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Abstract: In this paper, the problem of estimation for the new Weibull-Pareto distribution based on progressive Type-II censored
sample is studied. The maximum likelihood, Bayes and parametric bootstrap methods are used for estimating the three unknown
parameters as well as some lifetime parameters reliabilityand hazard functions. Based on the asymptotic normality of maximum
likelihood estimators we construct the approximate confidence intervals of the parameters. Futhermor, depending on the delta and
parametric bootstrap methods we calculate the approximateconfidence intervals (ACIs) of the reliability and hazard functions. Markov
chain Monte Carlo (MCMC) technique is applied to computing the Bayes estimate and the credible intervals of the unknown parameters
as well as reliability and hazard functions which are obtained under the assumptions of informative and non-informative priors based
on the Gibbs within Metropolis-Hasting samplers procedure. The results of Bayes methed are obtained under squared error loss (SEL)
function. Finally, Two examples used to a simulated data anda real life data sets have been presented for illustrative purposes.

Keywords: New Weibull-Pareto distribution (NWPD), Progressive Type-II censored samples, Parametric bootstrap, Bayesian
estimation, MCMC technique.

1 Introduction

There are many situations in life testing and reliability experiments whose units are lost or removed from the experiment
before the failure occures. However, in many situations, the removal of units prior to failure is pre-planned in order to
provide saving in terms of time and cost associated with testing. There are many types of censored test, the most
important and used censored schemes are Type-I and Type-II censoring. If an experimenter desires to remove surviving
units at any point on the test. But using this type of censoring are not able him to removed units from the test at any other
point than the final termination point of the life test. So these two traditional censoring schemes will not be of use to the
experimenter. For this reason we consider a more general censoring scheme called progressive Type-II censoring. The
progressively Type-II censored sample can be described as follows. Suppose thatn independent units are put in the life
test with continuous identical and independent distributed failure times X1,X2, ...,Xn and censoring scheme
(R1,R2, ...,Rm). When the first failureX1 occures,R1 surviving units are withdrawn from the test at random. By thesame
when the second failureX2 occures,R2 surviving units are withdrawn from the test at random. Finally, when themth

failure occures, all of the remaining surviving units are withdrawn from the test. Them ordered observed times is

denoted byX (R1,...,Rm)
1:m:n ,X (R1,...,Rm)

2:m:n , ...,X (R1,...,Rm)
m:m:n are called progressively Type-II censored order statistics of sizem taken

from sample of sizen with progressive censoring scheme(R1,R2, ...,Rm). It is clear thatn = m+∑m
i=1 Ri. The special

case whenR1 = R2 = · · · = Rm−1 imply Rm = n − m, then the progressive Type-II censoning sample reduce to the
traditional Type-II censoring sample. Also whenR1 = R2 = · · · = Rm = 0 imply m = n, then the progressive Type-II
censoring sample reduce to no censoring (ordinary order statistics). For more information on progressive censoring, we
refer the reader to Balakrishnan and Aggarwala [3], Balakrishnan and Sandhu [4] and Balakrishnan [2]. Many authors
have discussed inference under progressive Type-II censoning using different lifetime distributions, see for example,
Musleh and Helu [11], Soliman et al. [12], Mahmoud et al. [10], Madi and Raqab [9] and EL-Sagheer [6].

In this paper we interested in the estimation of the parameters, reliability and hazard functions when sample is available
progressive Type-II censoring scheme from the new Weibull-Pareto distribution. A NWPD is a generalization of the
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Weibull and the Pareto distributions as discussed in Suleman and Albert [13]. The probability density function (PDF),
cumulative distribution function (CDF), reliability function S(t) and hazard rate functionh(t) of the NWPD are given,
respectively, by

f (x;δ ,β ,θ ) =
β δ
θ

( x
θ

)β−1
exp

{
−δ
( x

θ

)β
}
, (1)

F(x;δ ,β ,θ ) = 1−exp

{
−δ
( x

θ

)β
}
, (2)

S(t) = exp

{
−δ
( t

θ

)β}
, (3)

and

h(t) =
β δ
θ

( t
θ

)β−1
, (4)

whereβ is the shape andδ and θ are the scale parameters. From (1), it should be noted that the NWPD reduce to
well-known distributions such as Weibull, Reyleigh, Exponential and Frechet distributions as follow:

(1)If δ = θ = 1, then NWPD reduces to Weibull(β ,1).
(2)If δ = 1, then NWPD reduces to Weibull(β ,θ ).
(3)If δ = 1/2 andβ = 2, then NWPD reduces to Rayleigh(θ ).
(4)If β = θ = 1, then NWPD reduces to Exponential distribution with mean equal 1/δ .
(5)If δ = 1 andβ =−β then NWPD reduces to Frechet distribution(β ,θ ).

It is clear that the shape of the hazard rate functionh(t) as in (4), depends on the parameterβ and the following can
be observed:

(i)If β = 1, the failure rate is constant and given byh(t) = δ/θ . This makes the NWPD suitable for modeling systems
or components with constant failure rate.

