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Abstract: This paper is the follow up study of [4], it shows that in the non Maxwellian case with strong singularity, the solutions of
the linearized spatially homogeneous Boltzmann equation also have the Gevrey regularity in any local space.
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1. Introduction

In this paper, we also study the Gevrey regularity of so-
lutions for the following linearized Cauchy problem which
has appeared in [4]:

{%f =Lf =01, [)+0(f,1), vER?, 1>0; (1.1)

fli=o=fo
where p(v) = (ZE)_%E_g,
fo 20, [ o) {1+ P +log (1+£o(v) }dv < +=»

(1.2)
and

V—Vy
[v—vi|?

where cos 8 =<

c>,0¢c(0,7],
P(v—rv)=(1+—vP)l 0<y<t
b(cosB) ~ g5, 6 =0, 0< v <2 '

We have studied the mild singularity case 0 < v < 1 in [4].
In this paper, we move on to discuss the strong singularity
case 1 < v < 2. Setting

{Iflng = <> fW)llr

A1l =[] <D >*<|v| >" f(W)]lp2

where < |v| >=(1+ |v|2)% and < |D| > is the correspond-
ing pseudo-differential operator. We first list the following
definitions:

Definition 1.1 (cf. [6]). For an initial datum f,(v) € L}(R?),

0(g, f) :/]1{3 /SZ B(v—v.,0){g(V.) f(V) —g(vi)f(v)}dodv, f(t,v) is called a weak solution of the Cauchy problem

Here, o € S? (unit sphere of R3), and the collisional ve-
locities:

v,_v—i—v* [v+vy] V/_v+v*_|v+v*|
2 2 ) 2

The Boltzmann collision cross section B(|z|,0) is a non-
negative function which described as follows:

B(|v—vi|,0) = ®(|]v—v.|)b(cos 0) (1.3)

(1.1) if it satisfies f(0,v) = fy and
[ fenemdv— [ 1(0.1)p(0.v)dv
R- R
f/tdr/ F(2,v)9:0(7,v)dv
0 R3

- /rdT zL(f)(fvV)(P(’L'ﬂ/)dv7
0 R3

for any test function ¢ € L™([0,T]; W>=(R?)).
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Definition 1.2 (cf. [2, 3, 5, 6, 7]). Suppose that U is a
bounded open set on R3, for s > 1, u € G*(U) which is
the Gevrey class function space with index s, if there ex-
ists a constant C = C(U) > 0 such that for any k € N,

1D ullp2 ) < €1 (R,

or equivalently,

| < IDI >* ull 2y < € (kY

where

ko112 231
1D ul 72 , <[D|>=(1+|Dy[")2.

U) )3 HDﬁ”HIZ_Z(U)
B|=k

Particularly, u € G“(R3), ie., ||Dku||L2(R3> < CRHL(KYS, is
equivalent to the fact that there exists & > 0 such that
ef0<IDI>1"y L*(RY).
Now we state our main result as below:

Theorem 1.1. Suppose that @, b have the forms in (1.4),
1 < v < 2.Let U be a bounded open set of R?, and f(¢,v)
be the weak solution of the Cauchy problem (1.1) satisfy-
ing

sup ||f(z,

t€(0,7]

)||Lz < oo, (1.5)

Then for any ¢ € (0, 7], there exists a number s = s(¢) > 3
satisfying f(,-) € G*(U). More precisely, for any fixed
0 < 1y < T, there exist a constant C = C(U) > 0 and a
number s > 3 such that for any k € N,

sup [[D"f(2,)l 2w

t€lty,T)

< Ck+l (k')

2. Proof of main result

We will prove Theorem 1.1 in this section. Let us start
with some preliminaries which are used throughout this
paper, cf. [4]:

Lemma 2.1. Suppose that ®(v) =< |v| >7= (1 + |v]})?
where y € (0,1), v € R"” and n € N. Then the k-th order
derivative of @ satisfying

|2 (v)] < 4kid(v) < |v] >7F.

Remark 2.1. Let My(&) = ¥ EcR}NEN.

