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Abstract: The behavior of vapour bubble in superheated liquid in a vertical cylindrical tube between two-phase flow 

densities is discussed under the effect of peristaltic motion of long wavelength and low Reynolds number. The 

mathematical model is formulated by mass, momentum, and heat equations. The problem solved analytically to estimate 

the growth of vapour bubbles, temperature and velocity distributions. The growth of vapour bubbles, temperature and 

velocity distribution proportional with the amplitude ratio, Grashof number, heat source parameter, volume rate, and 

inversely with density fraction. The present results of bubble growth performed lower values than that obtained by 

Mohammadein model (2001).  
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1 Introduction 

Peristalsis is the phenomenon in which a circumferential 

progressive wave of contraction or expansion propagates 

along a tube. If the tube is long enough, one might see 

several identical waves moving along the tube 

simultaneously. Peristalsis is now well known to 

physiologist to be one of the major mechanisms for fluid 

transport in many biological systems. Peristalsis is an 

important mechanism reported in many organisms and in a 

variety of a living body. Peristaltic flows also provide 

efficient means for sanitary fluid transport and are thus 

exploited in industrial peristaltic pumping and medical 

devices [1]. The problem of the mechanism of peristaltic 

transport has attracted the attention of many investigators.  

A good number of analytical, numerical and experimental 

studies has been conducted to understand peristaltic action 

under different conditions with reference to physiological 

and mechanical situations. Srinivas and Pushparaj have 

investigated the peristaltic transport of magneto 

hydrodynamics (MHD) flow of a viscous incompressible 

fluid in a two dimensional asymmetric inclined channel 

[2].The study of temperature field and spherical vapour 

bubble dynamics between two-phase flow [3-5, 6-10, and 

11] are most important physical phenomena because of its 

necessity in many technical processes. The mixed 

lubrication, chemical metallurgic, oil and gas processes are 

applications of heat exchange. It plays a major role in the 

industry of refrigerators, boilers and nuclear reactors    

 

which are used for generation of electrical current. The 

vapour bubble is considered as a finite sink growing inside 

a mixture (vapor and superheated liquid).There are three 

stages for bubble growth, inertial, thermal, and diffusion. In 

the inertial stage, the bubble nucleus depends strongly on 

the interfacial mechanical interactions such as acceleration, 

pressure force, and surface tension forces.  

The inertial stage takes a few milliseconds and thermal 

phenomena are negligible, therefore, this stage is called 

isothermal. The peristaltic transport through tubes channels 

have attracted considerable attention due to their wide 

applications in medical and engineering sciences, such as, 

in physiology, roller and finger pumps, sanitary fluid 

transport, transport of corrosive fluids etc. Several review 

articles have been reported by authors [12-17]. The effect 

of heat transfer on the peristaltic flow of a Newtonian fluid 

through asymmetric vertical cylindrical tube is studied by 

Rao et. al. [4]. The closed form solutions of velocity field 

and temperature are obtained. . The theory of the growth of 

a single vapour bubble in a superheated liquid has been 

considered by several authors. The inertia controlled 

growth was presented by Rayleigh [7], who determined he 

first equation of motion for a spherical bubble growth (or 

collapse).  

The asymptotic solution, presented by Plesset and Zwick 

[17], considered thermal diffusion controlled growth, 

neglecting liquid inertia, and provided a zero-order 

approximate solution for the bubble wall temperature with 

the assumption of a thin thermal boundary layer with error 
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of less than 10% [17]. Their solution [15] was in good 

agreement with the experimental data of Degarabedian [18] 

in moderately superheated water up to 6 °C. Forster. In this 

paper, the peristaltic bubbly flow of viscous incompressible 

Newtonian flow in a vertical cylindrical tube is analyzed in 

details. The growth of vapour bubbles between two-phase 

densities inside a tube is studied under the effect of some 

physical parameters. The influence of some various 

physical parameters on the flow is observed. The 

temperature and the heat transfer are discussed through 

graphs.  

2 Analysis 

Consider the peristaltic bubbly flow of a viscous 

incompressible Newtonian fluid through a vertical tube. 

The flow is generated by sinusoidal wave trains 

propagating with constant speed along the wall of the outer 

rube. The axisymmetric cylindrical polar coordinate system 

is chosen such that the coordinate is along the center line of 

the tube and coordinate along the radial coordinate.  