(ii)If β > 1, the hazard is an increasing function ofx, which makes the NWPD suitable for modeling components that
wears faster with time.

(iii)If β < 1, the hazard is a decreasing function ofx, which makes the NWPD suitable for modeling components that
wears slower with time.

Futhermor, the lifetime of the NWPD is able to model data withbathtube-shaped hazard rate, which is important
feature engineering relaibility analysis. The NWPD is useful in modeling real life situation. The newly proposed
distribution was used to model the exceedances of flood peaks(in m3/s) of the Wheaton River near Carcross in Yukon
Territory, Canada. More about this distribution, its properties and applications see Suleman and Albert [13].

In this paper, we investigate the estimation of the unknown parameters for the NWPD using the progressive Type-II
censored sample. Based on the Newton–Raphson iteration method we obtain the MLEs of the parameters by solving the
non-linear equations. The estimaion of some lifetime parameters such as reliability and hazard funtions are considered.
The ACIs for the reliability and hazard funtions can be constructed by using delta and parametric bootstrap methods.
In Bayesian study, we propose to discuss the Bayes estimate for the NWPD by using the MCMC techniques. Based on
Metropolis algorithem within Gibbs sampler, the Bayes estimates and the credible intervals of the parameters as well as
reliability and hazard functions are obtained. The Bayes estimates has been studied under SEL function. Two examples
used a simulated data and a real-life data sets have been presented to illustrate all the methods of estimation developed
here.

The rest of this paper is organized as follows: In Section 2 the MLEs of the unkown parameters, reliability and hazard
functions are obtained. ACIs for the parameters, reliability and hazard functions are discussed in Section 3. In Section
4, we introduce two parametric bootstrap procedures to construct the confidence intervals for the unknown parameters,
reliability and hazard functions. Section 5, Bayesian study is presented. Two examples one of them used a simulated data
and the other used a real data sets have been analyzed in Section 6. Finaly, we conclude the paper in Section 7.

2 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a very popular technique used for estimating the parameters of continuous
distributions. If the failure times of the units originallyon test with progressive censoring scheme(R1,R2, ...,Rm) are from
a continuous population with PDF (1) and CDF (2), then the joint probability density function of a progressively Type-II
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censored samplex = X (R1,...,Rm)
1:m:n , X (R1,...,Rm)

2:m:n , ...,X (R1,...,Rm)
m:m:n of sizem from a sample of sizen is given (see Balakrishnan and

Aggarwala [3]) by

fx1,x2,...,xm(x1,x2, ...,xm) = A
m

∏
i=1

f (xi)[1−F(xi)]
Ri , (5)

wherexi is used instead ofX (R1,...,Rm)
i:m:n , Ri > 0, i = 1,2, ...,m and

A = n(n−1−R1)(n−2−R1−R2) ...

(
n−

m−1

∑
i=1

(Ri +1)

)
. (6)

From (1) and (2), the likelihood function can be weitten as

L(x;δ ,β ,θ ) = Aβ mδ mθ (−m)

[
m

∏
i=1

(xi

θ

)β−1
]

exp

{
−δ

m

∑
i=1

(Ri +1)
(xi

θ

)β
}
, (7)

whereA is defined in (6). Therefore without the additive constant, the log-likelihood function of the observed data
ℓ(x;δ ,β ,θ ) = logL(x;δ ,β ,θ ) can be written as

ℓ(x;δ ,β ,θ ) = m log(β )+m log(δ )−m log(θ )+ (β −1)
m

∑
i=1

log
(xi

θ

)
− δ

m

∑
i=1

(Ri +1)
(xi

θ

)β
. (8)

The corresponding likelihood equations are

∂ℓ(x;δ ,β ,θ )
∂δ

=
m
δ
−

m

∑
i=1

(Ri +1)
(xi

θ

)β
= 0, (9)

∂ℓ(x;δ ,β ,θ )
∂β

=
m
β
+

m

∑
i=1

log
(xi

θ

)
− δ

m

∑
i=1

(Ri +1)
(xi

θ

)β
log
(xi

θ

)
= 0, (10)

and
∂ℓ(x;δ ,β ,θ )

∂θ
=

−mβ
θ

+
β δ
θ

m

∑
i=1

(Ri +1)(
xi

θ
)β = 0. (11)

From (9), we get the MLE ofδ as a function of the MLEs ofβ andθ as

δ̂ = m

[
m

∑
i=1

(Ri +1)

(
xi

θ̂

)β̂
]−1

. (12)

Since Equations (10)–(12) do not have closed form solutions, the Newton–Raphson iteration method is used to obtain the
estimates. The algorithm is described as follows:

1.Use the method of moments or any other methods to estimate the parametersδ , β andθ as starting point of iteration,
denote the estimates as(δ0,β0,θ0) and setk = 0.

