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Abstract: In this work, we find the solution of a class of time fraction@hction-diffusion-convection equations. The time fi@ual
derivatives are described in a new definition of fractioralivtive without singular kernel which has been recentlyaduced by
Caputo and Fabrizio. For obtaining the solution, we applyapproach based on a combination of the Laplace transfornttend
differential transform. Finally, some test problems asedssed to show ability and utility of the proposed method.
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1 Introduction

The fractional calculus has been focused due to its frecagpearances in different fields of scien&g?[3,4,5]. Many
models have been investigated in analytical and numeriagaids by a number of authog7,8,9, 10]. Various different
definitions of the fractional derivatives were suggesfedl], 12]. We recall that all of them are non-local operators related
to each other in contrast to the integer order derivativeetvig a local operator.

Below, the fractional derivative without singular kernigliroduced by Caputo and Fabrizio itJ], is employed,
namely

!

a1 t ()
DA = 7= /a (I

where a € [0,1] and a € [~w,t). Also f € HY(a,b) for b > a. By changing the kerne{tfw with the function

a 1 .. M(a)
exp(—mt) and Fi—a) with o

Pf(t) = (':\LAEC(;) /atf’(r)exp

, they have suggested the new fractional derivative, namegzli®-Fabrizio

(CF) derivative, as

a(t—r1)
l-a

dr, 1)

whereM(a) is a normalization function such thist(0) = M(1) = 1. According to {), it can be concluded that iff(t)
is a constant function, the@? f (t) = 0 as in the Caputo fractional derivative. But contrary to@zuto derivative, the
kernel does not have singularity foe= 1. Also, M(a) has an explicit formula ad f]

M(a)=——, 0<a<l
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Thus, the new definition of fractional derivative can be pmm as14

t—T

8

) (1)t )

withO< a < 1.

In recent two years, some researchers have used this newfiderivative to explain some real world applications.
For example, the author il §] applied it to the nonlinear Fisher’s reaction-diffusiaquation. Also in [L6] the nonlinear
Baggs and Freedman model is studied. 1i] [authors proved uniqueness of a solution for an initial eatwoblem
of a nonlinear fractional differential equation with the @Erivative. In [L8] this new fractional derivative is used to
introduce the mass-spring-damper motion equation. Als¢19] author applied the CF fractional derivative to KdV—
Burgers equation.

In some literature, analytical solutions to problems ofgifractional differential equations have been constaif3e
7,11,20Q]. In this article, we use the Laplace transform methdfl dnd the differential transform metho@1,22]
simultaneously, to find a solution of the class of time frawél reaction-diffusion-convection equations

2%u(x,t) Au(x,t)

2 u(x,t) + ag(x) dx27 +a1(x) dx7 +ag(X)u(x,t) = f(xt), (3)
onQ = {(xt): (xt) € [0,L] x [0, T]}, subject to the initial condition
u(x,0) = ¢(x), (4)
and the boundary conditions
uo.) =g), 24U _nq) ©

In the equationy), 0 < a < 1 is the order of the fractional derivative aadx) # 0 are some continuous functions.

The outline of this paper is structured as follows. In Setp some preliminaries about the Laplace transform and
the differential transform are reviewed. The coupled metisqresented in Section 3. Some test problems are solved in
Section 4 to show the ability and efficiency of the proposethme Finally, a conclusion is given in Section 5.

2 The Laplace Transform of the CF Derivative and the Differertial Transformation

In present section, some basic definitions and operatiotisedfaplace transform and the differential transform mdtho
will be reviewed. _
Definition 1. The Laplace transform of a functidift),t > 0, denoted byf (s), is defined by

2[f(1)] = f(s) = /Om e 1 (t)dt. )

Furthermore, the given functioift) in (6) is called the inverse Laplace transformf?ﬁfs) and is denoted by 1 [f_}
Lemma 1[13] Let a € [0,1]. The Laplace transform of the CF derivative is

21785 (1)] = %

Zhou in [21] introduced the differential transform method, based @nfylor series expansion. This method provides an
iterative procedure to generate the derivatives of a foncit a point, in terms of the initial or boundary conditionkus,
this approach can be used to obtain a power series solutim ioitial value problem.

