of 24 hrs. We 
compute the expected frequencies for fitting discrete Log-
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logistic, Poisson, Poisson Akasha, Poisson Lindley and 
DRayleigh distributions with the help of R studio statistical 

software and Pearson’s chi-square test is applied to check 
the 

 
Table 2: Distribution of number of Chromatid aberrations in human leukocyte (0.2 g Chinon I, 24 hours). 

Number of Aberrations 0 1 2 3 4 5 6 7+ Total 

Frequency 268 87 26 9 4 2 1 3 400 

 
 

Table 3: Descriptive statistics of Counts of Chromatid aberrations in human leukocyte (0.2 g Chinon I, 24 hours). 

 
Statistic 

Standard 
Error 

Bootstrapa 

Bias Std. Error 
95% Confidence Interval 
Lower Upper 

 
 
 
 
 
Chromatid Aberrations data 

Mean .5475 .05305 .0034 .0535 .4451 .6599 
Std. Deviation 1.06092  -.00168 .10258 .86966 1.26823 
Variance 1.126 

 
.007 .218 .756 1.608 

Skewness 3.134 .122 -.077 .303 2.391 3.654 
Kurtosis 12.858 .243 -.593 2.527 7.121 17.609 
N 400 

 
0 0 400 400 

a. Noted, bootstrap results are based on 1000 bootstrap samples 

 

Table 4: Estimated parameters by ML method for fitted distributions for Counts of Chromatid aberrations in human 
leukocyte (0.2 g Chinon I, 24 hours). 

Distribution parameter Estimates 
Standard Error 
of the estimates 
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Table 5: Table for goodness of fit for Counts of Chromatid aberrations in human leukocyte (0.2 g Chinon I, 24 hours). 

X Observed DWMD Poisson PAD PLD DRayleigh DWD NBD 

0 268 268.23 231.357 260.455 257.023 146.812 270.51 270.175 

1 87 85.83 126.668 89.671 93.390 188.980 78.53 78.552 

2 26 26.72 34.675 32.086 32.761 57.684 29.63 29.838 

3 9 9.96 6.328 11.531 11.210 6.258 12.06 12.220 

4 4 4.30 0.866 4.095 3.766 0.261 5.13 5.186 

5 2 2.08 0.095 1.428 1.247 0.004 2.25 2.247 

6 1 1.10 0.009 0.489 0.408 0.000 1.01 0.987 

7+ 3 1.78 0.001 0.245 0.195 0.000 0.88 0.794 

χ2 p-values 0.67 0.00 0.24 0.10 0.000 0.33 0.311 

     X: Counts of Chromatid aberrations in human leukocyte. 
     Observed: Observed frequency of Counts of Chromatid aberrations in human leukocyte. 

 

Table 6: Distribution of Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by streptonigrin (NSC-
45383), Exposure-90  μg|kg.. 

Class/Exposure (  g/kg) 0 1 2 3 4 5 6+ Total 

Frequency 155 83 33 14 11 3 1  300 

Table 7: Estimated parameters by ML method for fitted distributions for Counts of Mammalian cytogenetic dosimetry 
lesions in rabbit lymphoblast induced by streptonigrin (NSC-45383), Exposure-90 μg|kg.. 

Distribution parameter Estimates 
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Table 8: Table for goodness of fit for Counts of Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced 
by streptonigrin (NSC-45383), Exposure-90 μg|kg.  

X Observed Poisson DRayleigh ZIP PLD DWMD PAD 
0 155 127.798 81.994 155.000 158.335 154.488 160.668 

1 83 109.054 134.348 71.935 77.209 82.183 74.335 

2 33 46.530 66.705 45.658 35.884 36.262 35.268 

3 14 13.235 15.139 19.319 16.149 15.488 16.483 

4 11 2.823 1.712 6.131 7.102 6.585 7.495 

5 3 0.482 0.099 1.557 3.069 2.816 3.312 

6 1 0.078 0.003 0.400 2.254 2.179 2.440 

χ2 p-values 0.000 0.000 0.002 0.479 0.227 0.419 

X: Counts of Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by streptonigrin (NSC-45383), 
Exposure-90 μg|kg 
Observed: Observed frequency of Counts of Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by 
streptonigrin (NSC-45383), Exposure-90 μg|kg 

 

Table 9: AIC, BIC and loglikelihood values for fitted distributions for number of Chromatid aberrations in human 
leukocyte (0.2 g Chinon I, 24 hours). 