2.Calculate
(

∂ℓ
∂δ ,

∂ℓ
∂β ,

∂ℓ
∂θ

)
(δk,βk,θk)

and the observed Fisher Information matrixI−1 (δ ,β ,θ ) , given in the next paragraph.

3.Update(δ ,β ,θ ) as

(δk+1,βk+1,θk+1) = (δk,βk,θk)+

(
∂ℓ
∂δ

,
∂ℓ
∂β

,
∂ℓ
∂θ

)

(δk,βk,θk)

× I−1(δ ,β ,θ ) . (13)

4.Setk = k+1 and then go back to Step 1.
5.Continue the iterative steps until|(δk+1,βk+1,θk+1)− (δk,βk,θk)| is smaller than a threshold value. The final estimates

of (δ ,β ,θ ) are the MLE of the parameters, denoted as(δ̂ , β̂ , θ̂ ).
Moreover, using the invariance property of MLEs, the MLEs ofS (t) andh(t) can be obtained after replacingδ , β and

θ by δ̂ , β̂ andθ̂ as

Ŝ(t) = exp

{
−δ̂(

t

θ̂
)

β̂
}

(14)

and

ĥ(t) =
β̂ δ̂
θ̂

(
t

θ̂
)β̂−1 (15)
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3 Approximate Confidence Intervals

From the log-likelihood function in (8), we have

∂ 2ℓ(x;δ ,β ,θ )
∂δ 2 =

−m
δ 2 , (16)

∂ 2ℓ(x;δ ,β ,θ )
∂δ∂β

=
∂ 2ℓ(x;δ ,β ,θ )

∂β ∂δ
=−

m

∑
i=1

(Ri +1)
(xi

θ

)β
log
(xi

θ

)
, (17)

∂ 2ℓ(x;δ ,β ,θ )
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=
∂ 2ℓ(x;δ ,β ,θ )
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=

β
θ

m

∑
i=1

(Ri +1)
(xi

θ

)β
, (18)

∂ 2ℓ(x;δ ,β ,θ )
∂β 2 =

−m
β 2 − δ

m

∑
i=1

(Ri +1)
(xi

θ

)β [
log
(xi

θ

)]2
, (19)

∂ 2ℓ(x;δ ,β ,θ )
∂β ∂θ

=
∂ 2ℓ(x;δ ,β ,θ )

∂θ∂β
=

−m
θ

− δ
θ

m

∑
i=1

(Ri +1)
(xi

θ

)β

−β δ
θ

m

∑
i=1

(Ri +1)
(xi

θ

)β
log
(xi

θ

)
, (20)

and
∂ 2ℓ(x;δ ,β ,θ )

∂θ 2 =
mβ
θ 2 +

β δ (β +1)
θ 2

m

∑
i=1

(Ri +1)(
xi

θ
)β . (21)

Now, we construct the ACIs of the parametersδ , β andθ based on the asymptotic normal distribution of the MLEs. So
that we employ the asymptotic Fisher information matrix. The Fisher information matrix̂I(δ ,β ,θ ) is given by taking
expectation of minus (16)-(21), which can be written as

Î(δ ,β ,θ ) =




− ∂ 2ℓ
∂δ 2 − ∂ 2ℓ

∂δ∂β − ∂ 2ℓ
∂δ∂θ

− ∂ 2ℓ
∂β ∂δ − ∂ 2ℓ

∂β 2 − ∂ 2ℓ
∂β ∂θ

− ∂ 2ℓ
∂θ∂δ − ∂ 2ℓ

∂θ∂β − ∂ 2ℓ
∂θ2




↓(δ ,β ,θ)=(δ̂ ,β̂ ,θ̂)

. (22)

Therefore, the asymptotic variance-covariance matrix of the MLEs is obtained by taking inverse of the elements on the
observed Fisher information matrix and written by

Î−1(δ ,β ,θ ) =




var(δ ) cov(δ ,β ) cov(δ ,θ )
cov(β ,δ ) var(β ) cov(β ,θ )
cov(θ ,δ ) cov(θ ,β ) var(θ )




↓(δ ,β ,θ )=(δ̂ ,β̂ ,θ̂)

, (23)

wherevar(δ̂ ),var(β̂ ) and var(θ̂ ) are the elements of the main diagonal in variance-covariance matrix Î−1(δ ,β ,θ ).
Approximate confidence intervals forδ , β andθ can be given by to be multivariate normal with mean(δ ,β ,θ ) and
variance-covariance matrix̂I−1(δ ,β ,θ ). Thus, the(1− γ)100% ACIs forδ , β andθ can be obtained by

(
δ̂ ±Zγ/2

√
var(δ̂ )

)
,

(
β̂ ±Zγ/2

√
var(β̂ )

)
and

(
θ̂ ±Zγ/2

√
var(θ̂ )

)
. (24)

whereZγ/2 is the percentile of the standard normal distribution with right-tail probabilityγ/2.
In order to find the approximate estimates of the variance ofS (t) andh(t), we use the delta method discussed in

Greene [7]. The delta method is a general approach for computing confidence intervals for functions of MLEs. It takes a
function that is too complex for analytically computing thevariance, creates a linear approximation of that function,and
then computes the variance of the simpler linear function that can be used for large sample inference.

