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Abstract: We propose a scheme for implementing Grover quantum search algorithm based on the qubit-qubit interaction in circuit
QED. We show how to implement the proposed quantum search algorithm using two-transmon-qubit in a circuit QED driven by a
strong microwave field. The implementation time is a time of nanosecond-scale, which is much smaller than decoherence time and
dephasing time, both being the time of microsecond-scale. Numerical simulation under the influence of the Grover algorithm shows
that our proposal is realizable with high fidelity. We propose a detailed procedure and experimentally analyze its feasibility. Moreover,
the scheme might be experimentally achieved efficiently with presently available techniques.

Keywords: Grover algorithm, transmon qubit, circuit QED, qubit-qubit interaction.

1 Introduction

Quantum computing [1] utilizes quantum coherence [2]
and quantum entanglement [3] to solve some problems
much faster than on classical turing machines, such as
factoring problem [4], search problem [5], phase
estimation problem [6] and so on. The quantum
algorithms solve problems of significance much more
efficiently than their classical counterparts. Among
important quantum algorithms, there exist Deutsch-Jozsa
algorithm [7], Shor algorithm [8] and Grover search
algorithm [9,10]. Grover’s quantum search algorithm is
an important development in quantum computation. It
propose a quantum mechanical algorithm for searching a
marked state in an unordered database and it achieved a
quadratic speed up over classical search algorithms. In the
search algorithm, multiple items are simultaneously
examined using a superposition of the corresponding
states. The search for the marked item requires only
O(

√
N) inquires. Most important, Grover quantum search

did not depend for the impact on the unproven difficulty
of the factorization problem.

Recently, Dewes [11] operated a superconducting
quantum processor consisting of a two transmon qubits
coupled by a swapping interaction. With this processor,

they implemented the Grover search algorithm among
four objects and find that the correct answer is retrieved
after a single run with a success probability which is
larger than the probability achieved with a classical
algorithm. Subsequently, Jiang [12] proposed a simple
scheme to implement the two-qubit Grover search
algorithm with trapped ions in thermal motion by
applying a single standing-wave laser pulse during the
two-qubit operation. Similarly, Wang et al. [13] proposed
a scheme to implement two-qubit Grover quantum search
by using dipole-dipole interaction (DDI) and the
atom-cavity interaction (ACI) in cavity Quantum
Electrodynamics (QED), driven simultaneously by a
strong classical field. In Ref. [14], the authors presented a
method to implement the two-qubit Grover search
algorithm in trapped ions by applying a single
standing-wave laser pulse during the two-qubit operation.
In the modified scheme, they need to perform two NOT
gates acting on first and second ion for labelling three
target states (|e1g2〉, |g1e2〉, and |g1g2〉), and the other
target state|e1e2〉 is directly labelled in trapped ions. In
the same context, DiCarlo et al. [15] demonstrated a
two-qubit superconducting processor and the
implementation of the Grover search and Deutsch–Jozsa
quantum algorithms. They used a two-qubit interaction,
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tunable in strength by two orders of magnitude on
nanosecond timescales, which is mediated by a cavity bus
in a circuit quantum electrodynamics architecture. This
interaction allows the generation of highly entangled
states .Although this processor constitutes an important
step in quantum computing with integrated circuits.

In last few years, the circuit quantum electrodynamics
has become one of the most promising solid-state
candidates for quantum information processing[16].
Moreover , many theoretical proposals and experimental
demonstration have been presented for realizing
two-qubit gates [11,17] and multiple qubit gates [18] with
transmon qubits [19,20] in circuit QED. In this paper, we
present a system to implement two-transmon-qubit
Grover’s algorithm in circuit QED, by using entangling
gateJ and diffusion transformD with nearest qubit-qubit
interaction. The operatorJ is essentially basis
transformations between the classical product state basis
and the quantum entangled state basis. We use the system
in which the two transmon qubits are capacitively coupled
to a superconducting transmission line resonator (TLR)
driven by a strong microwave field. On the other hand, the
model of the qubits coupling to a single resonator were
considered theoretically in Ref. [21] and experimentally
in Ref. [22]. The implementation time of this system is
much shorter than decoherence time and dephasing time.
Our numerical calculation shows that the implementation
of this quantum algorithm is feasible in the circuit QED.

