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Abstract: In this paper, the problem of estimation for the new WeilRdketo distribution based on progressive Type-II censored
sample is studied. The maximum likelihood, Bayes and patraenieootstrap methods are used for estimating the thre@awak
parameters as well as some lifetime parameters relialgility hazard functions. Based on the asymptotic normality afimum
likelihood estimators we construct the approximate confideintervals of the parameters. Futhermor, depending erméfia and
parametric bootstrap methods we calculate the approxiocwatiédence intervals (ACIs) of the reliability and hazarddtions. Markov
chain Monte Carlo (MCMC) technique is applied to computing Bayes estimate and the credible intervals of the unkn@semnpeters

as well as reliability and hazard functions which are ol#dinnder the assumptions of informative and non-inforregpiiors based

on the Gibbs within Metropolis-Hasting samplers procedlires results of Bayes methed are obtained under squared@ssqSEL)
function. Finally, Two examples used to a simulated datazarehl life data sets have been presented for illustrativeqses.

Keywords: New Weibull-Pareto distribution (NWPD), Progressive Ttpecensored samples, Parametric bootstrap, Bayesian
estimation, MCMC technique.

1 Introduction

There are many situations in life testing and reliabilitpesments whose units are lost or removed from the expetimen
before the failure occures. However, in many situations,rémoval of units prior to failure is pre-planned in order to
provide saving in terms of time and cost associated withingsiThere are many types of censored test, the most
important and used censored schemes are Type-l and Typedbdng. If an experimenter desires to remove surviving
units at any point on the test. But using this type of cengpaire not able him to removed units from the test at any other
point than the final termination point of the life test. Soghéwo traditional censoring schemes will not be of use to the
experimenter. For this reason we consider a more generabdag scheme called progressive Type-ll censoring. The
progressively Type-Il censored sample can be describedllas/é. Suppose that independent units are put in the life
test with continuous identical and independent distribufailure times Xi,Xp,...,X, and censoring scheme
(R1,Ry, ...,Rm). When the first failureX; occuresR; surviving units are withdrawn from the test at random. Bysame
when the second failur¥, occuresR, surviving units are withdrawn from the test at random. Hinalhen themh
failure occures, all of the remaining surviving units are¢hdrawn from the test. Then ordered observed times is

denoted b)b(l(fn},;h“’Rm), é?n},:’r']"’Rm), o Xk R are called progressively Type-Il censored order stasisticsizem taken
from sample of sizen with progressive censoring schert®®, Ry, ...,Rm). It is clear thalm = m+ ", R.. The special
case wherR; = Ry = - = Ry—1 imply Ry = n—m, then the progressive Type-Il censoning sample reducedo th
traditional Type-Il censoring sample. Also wh&) = R, = --- = Ry = 0 imply m = n, then the progressive Type-I|
censoring sample reduce to no censoring (ordinary ordgststa). For more information on progressive censoring, w
refer the reader to Balakrishnan and Aggarwala [3], Batdkran and Sandhu [4] and Balakrishnan [2]. Many authors
have discussed inference under progressive Type-ll camgarsing different lifetime distributions, see for exampl
Musleh and Helu [11], Soliman et al. [12], Mahmoud et al. [20adi and Ragab [9] and EL-Sagheer [6].

In this paper we interested in the estimation of the pararsgtiability and hazard functions when sample is avédlab
progressive Type-Il censoring scheme from the new WeiBalieto distribution. A NWPD is a generalization of the

* Corresponding author e-maRRashadmath@azhar.edu.eg

(@© 2016 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/jsap/050314

502 N SS 2 M. Mahmoud et. al: Inferences for New Weibull-Pareto Distion Based - -

Weibull and the Pareto distributions as discussed in Suteama Albert [13]. The probability density function (PDF),
cumulative distribution function (CDF), reliability fution S(t) and hazard rate function(t) of the NWPD are given,
respectively, by

£(x.5,B,6) = F‘S (g)ﬁ_lexp{—é(g)ﬁ}, 1)
F(x5,B,0) :1—exp{—5(g)ﬁ}, @)
St :exp{—é(%)ﬁ}, 3)
and 5 51
=5 (5) @

wheref3 is the shape and and 8 are the scale parameters. From (1), it should be noted tha¥hPD reduce to
well-known distributions such as Weibull, Reyleigh, Expatial and Frechet distributions as follow:

(DIf 6 =6 =1, then NWPD reduces to Weib(, 1).

(2)If 6 =1, then NWPD reduces to Weib(8, 6).

(3)If 6 =1/2 andB = 2, then NWPD reduces to Rayleigh).

(4)If B =06 =1, then NWPD reduces to Exponential distribution with meana¢dyio.
(5)If 6 =1 andB = —fB then NWPD reduces to Frechet distributiing).

It is clear that the shape of the hazard rate funcki@if as in (4), depends on the paramgieand the following can
be observed:

()If B =1, the failure rate is constant and givenlbi) = 6/6. This makes the NWPD suitable for modeling systems
or components with constant failure rate.
(ipIf B > 1, the hazard is an increasing functionxofwhich makes the NWPD suitable for modeling components that
wears faster with time.
(ii)if B < 1, the hazard is a decreasing functionxpfivhich makes the NWPD suitable for modeling components that
wears slower with time.