Let

B́1 =

(
∂S(t)
∂δ

,
∂S(t)
∂β

,
∂S(t)
∂θ

)
andB́2 =

(
∂h(t)
∂δ

,
∂h(t)
∂β

,
∂h(t)
∂θ

)
, (25)
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where

∂S(t)
∂δ

= −
( t

θ

)β
exp

{
−δ
( t

θ

)β}
,

∂S(t)
∂β

= −δ
( t

θ

)β
exp

{
−δ
( t

θ

)β}
log
( t

θ

)
,

∂S(t)
∂θ

=
β δ
θ

( t
θ

)β
exp

{
−δ
( t

θ

)β}
, (26)

and

∂h(t)
∂δ

=
β
θ

( t
θ

)β−1
,

∂h(t)
∂β

=
δ
θ

( t
θ

)β−1
+

β δ
θ

( t
θ

)β−1
log
( t

θ

)
,

∂h(t)
∂θ

= −β 2δ
θ 2

( t
θ

)β−1
, (27)

Then, the approximate estimates ofvar(Ŝ(t)) andvar(ĥ(t)) can be given, respectively, by

var(Ŝ)≃
[
B́1Î−1B1

]
(δ ,β ,θ)=(δ̂ ,β̂ ,θ̂) and var(ĥ)≃

[
B́1Î−1B1

]
(δ ,β ,θ)=(δ̂ ,β̂ ,θ̂) . (28)

Thus,
(Ŝ(t)− S(t))√

var(Ŝ)
∼ N(0,1) and

(ĥ(t)− h(t))√
var(ĥ)

∼ N(0,1), (29)

asymptotically. These results yield the asymptotic 100(1− γ)% confidence interval forS (t) andh(t) given by

Ŝ(t)±Zγ/2

√
var(Ŝ) and ĥ(t)±Zγ/2

√
var(ĥ). (30)

4 Bootstrap Confidence Intervals

The bootstrap is a resampling method for statistical inference. In common bootstraping is used for measurment of accuracy
(as defined in trems bias, variance, confidence intervals andprediction error) and constructing hypothesis tests. In this
section we construct two approixmate confidence intervals based on the parametric bootstrap percentile methods: (i)
percentile bootstrap-p method (we call it BP) based on the idea of Efron[5] and (ii) bootstrap-t method (we call it BT)
based on the idea of Hall [8]. The algorithms for estimating the confidence intervals using both methods are illustrated as
follow

4.1 BP method

Algorithm 1.

1.Based on the original datax = X1:m:n,X2:m:n, ...,Xm:m:n compute the MLEs ofδ , β andθ , sayδ̂ , β̂ andθ̂ . Then used
their values to obtain the MLEŝS(t) andĥ(t) from (14) and (15).

2.Useδ̂ , β̂ andθ̂ to generate the bootstrap samplex∗ = X∗
1:m:n,X

∗
2:m:n, ...,X

∗
m:m:n

with the same values ofRi andm, where
i = 1,2, ...,m .

3.As in Step 1, obtain the MLEs based onx∗ and compute the bootstrap estimates ofδ ,β ,θ ,S(t) and h(t), say
δ̂ ∗, β̂ ∗, θ̂ ∗, Ŝ∗(t) andĥ∗(t).

4.Repeat Steps 2-4N times and obtain̂ϕ∗
1, ϕ̂∗

2 , ..., ϕ̂∗
N whereϕ̂∗

j =
(

δ̂ ∗
j , β̂ ∗

j , θ̂ ∗
j , Ŝ

∗
j , ĥ

∗
j

)
.

5.Arrange allϕ̂∗
j , j = 1,2, ...,N in an ascending order to obtain̂ϕ∗

1 , ϕ̂
∗
2 , ..., ϕ̂

∗
N . LetU1(z) = P(ϕ̂∗ ≤ z) be the cumulative

distribution function ofϕ̂∗. Defineϕ̂boot−p =U−1
1 (z) for givenz. The approximate(1− γ)100% CIs ofϕ̂BP is given

by
[ϕ̂BP(γ/2), ϕ̂BP(1− γ/2)] (31)
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4.2 BT method

Algorithm 2.

1-4. The same as the BP algorithm 1.
5.Obtaining the asymptotic variance-covariance matrixÎ−1∗(δ̂ ∗, β̂ ∗, θ̂ ∗) and the variances of the reliability and hazard

functionsvar(Ŝ∗) andvar(ĥ∗) by applying the asymptotic variance-covariance matrix anddelta method.
6.Define the statisticT ∗ as

T ∗ϕ =
√

N(ϕ̂∗− ϕ̂∗)/
√

Var(ϕ̂∗)

whereϕ = δ ,β ,θ ,S(t) andh(t).
7.Repeat Steps 2-6N times and obtainT ∗ϕ

1 ,T ∗ϕ
2 , ...,T ∗ϕ

N .
8.ArrangeT ∗ϕ

1 ,T ∗ϕ
2 , ...,T ∗ϕ

N in an ascending order to obtainT ∗ϕ
(1) ,T

∗ϕ
(2) , ...,T

∗ϕ
(N).