The work is organized as follows: In Sec.2, we
concretely illustrate the way Grover algorithm via circuit
QED with two-transmon-qubit, by using entangling gate
J and the diffusion transformD in the case of qubit-qubit
interaction. In Sec.3, we study the fidelity and possible
experimental of this implementation, we also calculate
the implementation time and discuss the result. A
concluding summary is given in Sec.4.

2 Implementation of a two-transmon-qubit
Grover’s algorithm via circuit QED

In this section, we propose a scheme for implementing
Grover quantum search algorithm, by using the system of
two-transmon qubits based on the qubit-qubit interaction
in a circuit QED(see Fig.1). In our scheme, two transmon
qubits are capacitively coupled to a superconducting TLR
driven by a strong microwave field [17], two capacitively
coupled transmon qubits have tunable frequencies
controlled by the flux induced in their SQUID loop by a
local current line [11]. A microwave field of frequencyωd
is applied to the input wire of the TLR, which can be
described below in the HamiltonianHD. We consider two
transmon qubits each having two-level subspaces driven
by a conventional field, this transmon qubits are
capacitively coupled to it. The qubit-qubit interaction
should be included in circuit QED. The Hamiltonian of

the whole system (assuminḡh= 1) [23,24] given by

Hs = HJC+HD+Hqq (1)

with

HJC = ωq

2

∑
j=1

σz, j +ωra
+a+g

2

∑
j=1

(a+σ−
j +aσ+

i ) (2)

HD = ε(t)(a+e−iωdt +a−eiωdt) (3)

Hqq = Γ
2

∑
i, j=1
i 6= j

σ+
i σ−

j , (4)

HJC is the resonator plus qubit Hamiltonian that takes
the usual Jaynes-Cummings form,HD is the Hamiltonian
of the external driving of the resonator andHqq is the
interaction Hamiltonian between qubits.σz, j , σ−

j andσ+
j

are the collective operators for the two qubits where
σz, j =

1
2(|ej〉〈ej |− |g j〉〈g j |),σ+

j = |ej〉〈g j |,σ−
j = |g j〉〈ej |

with |ej〉(|g j〉) is the excited state (ground state) of the
transmon qubit.ωr = 1/

√
LC is the resonance frequency

of the TLR where the transmission line resonator can be
modeled as a simple harmonic oscillator composed of the
parallel combination of an inductorL and a capacitorC,
ωq is the transition frequency of the transmon qubit with
ωq1 = ωq2 (where the qubit definitions are the same
which makes the work easier) andωd is the frequency of
the external drive applied to the TLR.a+ and a are the
creation and annihilation of the resonator mode.g is
intensity qubit-TLR coupling,Γ is the force qubit-qubit
coupling andε(t) is the amplitude of the microwave. In
the high EJ/EC limit the transition frequency between
|g j〉 and |ej〉 is given by ωq =

√
8EJEC/h̄ where

EC = e2/2CΣ and EJ(Φ) = EJ0 |cos(πΦ/Φ0)| with
CΣ = CS+(C−1

g +C′−1
g )−1, here,Cg andC′

g are the gate
capacitance,CS is the additional capacitor andCΣ is the
effective total capacitance.Φ is the external magnetic flux
applied to the SQUID loop andΦ0 = h/2e is the flux
quantum. EJ(Φ) is the effective Josephson coupling
energy, EC is the charging energy andEJ0 is the
Josephson coupling energy. It is obvious that the
frequency of the transmon qubitωq can be tuned by
external magnetic fluxΦ (see Fig. 1).