Definition 2. [22] The transformation of thkth derivative of a function in one variable is as follows:
1 rdkf
FK) =~ {— } , 8
( ) k' ka (X) X=Xo ( )

()

and the inverse transformation is defined as

X) = i F(k)(x—
K=0

Table 1 displays some properties related to the differetnéiasformation.
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Table 1: Some properties of the differential transformation.

Function Form Transformed Form
f(x) = g(x) +h(x) F (k) = G(k) + H (k)
f(x) = cg(x) F (k) = cG(k) (cis a constant
f(x) = g(x).h(x) F(k) = kéog(kl)H (k—ka)
— 99 S
00 =" P g ok
f) =1 F(k):é(k—n):{Ok;:
f() =x"g(x) F(k) =G(k—n)
f(x) = e F(k) =%
f(X) = sin(wx+ V) F(k) = %‘sin(%—[—ku)
f(x) = cog wx+ ) F(k):%cos('%w)

3 The Coupled Method

According to Lemmeél, by applying the Laplace transform to E@) (vith respect to the initial conditior], we get

sU(x,s) — ¢ (x) T du(x,s)
oy +230(x)U(x,9) + a1 (x) —
+32(X)% = f(x9) ®

where
ux,s) = Z[u(xt)], (10)

andf(x,s) is the Laplace transform df(x,t). Also from the Laplace transform of the boundary conditi(B)swe have

u(0,s) =g(s), (11)

whereg(s) andh(s) respectively are the Laplace transformggf) andh(t).
Then, we obtain the solution 09)-(11) by the differential transform method as

u(x, =mUkk,
u(x,s) k; (K)x

whereU (k) can be determined by the properties of the differentialdiemation in Table 1 and the relatio8)( Finally,
to get the solution of the probler8)¢(5), we use the inverse Laplace transfornuf;s).

4 Test Problems

In this section, the proposed method is implemented on saaragles of the initial boundary value problems for the time
fractional reaction-diffusion-convection equationshwtite CF fractional derivative.
Example 1. In this example, we consider the fractional diffusion-cection equation of order@ o < 1

t 2u(x,t a
%"u(x,t)+xau§§’ ) + 4 ;E:;’ ) =d—eTa+2¢4+2 0<x<1l0<t<l, (12)
with respect to the conditions
u(x,0) = x2,
u(0,t) =€, u(0,t) =0 (13)
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By applying the Laplace transform on the E¢2) and(13), we have

su(x,s)—x* _du(x,s) = d2Uxs) 1 1 22 2
bs * dx | d@ s 1 s & s % (14)
whereb(S) =s+a(1—s), and
_ 1 du
U(O, S) - aa &(O,S) =0. (15)

Based on the properties of the differential transformaitioable 1, the transformed form of Eq4.4) and(15) are as
follows:

W+ku(k)+(k+l)(k+2)u(k+2):
1 a—1 2
+ 5(K) + Z5(k—2),
(s—l s+a(1—s)+§) S
or
1 1 2
Uk+2)= 431D [(@ + g)é(k—Z)—
(%+k)u<k)+(:1l+“T_l(s)+§)}, (16)
and 1
U =5 U@m=o0. (17)