The wall of the tube is maintained at a temperature 𝑇0 and 

at the center we have used axisymmetric condition on 

temperature as in Fig. 1, which depicts the physical model 

of the problem. where𝑎 is the radius of the tube, 𝑏 is the 

amplitude of the wave, 𝜆 is the wavelength and 𝑡 is the 

time. The flow is unsteady in the fixed frame (z, 𝑟). 

However, in a coordinate system moving with the 

propagation velocity 𝑐. 

 

Fig. 1 Physical Model. 

The mathematical model of the physical problem is 

described by the conservation equations of mass, 

momentum, and heat transfer as follows:                    
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where 𝑝 is the pressure, 𝑇 is the temperature, 𝑄0 is the 

constant heat addition/absorption, 𝑐𝑝  is the specific heat at 

constant pressure, 𝑘 is the thermal conductivity and 𝜌 is the 

density of the fluid. Introducing the dimensionless variables 

as follows: 

𝑟 =
𝑟
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𝜆
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where, 𝑅𝑒  is the Reynolds numbers, 𝛿 is the wave number, 

𝑒 is the amplitude ratio, 𝐺 is the Grashof number, 𝑃𝑟 is the 

Prandtl number, and 𝛽 is the non-dimensional heat source 

parameter. Substituting by the equation (5) into the 

equations (1-4), we obtain 
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When the wavelength is large (𝛿 ≪ 1), the Reynolds 

number is quite small (𝑅𝑒 → 0) and the equations (7-9) 

becomes 

𝜕𝑝

𝜕𝑟
= 0                                                                              (10)                                                                                      
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=
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1

𝑟
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𝜕𝑟
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 The dimensionless volume flow rate in the fixed frame of 

reference is given by 

𝑞 = 2  𝑤𝑟𝑑𝑟
ℎ

0
,                                                                (13)                                                                                          

the corresponding dimensionless boundary conditions are 

𝜕𝑤

𝜕𝑟
= 0          𝑎𝑡          𝑟 = 0                                               (14)                                                                         

𝑤 = −1        𝑎𝑡          𝑟 = ℎ                                              (15)                                                                          

𝜕𝜃

𝜕𝑟
= 0           𝑎𝑡          𝑟 = 0                                              (16)                                                                       

 𝜃 = 0             𝑎𝑡          𝑟 = ℎ.                                            (17)               

 

Solving Eq. (12) using the Eqs. (16) and (17), we get 
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𝜃 =
𝛽

4
(ℎ2 − 𝑟2),                                                              (18)                                                                                                    

Substituting by Eq. (18) into the Eq. (11) and solving Eq. 

(11) with the boundary conditions of Eqs. (14) and (15), we 

get 

𝑤 =
1

4

𝑑𝑝

𝑑𝑧
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𝐺 𝛽

4
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4
−
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− 1,      (19)                                                   

The volume flow rate is given by 

𝑞 = −
𝑑𝑝

𝑑𝑧
 
ℎ4

8
 +

𝐺 𝛽  ℎ6

96
− ℎ2.                                           (20)                                                                                       

From the Eq. (20), we have 

𝑤 =  
𝐺 𝛽  ℎ2
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−
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2
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− 1.                                                                      (21) 

On the basis of continuity Eq. (1), we find that, the velocity 

of cylindrical coordinates of the vapour bubble, can be 

written as 

𝑤(𝑟, 𝑡) =
𝜀 𝑅𝑅 

𝑟
.                                                                  (22)                                                                                                        

From the Eq. (22), we can obtain the velocity of vapour 

bubble  radius in a vertical cylindrical tube as the form 

𝑅  𝑟, 𝑡 =  
1

𝜀
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𝑀

𝐴
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𝑀

𝐴

−
 𝑀 𝐴

𝜺
 𝑡 − 𝑡0  ,                   (24)                                                         

where,  

𝑀 = −1 −  
−2𝑞

ℎ2 − 2 , 

𝐴 =
−2𝑞

ℎ4 −
2

ℎ2, 

𝜀 =  1 −
𝜌𝑣

𝜌𝑙
 . 

3 Discussion and Results 

The problem of bubble growth in a vertical 

cylindrical tube is studied for Newtonian fluid with 

peristaltic bubbly flow. The physical problem is described 

by Fig. 1, the mathematical model is formulated by the 

system of equations (1-4) in a two dimensional cylindrical 

coordinates (𝑟, 𝑧), with boundary conditions (14-17), and 

solved analytically for the long wavelength 𝛿 ≪ 1. The 

growth of vapour bubble radius is obtained by Eq. (24). 