6.LetU2(z) = P(T ∗ ≤ z) be the cumulative distribution function ofT ∗ for givenz, define

ϕ̂BT = ϕ̂ +N−1/2
√

var(ϕ̂∗)U−1
2 (z)

The approximate(1− γ)100% CIs ofϕ̂BT is given by

[ϕ̂BT (γ/2), ϕ̂BT (1− γ/2)] (32)

5 Bayesian Estimation

In this section we discuss how to obtain the Bayes estimates and the corresponding credible intervals of parametersδ , β ,
andβ as well as the reliabilityS (t) and hazardh(t) functions of the NWPD. Let us consider the parametersδ , β andθ are
independent and follow the gamma prior distributions, the prior density functions ofδ , β andθ are given, respectively,
by

π1(δ ) ∝ δ γ1−1exp{−η1δ} , δ > 0, γ1 > 0, η1 > 0, (33)

π2(β ) ∝ δ γ2−1exp{−η2β} , β > 0, γ2 > 0, η2 > 0, (34)

and
π3(θ ) ∝ δ γ3−1exp{−η3θ} , β > 0, γ3 > 0, η3 > 0, (35)

whereγ1,η1,γ2,η2,γ3 andη3 are selected to reflect the prior knowledge aboutδ , β andθ . Note that ifγ1 = γ2 = γ3 =
η1 = η2 = η3 = 0, they the non-informative priors ofδ , β andθ , we call it prior 0. Using the likelihood function given
in (7), the joint posterior density function ofδ , β andθ givenx is thus

π∗(δ ,β ,θ |x) = L(x;δ ,β ,θ )×π1(δ )×π2(β )×π3(θ )∫ ∞
0

∫ ∞
0

∫ ∞
0 L(x;δ ,β ,θ )×π1(δ )×π2(β )×π3(θ )∂δ∂β ∂θ

∝
β m+γ2−1δ m+γ1−1

θ m+γ3−1

[
m

∏
i=1

(xi

θ

)β−1
]

×exp

{
−η2β −η3θ − δ

(
m

∑
i=1

(Ri +1)
(xi

θ

)β
+η1

)}
(36)

It is clear that, the integral in (36) is so hard to evalaute analytically. To solve this problem we applied the MCMC
technique to provide alternative method for parameter estimation. By using the MCMC technique we can obtain the
Bayesian estimators of parametersδ , β and θ also approixmate the credible intervals. From (36), we can derive the
conditional posterior distributions ofδ , β andθ , respectively, as

π∗
1(δ |β ,θ ,x) ∝ δ m+γ1−1exp

{
−δ

(
m

∑
i=1

(Ri +1)
(xi

θ

)β
+η1

)}
, (37)

π∗
2(β |δ ,θ ,x) ∝ β m+γ2−1

[
m

∏
i=1

(xi

θ

)β−1
]

exp

{
−η2β − δ

m

∑
i=1

(Ri +1)
(xi

θ

)β
}
, (38)
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and

π∗
3(θ |δ ,β ,x) ∝

1
θ m+γ3−1

[
m

∏
i=1

(xi

θ

)β−1
]

exp

{
−η3θ − δ

m

∑
i=1

(Ri +1)
(xi

θ

)β
}
. (39)

It can be seen that, as in (37) the full conditional posteriordensity is a gamma density with shape parameter(m+ γ1) and

scale parameter
m
∑

i=1
(Ri +1)( xi

θ )
β +η1, therefor, it is easy to generate the samples ofδ by using any gamma generating

routine. However, in our case, we do not have well-known distridutions that the marginal posterior distributions ofβ and
θ can have been analytically reduced and therefore the standard metheds is not possible use to direct sampling, but the
plots of them show that they are similar to the normal distribution see Figures 1 and 2.

Fig. 1: Posterior density functionπ∗
2(β |δ ,θ ,x) of β .

Fig. 2: Posterior density functionπ∗
3(θ |δ ,β ,x) of θ .

To solve this problem we use a Metropolis-Hasting (M-H) sampling with the Gibbs sampling scheme by using the
normal proposal distribution, as discussed in Tierney [14]. To sample from (38) and (39), we generate a proposal values of
β andθ from a normal distributionsN(β ( j−1),var(β )) andN(θ ( j−1),var(θ )) respectively, whereβ ( j−1) andθ ( j−1) are
the current values ofβ andθ andvar(β ) andvar(θ ) are the varinaces ofβ andθ obtained from the variance-covariance
matrix in (23). The hybrid algorithm M-H and Gibbs sampler works as follows:

1.Start with initial guess(δ (0),β (0),θ (0)).
2.Set j = 1.