We work with large amplitude driving fields, in this
case, the quantum fluctuations in the drive are very small
with respect to the drive amplitude and the drive can be
considered for all practical purposes, as a classical field.
Here, it is convenient to displace the field operators using
the time-dependent displacement operator [25]

D(α) = e(αa+−α∗a), (5)

Under this transformation, the fielda anda+ goes to
(α + a) and (a+ + α∗), respectively, whereα is a
complex number representing the classical part of the
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Fig. 1: (Color online) Schematic diagram of a TLR and several
two transmon qubits are coupled in a circuit QED (gray) driven
by a strong microwave field of frequencyωd (this field ∼ is
applied to the input wire of the TLR). The TLR is connected
to the input wiring with a capacitorCin, and output wiring with
a capacitorCout. The two capacitively coupled transmon qubits
have tunable frequencies controlled by the flux induced in their
SQUID loop by a local current line.

field. The displaced Hamiltonian reads [26,27]

H = D(α)HsD(α)− iD+(α)Ḋ(α)

= ωq

2

∑
j=1

σz, j +ωra
+a+g

2

∑
j=1

(a+σ−
j +aσ+

j )

−g
2

∑
j=1

(α∗σ−
j +ασ+

j )+Γ
2

∑
i, j=1
i 6= j

σ+
i σ−

j , (6)

where we have chosen α(t) to satisfy
α̇ = −iωrα − iε(t)e−iωdt . This choice ofα is made so as
to eliminate the direct drive of microwave field on the
TLR, which is described byEq.(3). In the case where the
driving amplitude is independent of time, we get
α = − ε(t)

ω e−iωdt where ω = ωr − ωd, then the
HamiltonianH becomes [25,26]

H = ωq

2

∑
j=1

σz, j +ωra
+a+g

2

∑
j=1

(a+σ−
j +aσ+

j )

+Ω
2

∑
j=1

(eiωdtσ−
j +αe−iωdtσ+

j )+Γ
2

∑
i, j=1
i 6= j

σ+
i σ−

j , (7)

where Ω = gε/ω . In the rotating wave approximation,
when Ω ≫ δ and δ ≫ g, Γ , the Hamiltonian for the
whole system in the interaction picture is (under the
assumption thatωd = ωq) [28,29]

HI = H0+He f f +HIq (8)

with

H0 = Ω
2

∑
j=1

(σ+
j +σ−

j ), (9)

He f f =
1
2

λ
2

∑
j=1

(|ej〉〈ej |+ |g j〉〈g j |)+λ
[

σ+
1 σ+

2 +σ+
1 σ−

2

+H.c.] , (10)

HIq = Γ
2

∑
i, j=1
i 6= j

(σ+
i σ+

j +σ+
i σ−

j +H.c.). (11)

where δ = ωr − ωq (δ is the detuning between the
transition frequency of each qubit and the frequency of

the cavity mode), and λ = g2

2δ . If we define
Jx =

1
2 ∑2

j=1Jjx with Jjx =
1
2 ∑2

j=1(σ
+
j +σ−

j ), we obtain

H0 = 2ΩJx, (12)

He f f = 2λJ2
x , (13)

HIq = 8Γ J1xJ2x, (14)

then we can get the evolution operatorUI (t) as [28]

UI (t) = e−iH0te−iHe f f t .e−iHIq

= e−2iΩJxte−2iλ J2
x t .e−8iΓ J1xJ2xt . (15)

In the subspace spanned by
(|e1〉|e2〉, |e1〉|g2〉, |g1〉|e2〉, |g1〉|g2〉), we define the
two-qubit Hadamard gate as

H⊗2 =
1
2







1 −1 −1 1
−1 −1 1 1
−1 1 −1 1
1 1 1 1






, (16)

where Hi is the Hadamard gate acting on thei qubit,
transforming states as |gi〉 → 1√