Temperature distribution and velocity distribution are 

derived by Eqs. (18), and (21) respectively. Moreover, the 

unsteady bubble radius is formulated in cylindrical 

coordinates (𝑟, 𝑧).The temperature distribution inside a 

superheated water under atmospheric pressure ( P

=247kPa and Ts=400 K). The physical values are calculated 

by Haar et al. [6] as given by Table 1. Moreover, by using 

Mathematica program (version 7.0), the following graphs 

that demonstrate the effect of the physical parameters on 

velocity distribution, temperature distribution, and the 

radius of vapour bubble. The velocity distribution in terms 

of parameter r for different values of Grashof number G, 

and heat source parameter 𝛽 are shown in Fig. 2 (a, b). It is 

observed that the velocity distribution is proportional with 

Grashof number𝐺 and heat source parameter 𝛽. In Fig. 3, 

the velocity distribution is plotted in terms of (𝑟, 𝑧) with 

two different values of volume rate q. It is clearly, the 

velocity distribution shifted for the upper values with the 

increasing of volume rate q. On the other hand, temperature 

distribution in terms of (𝑟, 𝑧), is shown in Fig. 4. It 

observed increases in the middle part of the channel and 

decreases near the channel walls. The streamlines are 

calculated from Eqs. (21), (18), and plotted in Figs. 5, 6 

respectively. Figs. 7(a, b) shows the temperature 

distribution in terms of parameter r for different values of 

amplitude ratio 𝑒 and heat source parameter 𝛽, is 

respectively. It is observed that the temperature distribution 

is proportional with amplitude ratio 𝑒 and heat source 

parameter 𝛽.  

Temperature distribution in terms of parameter z for 

different values of amplitude ratio 𝑒 and heat source 

parameter 𝛽 are shown in Figs. 8 (a, b). It is observed that 

the temperature distribution is proportional with amplitude 

ratio 𝑒 and heat source parameter 𝛽. The behavior of 

vapour bubble for two different values of density fraction 𝜀, 

amplitude ratio e  are shown in Fig. 9 (a, b). When 

increasing value of density fraction 𝜀, amplitude ratio e, 

then the behavior of vapour bubble shifted for lower values 

and this is agreement with Prosperetti [17].It is observed 

that the bubble velocity is decreasing with increasing of 

time t in Figs. 10 (a, b). In Figs. 11 (a, b).  

The velocity of vapour bubble is proportionally inversely 

with the radius of vapour bubble under the effect of 

Grashof number 𝐺 and heat source parameter 𝛽 and shifted 

for the upper values with increasing of Grashof number 𝐺 

and heat source parameter 𝛽 and this is agreement with Ref. 

[4]. The influence the amplitude ratio e on the velocity of 

vapour bubbles in terms of R is shown in Fig. 11 (c). It is 

reveals the same behavior in Figs. 11 (a, b), but here the 

irregular increment, the reason for this is due to peristaltic 

bubbly flow in a vertical cylindrical tube. The growth of 

vapour bubble compared with Mohammadein et. al. model 

is shows in Fig. 12. It is observed that the present model 

performs at lower values than Mohammadein model with 

fraction density 𝜀 = 0.4 and initial velocity 𝑅 0 = 5 ×
10−5m/s. 
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Table: 1 Parameters’ values used in the present problem. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 (a) The Velocity distribution is plotted as a function 

of𝑟 with the different Values of Grashof number G (G=3, 

3.5, 4). 

 

 

 

 

 

 

 

 

 

 

Fig. 2 (b) The Velocity distribution is plotted as a function 

of 𝑟 with the different Values of Grashof number  (𝛽 =
5, 5.5, 6 ). 

 

 

 

 

 

 

 

 

 
 

Fig. 3 The Velocity distribution is plotted in 3Das 

afunctionof 𝑟, 𝑧 with the different values of volume flow 

rate𝑞. 

 

 

 

 

 

 

 

 

 

 

Fig.4 Temperature distribution 𝜃 𝑟, 𝑧   is plotted in 3D as a 

function of  𝑟, 𝑧. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Streamlines of velocity distribution 𝑤 𝑟, 𝑧 is plotted 

as a function of 𝑟, 𝑧. 
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Fig. 6 Streamlines of temperature distribution 𝜃 𝑟, 𝑧   is 

plotted as a function of  𝑟, 𝑧. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7 (a) Temperature distribution 𝜃 𝑟, 𝑧  is plotted as a function 

of 𝑟 with the different amplitude factor  𝑒 (𝑒 =0.6, 0.7, 0.8). 