3.Generateδ ( j) from Gamma

(
m+ γ1,

m
∑

i=1
(Ri +1)

( xi
θ
)β

+η1

)
.

4.Using M-H, generateβ ( j) and θ ( j) from π∗
2(β |δ ,θ ,x) and π∗

3(θ |δ ,β ,x) with normal proposal distribution
N(β ( j−1),var(β )) andN(θ ( j−1),var(θ )).
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(i)Generate a proposalβ ∗ from N(β ( j−1),var(β )) andθ ∗ from N(θ ( j−1),var(θ )).
(ii)Evaluate the acceptance probabilities

ψβ = min

[
1,

π∗
2(β ∗|δ ( j),θ ( j−1),x)

π∗
2(β ( j−1)|δ ( j),θ ( j−1),x)

]
and ψθ = min

[
1,

π∗
3(θ ∗|δ ( j),β ( j),x)

π∗
3(θ ( j−1)|δ ( j),β ( j),x)

]

(iii)Generate au1 andu2 from a Uniform(0,1) distribution.
(iv)If u1 < ψβ accept the proposal and setβ ( j) = β ∗, esle setβ ( j) = β ( j−1).

(iiv)If u2 < ψθ accept the proposal and setθ ( j) = θ ∗, esle setθ ( j) = θ ( j−1).

5.Compute the reliability and hazard functions as

S( j)(t) = exp

{
−δ ( j)

(
t

θ ( j)

)β ( j)}
and h( j)(t) =

β ( j)δ ( j)

θ ( j)

(
t

θ ( j)

)β ( j)−1

.

6.Set j = j+1.
7.Repeat Steps 3-6N times. In order to guarantee the convergence and to remove the affection of the selection of initial

value, the firstM simulated varieties are discarded. Then the selected sample areδ (i),β (i),θ (i),S(i)(t) andh(i)(t),
i = M + 1, ...,N, for sufficiently largeN forms an approximate posterior sample which can be used to develop the
Bayes estimate.

8.Based on SEL, the approixmate Bayes estimate ofυ (whereυ = δ ,β ,θ ,S(t) andh(t)) under MCMC can be given as

υ̂MC = Ê(υ |x) = 1
N −M

N

∑
i=M+1

υ (i) (40)

whereM is burn-in andυ (i) = δ (i),β (i),θ (i),S(i)(t) andh(i)(t) respectively.

9.To compute the credible interval ofυ (i), order
{

υM+1,υM+2, ...,υN
}

as
{

υ (1),υ (2), ...,υ (N)
}
. Then the 100(1− γ)%

symmetric credible intervals ofυ (whereυ = δ ,β ,θ ,S(t) andh(t) ) can be given by
[
υ(N (γ/2)), υ(N (1−γ/2))

]
(41)

6 Numerical Computations

To illustrate the computation of methods proposed in this paper, we discuss two different examples. The first example
uses a simulated data set and the second uses a real life data set.

Example 1: (Simulated data set). By using the the algorithm described in Balakrishnan and Sandhu [2], we generate
the progressive Type-II censored sample from NWPD with parameters(δ ,β ,θ ) = (19.5,2.5,5) of sizem = 20, which’s
generated randomly of sample sizen = 30 with censoring schemeR = (1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1,0, 1, 0, 1,
0). The progressive Type-II censored sample is

0.1686 0.3892 0.4738 0.7142 0.7780 0.9456 1.0200 1.1951 1.2227 1.2483
1.2546 1.3254 1.3347 1.3846 1.4535 1.5786 1.6805 1.7143 2.0368 2.3460

1.MLEs method: Under the progressive Type-II censored sample and the method discussed in Section 2, we compute the
MLEs of the parametersδ , β andθ , relaibility S(t) and hazardh(t) functions, the results become

δ̂ , β̂ , θ̂ , Ŝ(t = 0.3), ĥ(t = 0.3) = 20.6205, 2.4988, 5.2849, 0.9842, 0.1323.

Using the formula and the delta method as described in Section 3, we obtian the 95% ACIs ofδ , β , θ , S(t = 0.3) and
h(t = 0.3) , the results are displayed in Table 1.

2.Bootstrap methods: Using the algorithms of the BP and BT methods described in Section 4, we present the mean of
1000 bootstrap (BP and BT) of the parameters, reliability and hazard functions are given, respectively, by

δ̂BP, β̂BP, θ̂BP, ŜBP(t = 0.3), ĥBP(t = 0.3) = 20.3037, 2.6539, 5.2221, 0.9836, 0.1330.

and
δ̂BT , β̂BT , θ̂BT , ŜBT (t = 0.3), ĥBT (t = 0.3) = 20.7372, 2.6333, 5.3055, 0.9837, 0.1329.