2
(|gi〉 + |ei〉),

|ei〉 → 1√
2
(|gi〉− |ei〉). Then the evolution operator of the

systemUI (t) can be expressed in the same basis as

UI (t) =
1
2









Ae2iΓ t −iCe−2iΓ t −iCe−2iΓ t −Be2iΓ t

−iCe−2iΓ t Ae2iΓ t −Be2iΓ t −iCe−2iΓ t

−iCe−2iΓ t −Be2iΓ t Ae2iΓ t −iCe−2iΓ t

−Be2iΓ t −iCe−2iΓ t −iCe−2iΓ t Ae2iΓ t









,

(17)
with A = 1 + cos(2Ω t)e−4iΓ te−i2λ t ,
B = 1− cos(2Ω t)e−4iΓ te−i2λ t , andC = e−i2λ t sin(2Ω t).
The entangling gateJ is given by [30]

J =









cos( γ
2) 0 0 i sin( γ

2)
0 cos( γ

2) −isin(( γ
2) 0

0 −isin( γ
2) cos( γ

2) 0
isin

( γ
2

)

0 0 cos( γ
2)









. (18)
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If we chooseΩ t = mπ (m is integer) andΓ t = kπ (k
is integer), we can obtain

UI (t)= e−iλ t







cos(λ t) 0 0 −i sin(λ t)
0 cos(λ t) −i sin(λ t) 0
0 −i sin(λ t) cos(λ t) 0

−i sin(λ t) 0 0 cos(λ t)






,

(19)
So the entangling gateJ can be easily realized in circuit

QED. On the other hand, the diffusion transformD is given
by [10]
D = −I +2|Ψ0〉〈Ψ0|

=









− 1
2

1
2

1
2

1
2

1
2 − 1

2
1
2

1
2

1
2

1
2 − 1

2
1
2

1
2

1
2

1
2 − 1

2









, (20)

where the average state
|Ψ0〉= 1

2(|e1〉|e2〉+ |e1〉|g2〉+ |g1〉|e2〉+ |g1〉|g2〉) andI is
the 4×4 identity matrix. If we chooseλ t = π

4 + kπ (k is
integer) , Γ t = 2kπ (k is integer), andΩ t = π

4 + kπ (k is
integer), we can obtain

UI (t) =









1
2 − 1

2 − 1
2 − 1

2
− 1

2
1
2 − 1

2 − 1
2

− 1
2 − 1

2
1
2 − 1

2
− 1

2 − 1
2 − 1

2
1
2









=−D. (21)

Then, by choosing an appropriate value ofΩ , λ and
Γ , we can generate a two-qubit diffusion transformD
(different by −1 prefactor). The two-qubit conditional
phase gate to label different target states will also be
generated in a natrural way.

The Grover search algorithm is an efficient quantum
algorithm to look for one item in an unsorted data base of
sizeN. While the most efficient classical algorithm which
examines items one by one needs on averageN

2 queries,
the Grover’s quantum algorithm uses onlyO(

√
N). Grover

quantum search consists of the following steps:

1.Reset all the qubits in the register to 0 and then
perform the Hadamard transform on each of them so
that the system is initially in an equal superposition
state|Ψ0〉= ( 1√

N
)∑N

i=1 |i〉 .
2.Repeat operations performed (named Grover iteration)

R= π
√

N
4 times.

Now, we show how we can use the evolution operator
UI (t) (Eq.(17)) and the two-qubit Hadamard gate
(Eq.(16)) to implement the two-transmon-qubit Grover
quantum search in circuit QED. On the other hand, the
two-qubit conditional phase gate to label different target
states will also be generated in a natrural way. It’s easy to
find

H⊗2UI (t)H
⊗2 =









Λe2iλ t(h−1) 0 0 0
0 Λ−1 0 0
0 0 Λ−1 0
0 0 0 Λe−2iλ t(h+1)









,

(22)

with Λ = e−2iΓ t andh= Ω
λ . We chooseΓ t1 = kπ , λ t1 =

π
4 ,

h= 4m+1, t1 = π
4λ , Ω

λ = 4m+1, we have [12]

H⊗2UI (t1)H
⊗2 =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0−1






= Ig1g2. (23)

Thus, theIg1g2 phase operation is obtained and the
target state|g1〉|g2〉 is labeled. Similarily, target state
|e1〉|e2〉 can be labeled by settingΓ t2 = kπ , λ t2 = π