Then for any ¢ € (0, 1],

(1 +[EP)

|9§MN(§)| <A < g SNRIN(N=1) - (N—k+1)|
<A< g SWNN 1) (N—k+1)],

where ke N, 1 <k <N.
Lemma 2.2. Suppose the Fourier transform for v,,

F(P (v = v Ju(v:))(§) = h(» §)A(S),

where u is the absolute Maxwellian distribution in (1.1),
and [1(&) is its Fourier transform. Then we have

8= Cm L [ e

12i(v—vy)- €] dv,.

Lemma 2.3. For the expression of 4(v,&) in Lemma 2.4,

we have
h(n,E)| < C- < | >T< [§] >7
and
VER(n )| < C- < ] >7< [E] 7
and
0
h(v,&F) —h(1, )| < C- < |v| ST< [§] > sin >

&+|Elo
2

where @ = arccos < %, o>, = , C is a constant

independent of v and &.

And then we adopt the same assumption as in [4]. That
is, without loss of generality, we suppose that f has com-
pact support in U, and let

1, sup [If(t, )l < G (i1)*
t€(0.7]

(E) : forany i € [0,k —

where T' < 1, Cy is a sufficiently large constant satisfying

Co > 16°max( sup ||f|[i=1,2)).
te(0,T]

Setting £+ = éi‘# By [1], we have

(LEMif) o =T+T+ 1+ b+ .1

Here,

I=(Q(1 Mif), Mif), 2
Io=(Q(f,u), < D] >" f) 12,
h= [, [ bleos®)u(rv) (&) ~ M(E ) BF(EY)
e M(E)[(§)dodv.ds,

L= / / b(cos ) (v.) {[My, &1 () - Micf (V)
— My, @) f(v) - My f(v) }dodv.dv

L= /Rf’ /S2 b(cos ) (v.) (M, P*]f (v) — [My, @*] £ (V)
M f(v)dodv.dv

where My(D,) =< |D,| >",&*(v) =< |[v —v,| >". The
following inequalities come from [4]:

1] < *C||Mkf|\2 +C/||1V1kf||Lz;
hj<c- (szMkaL +[C6H (k1) T)s 22)
|| < C{[CE (k)T + [ IMe 117, }-
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In the case 1 < v < 2, the major difficulty comes from the
estimation of Iy and I3. The way of [4] can not be used
directly because of the fact that

/ bOdo = oo.
S2

Therefore, we must use some new methods which are dif-
ferent from that of [4] to overcome this difficulty. we state
the following lemmas here and prove them in Section 4:

Lemma 2.4. Forany r >0, f € L}, (R*) N H=(R?), there
exists a constant C independent of r satisfying

Io < ClIflly, 111 (r+3)!

Lemma 2.5. Under the assumption (Ey ), for any fixed num-
ber € € (0,1 — %), there exists a constant C satisfying

I < C{ICE T (k)P +KH 1M |2 }-

Therefore, By using Lemma 3.1, Lemma 3.2 and (3.1),
(3.2), we conclude that

|(Lf.MES) 2| < CL{ICET (R 1>+ KM f 1 e }

—Go | My f| |i]%
which implying

9
(M2 1) o] < OIS R4 R M Py

—C2|\Mkf||2¥-

That is,

1
W 1) o [ 1M1y
1
<2k [ l(tog < D, >) (M) (2) ode
t
+C1/O k4||Mkf||§1(v—£)/2dT
+CICE (KT + 117000 22

As the same way as in [4], by using the Young’s inequality
and the assumption (E), we also get (Ej ;)

forany i€ [0,k+j—1], sup ||f(z,")| i §C§-C6+1(i!)s.
1€(0,T]

This completes the proof of Theorem 1.1 by induction as
in [4].

3. Appendix

This section is devoted to the proofs of Lemma 2.4 and
Lemma 2.5.

Proof of Lemma 2.4. Since £+ = % by using
Lemma 2.2, it follows from Lemma 2.6 of [4] that

(e = [ <IE1>7F@) [ [t E")—h0ENaE")
bf(v)e ™% dodvdE
[ <lel> 7@ [ [0 e)aE ) -a@)
bf(v)e ™% dodvdé
[ <IE>7@) [ [ ne)ne)

bf(v)[e ™ —e|dodvdé
= lo1 +1o2 +1o3-

Here,

Hoo| < ClI Ay, M1 (r+3)!