Also, the 95% BP and BT CIs are displayed in Table 1.
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3.MCMC method: Under the Gibbs sampler within M-H algorithm as described inSection 5, we generate a Markov
chain with 30 000 observations. Discarding the first 5000 values as ‘burn-in’ and taking every tenth variate as iid
observations . We used the informative gamma priors forδ , β andθ , with the hyperparametersγ1 = γ2 = γ3 = 1.1 and
η1 = η2 = η3 = 0.015. Based on the sample of size 25 000 the Bayes MCMC estimateof the parameters, reliability
and hazard functions under SEL function are obtained as:

δ̂MC, β̂MC, θ̂MC, ŜMC(t = 0.3), ĥMC(t = 0.3) = 21.3713, 2.5039, 5.2854, 0.9839, 0.1355.

Also, 95% CRI ofδ , β , θ , S(t) andh(t) are displayed in Table 1.
Table 2, provides the MCMC results of the posterior mean, median, mode, standard deviation (S.D.) and skewness
(Ske) of the parameters, reliability and hazard functions.

Table 1.95% ACIs, BPCIs, BTCIs and CRIs ofδ , β , θ , S(t) andh(t) for Example 1.
Parameters ACIs BPCIs

Interval Length Interval Length
δ [16.328, 24.913] 8.5850 [15.2637, 26.2276] 10.9639
β [2.2235, 3.7740] 0.5506 [1.9961, 3.6433] 1.6472
θ [4.8447, 8.7252] 3.8805 [2.0730, 6.8329] 4.7599

S(t = 0.3) [0.9763, 0.9921] 0.0158 [0.9547, 0.9981] 0.0433
h(t = 0.3) [0.0838, 0.1809] 0.0971 [0.0237, 0.3025] 0.2788

BTCIs CRIs
Interval Length Interval Length

δ [13.5819, 25.0266] 11.4447 [13.205, 26.413] 13.208
β [2.0087, 3.7070] 1.6983 [2.1769, 3.5273] 1.3504
θ [2.8589, 6.6199] 3.7610 [2.2851, 6.2858] 4.0007

S(t = 0.3) [0.9594, 0.9977] 0.0383 [0.9761, 0.9901] 0.0140
h(t = 0.3) [0.0286, 0.2958] 0.2672 [0.0831, 0.2015] 0.1184

Table 2. MCMC results for some posterior characteristics for Example 1.
Parameters Mean Median Mode SD Ske

δ 21.3713 20.9926 20.2353 4.6734 0.4394
β 2.5039 2.5054 2.5084 0.0128 -0.3379
θ 5.2854 5.2854 5.2853 0.0002 0.4239

S(t = 0.3) 0.9839 0.9842 0.9848 0.0036 -0.4698
h(t = 0.3) 0.1355 0.1330 0.1279 0.0303 0.4730

Example 2: (Real life data). For illustrative purposes, considering the real data set of sample size 63 observed failure
times. The data is represented the strength data measured inGPA, for single carbon fibers and impregnated 1000 carbon
fiber tows, this data reported by Badar and Priest [1], as in Table 3. We have computed the Kolmogorov-Smirnov (KS)
distance between the empirical and the fitted distribution functions. It is 0.16 and the associated p-value is 0.59. Since the
p- value is quite high, we cannot reject the null hypothesis that the data is coming from the NWPD. Also, we plot both the
empirical survival function (ESF) and the estimated survival functions in Figure 3 and we found that the NWPD fits the
data very well.

Table 3. A real life data as in Badar and Priest.
0.101 0.332 0.403 0.428 0.457 0.550 0.561 0.596 0.597 0.645 0.654
0.674 0.718 0.722 0.725 0.732 0.775 0.814 0.816 0.818 0.824 0.859
0.875 0.938 0.940 1.056 1.117 1.128 1.137 1.137 1.177 1.196 1.230
1.325 1.339 1.345 1.420 1.423 1.435 1.443 1.464 1.472 1.494 1.532
1.546 1.577 1.608 1.635 1.693 1.701 1.737 1.754 1.762 1.828 2.052
2.071 2.086 2.171 2.224 2.227 2.425 2.595 3.22

Accordingly the data set, which’s discussed in Badar and Priest [14], we can generate the progressive Type-II
censored sample of sizem = 25 taken from sample size n = 63 with censoring scheme
R = (5,0,0,5,0,5,0,0,5,0,0,5,0,0,0,0,0,5,3,0,5,0,0,0,0). A progressively censored sample generated from the real
data is

0.101 0.332 0.403 0.428 0.457 0.561 0.940 1.056 1.117 1.128 1.137 1.137
1.196 1.230 1.339 1.345 1.420 1.423 1.435 1.443 1.701 1.737 1.754 1.828
2.425
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Fig. 3: The empirical and fitted survival functions for the data in Table 3.

Fig. 4: Histogram and the kerney desnsity estimate ofδ

Fig. 5: Histogram and the kerney desnsity estimate ofβ

As the same in Example 1, we obtain the computations for different methods of estimations as follows:
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Fig. 6: Histogram and the kerney desnsity estimate ofθ

1.MLEs method: Under the progressive Type-II censored sample and the method discussed in Section 2, we compute the
MLEs of the parametersδ , β andθ , relaibility and hazard functionsS(t) andh(t), the results become

δ̂ , β̂ , θ̂ , Ŝ(t = 0.3), ĥ(t = 0.3) = 25.6641, 2.4811, 6.5614, 0.5171, 1.0908.