4 ,

h= 4m+3, t2 = π
4λ , Ω

λ = 4m+3, we have

H⊗2UI (t2)H
⊗2 =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






= Ie1e2. (24)

The slight modification of the operationsIe1e2 or Ig1g2

by the NOT gateσx,2 acting on qubit 2, allows us to find
the states|e1〉|e2〉 or |g1〉|g2〉 [14] as

σx,2Ig1g2σx,2 =







1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1






= Ig1e2, (25)

σx,2Ie1e2σx,2 =







1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1






= Ie1g2. (26)

In this way, we can implement the operationsIα easily
up to a global phase
(|α〉 = |e1〉|e2〉, |e1〉|g2〉, |g1〉|e2〉, |g1〉|g2〉, respectively).
Therefore, given a specificλ , by choosing an appropriate
Ω , intensity qubit-TLR couplingg, and the qubit-qubit
coupling strength Γ , we can generate all the
two-transmon-qubit operations necessary in the
two-transmon-qubit Grover search algorithm.

Fig. 2: Quantum circuit for the implemented two-qubit Grover
quantum search algorithm. Here,H⊗2 represents a two-qubit
Hadamard gate on an input query transmon qubit,σx,2 is the NOT
gate andUI (t) described by Eq.(17).

To carry out our scheme, in a circuit QED, two
transmon qubits are prepared in the state|g1〉|g2〉, then
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the entangling gateJ acts on it. The first operationUI (t)
is for the entangling gateJ, afterH⊗2 operation, are in the
initial average state. Then, they undergo the operations in
Fig.2 from the left to the right. For searching|g1〉|g2〉 or
|e1〉|e2〉, our implementation is straightforward because
the qubits interact with the cavity and the classical field
simultaneously. While to search|e1〉|g2〉 or |g1〉|e2〉, since
NOT gates are only performed on qubit 2. The next
operation UI (t) is for the diffusion transformD(see
Fig.2).

3 Fidelity and discussion

Let us now study the fidelity of the system for finding the
target state. In order to check the validity of our scheme.
We assume that the circuit QED is initially in a Fock state
|n〉, the fidelity of implementing the conditional phase
operation is given by [31,32]

F = |〈Ψ(t)|U(t)|g1g2〉|2 . (27)

Where |Ψ (t)〉 =
(α1|g1g2〉+α2|g1e2〉+α3|e1g2〉+α4|e1e2〉) ⊗ βn|n〉
represents the final state the whole system after the gate
operations that the initial state|g1g2〉 followed by an ideal
phase operation, andU(t) describers the overall evolution
operator of the system are performed in a real situation.
Our numerical calculation shows the influence of the
photon number operations on the fidelity, where this
fidelity decreases with the increase of the photon number
in the case ofΓ = 1/δ (see Fig. 3).

Fig. 3: Numerical results represent the fidelity for different initial
circuit Fock state|n〉 of the two-qubit Grover quantum search, in
whichg= 2π ×200MHz, δ = 20g, Ω = 81×λ andΓ = 1/δ .

We also numerically simulate the relationship
between the fidelity of the system for finding the searched
state and the force qubit-qubit couplingΓ . Even for

n = 5, the fidelityF > 90%. However, with the increase
of the force qubit-qubit couplingΓ , we obtain a high
fidelity (see Fig. 4).

Fig. 4: Numerical results for the fidelity of the The fidelity of
the two-qubit Grover quantum search versus the force qubit-
qubit couplingΓ with the increase of the photon numbern.
The parameters used in the numerical calculation areg= 2π ×
200MHz, δ = 20g andΩ = 81×λ .