To estimate Iy; and Iy3, we use the symmetry of the integral
variables. Notice that the unit vector o denotes the rotation
of the unit vector é—l by an angle 0, i.e., 0 =Ry (%) Cor-

responding, the inverse rotation & = R_e(é—‘) and more-

over, suppose that £+ = %, then by a simple calcula-
tion, we get (cf. Figure 1 as follows)

1§ =18 % =1&|cos §,
=& |=1&|sin§,
EF+EF 28| =&~ +&7| =2/&|sin? §.

3.1)

Figure 1:
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Therefore,

In= [, <I1E1>"F@) [ [ h0.)aE)bro)

(e "¢ —O)dodvdE

~ [, [, <&l F&n

(szv'é +s1n2vé )dadvdé

mE)a(S)bf(v)

f/R/ < |81 > MM ERE®S)
(& +E) v —E*)
5 5 dodvdé
= lo31 +lo32-

Here we have used the fact that do = d&. Since in this
case 1 < v <2, [o h62%do < oo, by using Lemma 2.3 and
(3.1), we get

ol <€ [ [ <1E1>" [F@ I OIAE LW
|E~ Pdodvdé

<C [ <IEI>"TR FEIREF6) < b >77
dvd&
SC//Hf“LéHHfHLl(r+3)!

and

ol <C [ [ <1€1>" IF@)IM0E)IREBFWIIE]
0%dodvdé

< [ <IE= T FEIRE ) < b >
dvd§
< C//||fHL%+7Hf||L1 (r+3)!,

which implies
Hos| < ClI£llzy, [l (r+3)L.

To prove Iy, we first note that

h(v,&7) —h(v.€)

_/ )-[Veh(v,&) — Veh(v,€)]dt
+(ET=8) Vgh( v.6)
= [ =& ([ G- Vg n(E-9)

dnldt+(&"-¢§)- Vgh( ‘5)

where & = € + (&1 — &£). Therefore,

101=4<|5|>’f<€)/ et
{/ (& — (mE+n(&—

+/Rs <& > f(é)/gz‘a(é )bf(v)(e*’-v"? —1)
(ET=&)Veh(v,§)dodvd

zv€/€+5

&))dn }drdodvdé

+ [ <IE1>"F@) [LaEHbro)E -)
-Veh(v,E)dodvdé

= Ilo11 +1lo12 +Io13.

By Lemma 2.3,

[ &) { [ (& &) VEh(n& +n(ge—&))an}ar]

S/o /0 (€7 =) (&= &)1 IVEh(v.& + M (& — &) ldndz

<C< || >T< |E| >"12 02
which gives
Hori | < ClIA A1z (r+3)!

and

Howz| < ClI Sy, [1f1]r (r+3)L.

Finally, we e_stimate Io13, recall do = dG6 and notice that

A(EY) = A(E), we have

s = [ <1815 F&) [LAELFOIE )
Véh( v,&)dodvd&

= [, <1E1> 7@ [,aE"

Veh(v,&)dGdvdE

=3 Lo <11 T8 [LRE e +£-28)
-Veh(v,€)dodvd§.

(€T -¢)

Together with (3.1) and Lemma 2.3, we get
Hos| < ClIAI Ly 1A (r+3)!

The above estimates complete the proof of Lemma 2.4.
O
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Proof of Lemma 2.5. setting v, =V + (v —V/), we
have

= [ M) (Y )
—V,[My, ®*]f(V'))dodvdv.dt
+ [ L BROIMA ) =)
 (Vu[Mi, ®*]£(V))dodvy.

1
= /0 I32(T)d’l?+131.

(3.2)
It follows from [1, P. 468] that

I =0. (3.3)

By using the formulas (5.1)-(5.3) in [4], we can decom-
pose Is(7) as follows:

Ia(e) = [ bu(r )M () (=)

V) = VLS dodvay.
k+7
+ 3 [ brDM ) =)
=2 ROXS
(3.4)
VW Gf(ve) = VL (V) dodvdy,

[ BREIMF) =)
R6xS?

“(Vuligsfr — Viliss f')dodvdv.,

=I1(7) + B2 (1) + 13(7).

Since
ViLif(v)
= P wr0).