Using the formula and the delta method as described in Section 3, we obtian the 95% ACIs ofδ , β , θ , S(t = 0.3) and
h(t = 0.3) , the results are displayed in Table 4.

2.Bootstrap methods: Using the algorithms of the BP and BT methods described in Section 4, we present the mean of
1000 bootstrap (BP and BT) of the parameters, reliability and hazard functions are given, respectively, by

δ̂BP, β̂BP, θ̂BP, ŜBP(t = 0.3), ĥBP(t = 0.3) = 24.2202, 2.6137, 6.2769, 0.5066, 1.1992.

and

δ̂BT , β̂BT , θ̂BT , ŜBT (t = 0.3), ĥBT (t = 0.3) = 26.0735, 2.6043, 6.6556, 0.5136, 1.1689.

Also, the 95% BP and BT CIs are displayed in Table 4.
3.MCMC method: Under the Gibbs sampler within M-H algorithm as described inSection 5, we generate a Markov

chain with 30 000 observations. Discarding the first 5000 values as ‘burn-in’ and taking every tenth variate as iid
observations . We used the non-informative gamma priors forδ , β andθ . Based on the sample of size 25 000 the
Bayes MCMC estimate of the parameters, reliability and hazard functions under SEL function are obtained as

δ̂MC, β̂MC, θ̂MC, ŜMC(t = 0.3), ĥMC(t = 0.3) = 25.37, 2.4738, 7.0382, 0.517, 1.153.

Also, 95% CRI ofδ , β , θ , S(t) andh(t) are displayed in Table 4.

Table 5, provides the MCMC results of the posterior mean, median, mode, standard deviation (S.D.) and skewness
(Ske) of the parameters, reliability and hazard functions.Figures 4-8, display the histegram and the kerney desnsity
estimate of the parametersδ ,β andθ as well as reliabilityS(t) and hazardh(t) functions of Example 2.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


512 M. Mahmoud et. al: Inferences for New Weibull-Pareto Distribution Based· · ·

Fig. 7: Histogram and the kerney desnsity estimate ofS(t)

Fig. 8: Histogram and the kerney desnsity estimate ofh(t)

Table 4.95% ACIs, BPCIs, BTCIs and CRIs ofδ , β , θ , S(t) andh(t) for Example 2.
Parameters ACIs BPCIs

Interval Length Interval Length
δ [12.564, 28.7643] 16.2003 [11.4538, 30.4408] 18.987
β [1.2681, 4.694] 3.4259 [1.0461, 4.4412] 3.3951
θ [3.242, 7.8809] 4.6389 [3.7784, 10.141] 6.3626

S(t = 0.3) [0.3922, 0.642] 0.2498 [0.3463, 0.6522] 0.3059
h(t = 0.3) [0.8116, 1.37] 0.5584 [0.7602, 2.1905] 1.4303

BTCIs CRIs
Interval Length Interval Length

δ [9.4578, 27.8403] 18.3825 [14.1179, 32.2699] 18.152
β [2.01, 3.5974] 1.5874 [1.789, 3.462] 1.673
θ [2.822, 8.4283] 5.6063 [4.2497, 10.4319] 6.1822

S(t = 0.3) [0.3483, 0.6421] 0.2938 [0.2132, 0.7726] 0.5594
h(t = 0.3) [0.7524, 1.9527] 1.2003 [0.4144, 2.5248] 2.1103
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Table 5. MCMC results for some posterior characteristics for Example 2.
Parameters Mean Median Mode SD Ske

δ 25.37 24.5926 23.0379 6.9857 0.7124
β 2.4738 2.4244 2.3256 0.4214 0.668
θ 7.0382 6.7401 6.1437 1.8361 0.7983

S(t = 0.3) 0.517 0.5251 0.5412 0.1458 -0.2733
h(t = 0.3) 1.153 1.0457 0.8313 0.5485 1.4352

7 conclusion

In this paper, we have studied different methods such as maximum likelihood, parameteric bootstrap and Bayes estimate
to obtain the estimation value for parameters having the new- Weibull-Pareto distribution and their reliability and hazard
functions based on progressive Type-II censored sample. Futhermore, the paper has explained how to construct the
approximate confidence intervals for the unknown parameters by using the asymptotic normality of maximum likelihood
estimation as well as the reliability and hazard functions depending on the delta and parametric bootstrap metheds. It is
clear that, after studying the Bayesian estimate the posterior distribution equations of the unknown parameters is
complicated and so hard to reduce analytically to well-known forms. For this reason we have applied the MCMC
techinque to compute the Bayes estimates also construct thecrideble intervals. The Bayes estimates have been obtained
under SEL function. For illustrative purposes, we have applied two numerical example using a simulated data and a real
life data sets as well.
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