Now, we briefly discuss experimental feasibility of the
current scheme. Compared with the usual charge qubit,
the transmon qubit is immune to the 1/ f charge noise and
it has much longer dephasing time as a result of the
transmon qubits chosen in the system. In recent
experiments, it was showen that the decoherence timesT1
and dephasing timeT2 can be made to be on the order of
20−100µs for transmon qubits (whenEJ/EC = 50) [33,
34]. In addition, the coupling strength is
g = 2π × 200MHz [18], δ = 10g (δ ≫ g, Γ ), where
Γ = (2k+1)/δ (k = 0,1, ...,n) [13] andΩ ≈ 10δ (Ω ≫
δ ). The implementation time isTimp = 5π/g. So, the
direct calculation shows that the operation time required
to implement the Grover’s algorithm with
two-transmon-qubit will beTimp = 12.5ns, which is much
shorter than decoherence timesT1 and dephasing timeT2,
this being a strong indication of the feasibility of our
proposed protocol. So our proposal is realizable with
presently available circuit QED techniques. Furthermore,
it should be pointed out that the Rabi frequencyΩ during
the two-qubit gate is about 2π × 20GHz and should be
slightly adjusted to satisfy the conditionΩλ = 4m+ 1 or
Ω
λ = 4m+ 3 mentioned above. Our scheme may have
potential applications in multipartite entanglement. The
charge fluctuations are principal only in low-frequency
region and can be reduced by the echo technique [35] and
by controlling the gate voltage to the degeneracy point,
but an effective technique for suppressing charge
fluctuations and keep the state coherent for a longer time
is highly desired.
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Next, we generalize our scheme to the case of
multi-qubits. It is well known that a one-qubit unitary
gate and a two-qubit conditional phase gate are universal
for building quantum computers. Thus, the multi-qubit
conditional phase operation required for implementing
Grover quantum search in our scheme can be realized by
combining the two-qubit conditional phase operation
described byEq.((23), (24), (25) and (26)) and the
one-bit unitary operation that is easily realized by using
classical microwave field and qubit-resonator interaction.
For example, the three-qubit conditional phase operation
is:

Ig1g2g3 =























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0−1























(28)

Furthermore, the two-qubit controlled-NOT operation
can be obtained by combining the two-qubit conditional
phase operation (Eq.((23), (24), (25) and (26))) with two
single-qubitH transforms, which are performed on the
target qubit before and after the two-qubit conditional
phase operation (Eq.((23), (24), (25) and (26))),
respectively (see Fig. 5b). Similarly, the multi-qubit
conditional phase operation can be realized by using the
same method. Then, the multi-qubit Grover quantum
search can be implemented successfully.

Fig. 5: (a) The symbol of a controlled-NOT gate.(b) Proposed
quantum circuit for implementing three-qubit conditionalphase
operation. Here,Oq is a one-qubit unitary operation.

4 Conclusion

In conclusion, we have proposed a simple scheme for
implementing two-qubit Grover search algorithm in
circuit QED by introducing the qubit-qubit interaction
with using the entangling gateJ and the diffusion
transformD. We have presented a method to implement
the proposed quantum search algorithm with
two-transmon-qubit capacitively coupled to a
superconducting in circuit QED driven by a strong
microwave field with Rabi frequency
Ω = 2π × 400MHz.The two capacitively coupled
transmon qubits have tunable frequencies controlled by
the flux induced in their SQUID loop by a local current
line. First, the tow-transmon-qubit prepared in the initial
average state|g1g2〉. Subsequently, the two-qubit undergo
the operations in Fig.2 from the left to the right, the
implementation is straightforward. Then, after the three
operationsH⊗2, UI (t), H⊗2 we obtain|g1〉|g2〉 or |e1〉|e2〉,
while to search|e1〉|g2〉 or |g1〉|e2〉 since two NOT gates
σx,2 are only performed on qubit 2. Finally, the final state
of the two-qubit will be measured in output of the system.
Thus, the implementation time calculated is much shorter
than the decoherence time and the dephasing time. In
addition, the numerical simulation shows that our
implementation is good enough to demonstrate a
two-qubit Grover’s search with high fidelity. Therefore,
the present scheme might be realizable using the
presently available techniques, and the experimental
implementation of the present scheme would be a
important step toward more complex quantum algorithm,
serving to show the power of the transmon-qubit system
for quantum information processing.
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