1
2) ==
U@ =3
and
Uk =0, k>3
So
a(x,s) = S U (k)X = 1 te (18)
U k; S s—1 s
Applying the inverse Laplace transform to Ef8) gives
u(x,t) = +x2,
which is the exact solution of the problem.
Example 2.Consider the equation
t 2u(x,t a _
Z8u(xt) + Juixt) _ g7ulx ) =d —e Ta' +sin(x) +cogx), 0<x<10<t<1, (19)

ox ox2

with respect to the conditions
u(x,0) = 14 sin(x),
u(0,t) = €, u(0,t) = 1. (20)
Similar to Example 1, we can conclude the following transfed form for Eq(19) as

su(x,s) — (1+sinx) du(x,s) d4xs 1 1
b(s) dx d  s—1 s+

a

1 .
- g(smx+ COX),
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or
su(x,s) . du(x,s) du(xs) 1 1y . 1 a 1
b(s) + x ae (ﬁjtg) sinx+ E,COS)H'@“L—s_l’ (21)
and Eq.(20) as
_ 1 du(Qs) 1
u(0,s) = 1 dx s (22)
Also, for Egs. 21) and @2), we get the differential transforms
1 s 1 1ysin¥
krt
cos% a 1
s~ (og*s1)o0) @)
and 1 1
V()= _—.U1)=1 (24)
Substituting 24) into (23) gives
U2)=0, U@B) ==, U@) =0, U®)=—
- 3 - 657 - ) - 12(37 3
as a result, by mathematical induction, we get
. . 1 .
U(2i)=0,U(2i+1) S i>1
Then ,
_ ) n N 1 i no1 x2|+1 o5
Wxs) = lim > VX =53+ > s@ror (29)
Applying the inverse Laplace transform to E@5) gives
u(x,t) = € +sinx.
Example 3.Let us consider the following problem
2 a
D{’U(x,t)—a ;g’%eﬂwl:o, 0<x<1, O<t<l, (26)
ux,0)=x%,  0<x<l1, (27)
u(o,t) =at, w(0,t)=0, O<t<1l (28)
According to the Laplace transform of the Eg6) and the initial conditionZ7), we get
su(x,s) —x>  d?0(x,s) 1 1
b(s) e TsTst = 0 (29)
Now, by taking the differential transform o29), we have
B 1 S o(k—2) 1 1-a

Substituting the Laplace transform of the boundary coonddji.e. U (0) = % andU (1) = 0, into the Eq. 80) gives

and
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Hence,
_ n a1
T AV =2
u(x,s) = r!|_>mmi: U(i)x = 2 + X

Finally, by applying the inverse Laplace transform, we abthe exact solution of the probler@)-(28) as
u(x,t) = at 4+ x2.

Example 4.Consider the time fractional equation

2 a
%"u(x,t)—%—ke’“ﬁtzo, 0<x<10<t<1, (31)
with conditions:
u(x,0) = €,
u(0,t) = uk(0,t) = €. (32)

Here, we have the Laplace transform of the B{) @s

su(x,s) — € d?0(x,s) N e

b(s) e st L =0, (33)
> ks s
su(x,s)  d<u(x,s a o
by @ ﬁe" =0. (34)
and the Laplace transform of the boundary conditi@ és
_ _du(0,s) 1
u(0,s) = o s 1 (35)
Differential transform of the Eq.34) becomes
(k1) (k+2U(K+2)= UK — -2
~ b(s) kib(s)
So, the next terms &f (k), k > 2 can be obtained as
1 1 1 1
V@ =V~ ¥ =2 Y =0
Thus N N i
_ ; 1 X 1
o Y X _
u(x,s) _Ami: U (i)x _rl]l_rﬂoi= T —S_le?‘.
Applying the inverse Laplace transform gives
u(x,t) = e,

which is the exact solution of the probledj-(32).

5 Conclusion

In this paper, an approach is presented to solve the iitahdary value problems for a class of time fractional
reaction-diffusion-convection equations with a fractbmlerivative without singular kernel. A combination of the

Laplace transform and the differential transform is usedhltain the exact solution of the problem. First, the Laplace
transform is implemented on the time fractional equatiod & boundary conditions. Afterwards, the differential

transform method is employed to find the series solution efthnsformed problem. Finally, taking the inverse Laplace
transform will get the exact solution of the initial boungaalue problem. The results verify that the proposed caliple
method is an applicable and efficient technique to solve puchlems.
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