 

 

 

 

 

 

 

 

 

 

Fig. 7 (b) Temperature distribution 𝜃 𝑟, 𝑧   is plotted as a function 

of 𝑟 with the different Values of heat source parameter 𝛽 (𝛽 =5, 

5.5, 6). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8(a) Temperature distribution 𝜃 𝑟, 𝑧  is plotted as a function 

of 𝑧 with the different amplitude factor  e (e =0.6, 0.7, 0.8). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 (b)Temperature distribution 𝜃 𝑟, 𝑧   is plotted as a 

function of  𝑧 with the different Values of heat source 

parameter 𝛽 (𝛽 =5, 5.5, 6). 

 

 

 

 

 

 

 

 

 

 

Fig. 9 (a) The radius of vapour bubble is plotted as a 

function of time t for two different values of parameter   

𝜀 (𝜀 = 0.5, 0.6). 
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Fig. 9 (b) The radius of vapour bubble is plotted as afunction of 

time t for two different values of amplituderatio  𝑒 (𝑒 = 0.5, 0.6). 

 

 

 

 

 

 

 

 

 

 

Fig. 10 (a) The velocity of bubble radius is plotted as a 

function of time t with the different values of  𝜀 (𝜀 = 0.5,
0.6). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 (b) The Velocity of bubble radius is plotted as a 

function of time t with the different values of amplitude 

ratio  𝑒 (𝑒 = 0.6, 0.7). 

 

 

 

 

 

 

 

 

 

 

Fig. 11 (a) The Velocity of bubble radius is plotted as a function 

of bubble radius R with the different values of Grashofnumber  G 

(G=3, 3.5, 4). 

 

 

 

 

 

 

 

 

 

 

Fig. 11(b) The velocity of bubble radius is plotted as a 

function of bubble radius R with the different values of heat 

source parameter  𝛽 (𝛽 =5, 5.5, 6). 

 

 

 

 

 

 

 

 

 

 
 

Fig. 11 (c) The velocity of bubble radius is plotted as a 

function of bubble radius R with the different amplitude 

factor  𝑒 (𝑒 =0.6, 0.7, 0.8). 
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Fig. 12The comparison of present model with 

Mohammadein et al. model [12]. 

4 Conclusion 

The peristaltic bubbly flow of a non-viscous incompressible 

Newtonian fluid in a vertical cylindrical tube with 

observing of vapour bubbles is formulated. The flow is 

generated by sinusoidal wave trains propagating with 

constant speed 𝑐 along the wall of the outer tube. The effect 

of various physical parameters on velocity distribution, 

temperature distribution, and growth of vapour bubble 

radius are illustrated through the graphs. The velocity 

distribution in the mixture is proportional with different 

values of Grashof number 𝐺 and heat source parameter 𝛽. 

The velocity distribution increasing with increasing of 

volume flow rate 𝑞. Temperature distribution in the mixture 

is proportional with different values of amplitude ratio 𝑒, 

and heat source parameter𝛽. The behavior of bubble radius 

in the mixture decreases with the increasing values of 

amplitude ratio 𝑒. The growth of vapour bubble in the 

present model performed lower values than that obtained by 

Mohammadein model [12]. The temperature, velocity 

distributions, and behavior of bubble radius in vertical 

cylindrical tube are obtained as special case when the 

amplitude ratio tends to zero.  
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Nomenclature 

𝑎 Radius of the tube 

𝑏 Amplitude of the wave 

𝜆 Wavelength  

𝑐𝑝  Specific heat of liquid at constant pressure  Kg−1J/k  

𝜌𝑣 , 𝜌𝑙  Density of vapour and liquid  Kg m−3  

𝑄0  Constant heat addition/absorption 

𝑘 Thermal conductivity 

𝑟 Radial coordinate 

z Coordinate z 

R Instantaneous bubble radius (m) 

𝑅  Instantaneous radial velocity of bubble boundary 

t Time of bubble growth (s) 

𝑇 Temperature of liquid(K0) 

𝑇0 Initial temperature of liquid (K0) 

𝑤 Liquid velocity 

𝜃 Temperature distribution 

𝑒 Amplitude Factor 

𝜀 Constant defined by Eq. 25 

𝐺 Grashof number 

𝑃𝑟 Prandtl number 

𝛽 Non-dimensional heat source parameter  

𝑞 Dimensionless volume flow rat 

𝑅𝑒  Reynolds number 

𝛿 Wave number 

Subscript 

𝑙                Liquid 

𝑣               Vapour 

𝑃               Pressure  
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