Criterion Poisson DRayleigh PLD PAD DWMD DWD NBD 

Loglikelihood Value -439.5136 -557.5330 -403.455 -402.285 -398.532 -399.689 -399.857 

AIC 881.02725 1117.06604 808.9099 806.5696 803.0649 803.3787 803.7137 

BIC 881.62931 1117.6681 809.512 807.1716 804.8711 804.5828 804.9178 

 

Table 10: AIC, BIC and loglikelihood values for fitted distributions for Counts of Mammalian cytogenetic dosimetry 
lesions in rabbit lymphoblast induced by streptonigrin (NSC-45383), Exposure-90 μg|kg. 

Criterion Poisson DRayleigh ZIP PLD DWMD PAD 

Loglikelihood value -400.462 -451.535 -386.797 -383.052 -383.084 -383.311 

AIC 802.9234 905.0705 777.5945 768.1049 772.1678 768.6216 

BIC 806.6272 908.7743 785.0021 771.8087 783.2792 772.3254 
goodness of fit of the models discussed. The calculated 
figures are given in the table 5. 

The p-values of Pearson’s Chi-square statistic are 0.67, 
0.00, 0.24, 0.10, 0.00, 0.33 and 0.31 for discrete Weibull 
Minimax, Poisson, Poisson Akasha, Poisson Lindley, 
discrete Rayleigh, discrete Weibull  and Negative binomial 
distributions, respectively (see  Table 5). This reveals that 
Poisson and discrete Rayleigh distributions are not good fit 
at all, whereas discrete Weibull Minimax, Poisson Akasha 
Poisson Lindley, Negative binomial and discrete Weibull 
distributions are good fit distributions with discrete Weibull 
Minimax model being the best one. The null hypothesis that 
data come from discrete Weibull Minimax distributions is 
strongly accepted. 

Table 6 provides us an overview of the dataset related to 

Mammalian cytogenetic dosimetry lesions in rabbit 
lymphoblast induced by streptonigrin (NSC-45383), 
Exposure-90 μg|kg. Even though the Distribution of 
Mammalian cytogenetic dosimetry lesions in rabbit 
lymphoblast induced by streptonigrin (NSC-45383), 
Exposure-90 μg|kg. is best fitted by PLD but DWMD also 
fits the data significantly with p-value 0.22 (>0.05). The p-
values of Pearson’s Chi-square statistic and expected 
frequencies for Distribution of Mammalian cytogenetic 
dosimetry lesions in rabbit lymphoblast induced by 
streptonigrin (NSC-45383), Exposure-90 μg|kg is given in 
table 8. Poisson, DRayleigh and ZIP doesn’t fit the data at 
all, whereas PLD, DWMD and PAD fits the data 
significantly. 

We have compared discrete Weibull Minimax distribution 
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with discrete Rayleigh, discrete Poisson Lindley, Poisson 
Akasha, Poisson, Zero Inflated Poisson and Negative 
binomial distributions using the Akaike information 
criterion (AIC), given by Akaike [16] and the Bayesian 
information criterion (BIC), given by Schwarz [17] .  

Generic function calculating Akaike's ‘An Information 
Criterion’ for one or several fitted model objects for which 
a log-likelihood value can be obtained, according to the 
formula -2*log-likelihood + k*npar, where npar represents 
the number of parameters in the fitted model, and k = 2 for 
the usual AIC, or k = log(n) (n being the number of 
observations) for the so called BIC or SBC (Schwarz's 
Bayesian criterion). 

The AIC, BIC and Loglikelihood values for the fitted 
distributions to two real datasets are given in table 9 and 
table 10. By comparing their AIC, BIC and Loglikelihood  
values for the fitted models, we conclude that in case of 
number of Chromatid aberrations in human leukocyte (0.2 
g Chinon I, 24 hours), discrete Weibull Minimax model 
yields best fit in contrast to Poisson, Poisson Akasha, 
Poisson Lindley, discrete Rayleigh, discrete Weibull  and 
Negative binomial distributions. In case of Mammalian 
cytogenetic dosimetry lesions in rabbit lymphoblast 
induced by streptonigrin (NSC-45383), Exposure-90 μg|kg, 
DWMD fits better in contrast to Poisson, DRayleigh and 
ZIP models. 

9 Conclusion 

In this paper, a new model is proposed by compounding 
discrete Weibull distribution (DWD) with Minimax 
distribution (MD) and it has been shown that proposed 
model can be nested to different compound distributions. 
Some important probabilistic properties and the problem of 
estimation of its parameters are studied. In addition, the 
discrete Weibull Minimax distribution is appropriate for 
modeling both over and under dispersed data since, 
depending on the values of the parameters, its variance can 
be larger or smaller than the mean, which is not the case 
with some known standard classical discrete distributions.  
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