+2MIV, () -9 @ (v) + MY f(v) - 9] 2% (v) )

o/ @ (v)

and
Viliisfe = Viligsf'
_ m { /R [ ) i)
x I I M(§)dE f ()0 TS D" (cf)dy
+ / WG (i8)OF S M(E)dE £ ()
x [O ¥ (c r)—av"*gdf'*(c’)}dy
[ M (€)ag £ ()
x oD% (¢ )dy
+ [ eI MU E)E )
x [0k ®* () — ok ¥ (")) dy.

For any j > 2, putting vij = mvp + (1 —=n)V', n € [0,1].

Using the facts that

v=V]=00)V,—V|<C < |v| >< V| > 6;
|| = ()|dl | <C,

we conclude

Lo BRODM W)=V DT (5) = VT30
dodvdv,
1
< [, BROMFO] =]
0 JROxS?
VILf (Vi) ldodvdy.dn
1
<c [ b0ui) <l > (M)
0 JROxS?
+|VIL £ (V)|?)dodvdv.dn
< C(IIMfII72 + VT A1172)-

Use the same way as in the proof of Proposition 3.1 of [4],
by Lemma 2.1, Remark 2.1, it follows that

[F22(2)] < Cir{[C6 (K)P + K M1}, B.5)
Similarly, by using the fact that |c}, — ¢'| < CV, — V|, we

obtain
B33 (1) < Cis[Cy T (k!)°T. (3.6)

Hence, it remains to estimate /351 (7). To do this, we de-
compose I31 () as below:

I (1) = (=i) {1 (7) +2(7) + J3(7) +Aa(T)}, B.T)
where
n@= [, BROIMLE) )M ()
[02D* (V) — 92 ®*(V)]|dodvdy.,
R = [, buEIMS ) =)
£ =MV F()02 @ () dodvay.
J3(t) = / L BREIMF ) ) - MUV ()
ROXS
[Pld*(v,) — dl®* (V) |dodvdv,;

WE) = [ M) - v) -0l ()
ROxS2
MOV f () — MY

Taking the same analysis as in (3.5), we also conclude that

V,.f(V)|dodvdv,.

()] < C{ICET (k1)1 + K2 | M £ 122} (3.8)
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for n =1,2,3. In order to estimate J4(7), we shall take the
Littlewood-Paley partition of unity {y;(&)} such as

+oc
Y wi(&) =1, yj(€) = y(277E) for j > 1.
j=0

Here, 0 < yp, ¥ € Cy ™ (R?). Therefore,

+o0

/ / 1 % !
5 [ outsam0-) et

[7;(v) — ¥, (V') |dodvdv,

Ju(t) =

(3.9)
where §;(v) = l//j(Dv)MIEI) (Dy)V,y f(v). Fix a number 0 <
€ <1—3%, put

Q;=Q;(v,vs)

V— Vs

_nl—j(2+2e—v)/(2—V)
= {G e s?; =2 }

v—v.| <|v—vy| >?

It follows from [1, P. 470] that

/ bO2do < C- 2181 <y y,| V2
2, (3.10)
<C.2i(z-¢-D

and

bodo <C-2/578) < y—v,|>¥"1 . @311

o
Therefore,
/ bR )M (V) (v =V') - 9, " (V)
RGXQJ'
[9;(v) = ¥, (V)| dodvav.

1
gc/ / bO%U(v,) < |va| >2
0 JROxQ;

(v=2)j

x {277 M f()P+2 7 |V, §;(v)* }dodvdv.dn
<CL27# M f0)|I7> + 272V ()12}
< CL2E M W) + WM f 3wy 2 }-

2=v)j
2

(3.12)
Here we use the fact that

jv—e-2)

272

VoW ()2 < Chl| WM f]|v-e)/2-
On the other hand, by (3.11), we also have
g PR SO
-0, @ (V)[W;(v;) — §;(V))ldodvdv.
<C- 27 |Mif )72 +C- 27V g () 17
< C-27 M f )72 +C - K| WiMef | e 2

o0
This, together with (3.12) and the fact that ¥, |y;[> <C <
j=0

+-o0, gives
Va(0)] < CUIMA L + R IIMf a2} (B:13)
It follows from (3.2)-(3.13) that
5] < C{ICE (k)T 4+ KA IMif 3y v-er2 }
This completes the proof of Lemma 2.5. 0
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