Futhermor, the lifetime of the NWPD is able to model data viigthtube-shaped hazard rate, which is important
feature engineering relaibility analysis. The NWPD is useéh modeling real life situation. The newly proposed
distribution was used to model the exceedances of flood g@aks’/s) of the Wheaton River near Carcross in Yukon
Territory, Canada. More about this distribution, its prdj@s and applications see Suleman and Albert [13].

In this paper, we investigate the estimation of the unknoamameters for the NWPD using the progressive Type-l|
censored sample. Based on the Newton—Raphson iteratidgtochete obtain the MLEs of the parameters by solving the
non-linear equations. The estimaion of some lifetime pa&tans such as reliability and hazard funtions are considere
The ACIs for the reliability and hazard funtions can be comded by using delta and parametric bootstrap methods.
In Bayesian study, we propose to discuss the Bayes estimiatee NWPD by using the MCMC techniques. Based on
Metropolis algorithem within Gibbs sampler, the Bayesmates and the credible intervals of the parameters as well as
reliability and hazard functions are obtained. The Bayéisneses has been studied under SEL function. Two examples
used a simulated data and a real-life data sets have beamf@édo illustrate all the methods of estimation developed
here.

The rest of this paper is organized as follows: In SectioreMh Es of the unkown parameters, reliability and hazard
functions are obtained. ACls for the parameters, relighdnd hazard functions are discussed in Section 3. In Sectio
4, we introduce two parametric bootstrap procedures totaosighe confidence intervals for the unknown parameters,
reliability and hazard functions. Section 5, Bayesian giggresented. Two examples one of them used a simulated data
and the other used a real data sets have been analyzed iorS&dginaly, we conclude the paper in Section 7.

2 Maximum Likelihood Estimation
Maximum likelihood estimation (MLE) is a very popular tedtjne used for estimating the parameters of continuous

distributions. If the failure times of the units originaliy test with progressive censoring scheiRg Ry, ..., Ry) are from
a continuous population with PDF (1) and CDF (2), then thetjprobability density function of a progressively Type-l|
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censored sample= X1 """ Rm) Xéffﬁ;h“’R'“), s Xem R of sizem from a sample of siza is given (see Balakrishnan and
Aggarwala [3]) by
fX1,X2,...,Xm(X17X27 Al_lf 1 F X| a (5)
wherex; is used instead 0(1 """ ), R >0,i=12,...mand
m-1
A=nn-1-R)(n—2-R—Ry)...(n— Zi(R+1) . (6)
i=

From (1) and (2), the likelihood function can be weitten as

S A < X\ P
L(x6.8.6)=ABMM"™ |[(5) |expy -85 R+1)(5) ¢ (7)
fs) 5 R (3)
whereA is defined in (6). Therefore without the additive constahg log-likelihood function of the observed data
£(x;0,B,0) =logL(x; d,3,0) can be written as
m

(9)—5;@%1) (%)ﬁ. 8)

£(x,6,B,0) = mlog(B) +mlog(6) —mlog(8) + (B — 1)

Ma

The corresponding likelihood equations are

ae(xéﬁe g_.iRH(%) —0, (9)
M_T+leog( ) 62 (Ri+1) ( ) |09(%)=07 (10)

and ] m
M50F.0)_ T, 395|: (R+1)(5)" =o0. (1)

From (9), we get the MLE o0d as a function of the MLEs g8 and® as

. [m W\
d=m (Ri+1)<7> . (12)
izi 6
Since Equations (10)—(12) do not have closed form solutitresNewton—Raphson iteration method is used to obtain the

estimates. The algorithm is described as follows:

1.Use the method of moments or any other methods to estilmatgarameterd, 3 and6 as starting point of iteration,
denote the estimates &%, 3o, 6y) and sek = 0.

2. Calculate( o2, gé, %) T and the observed Fisher Information matri¥ (3, 8, 6), given in the next paragraph.
1Pk

3.Update(d,3,6) as

ol ot or

A A x171(5,B,6). 13
06 9P 59)@7&76@ (0:£.9) 49

(015 Bt 1, Okr1) = (&, Br, 6k) + <

4.Setk = k+ 1 and then go back to Step 1.
5.Continue the iterative steps untibc. 1, k1, k1) — (@,QKL@)| is smaller than a threshold value. The final estimates

of (9,3, 0) are the MLE of the parameters, denoted@s3, 9).
Moreover, using the invariance property of MLEs, the MLES) andh (t) can be obtained after replacidg and
6 by 5, B andf as

>
L
S~—
||
-D
/—/H
01>
Y

Ly } (14)
and
)p-1 (15)
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3 Approximate Confidence Intervals

From the log-likelihood function in (8), we have

0%((x;5,8,6) —m

082 8%’ (1)
0%(%,6,B,6) 0%(%6,8,0) & X\B. /%
080 0pao __i;(R“)(E) o9(g): (7)
0%0(%0,8,0) 9%(x0,8.0) B & X\ B
0606 0805 62 R+1)(5) (18)
0%(x,9,8,6) -m 2 _ Xi\ B Xi\12
g~ 02 R+1(g) [a(5)]" 19)
02(x,5,8,0)  0%(x3,8,0) —m EM _x\B
0poe 060 6 82 (R“)(E)
Bd L B X
52 (R.+1)(6) log () (20)
e 020(%,5,B,0 5(B+1)
7()_;9’23’ )=2—§+7B (gi )_;(R+1)(%)ﬁ. (21)

Now, we construct the ACls of the parametér3 and 6 based on the asymptotic normal distribution of the MLEs. So
that we employ the asymptotic Fisher information matrixe Tisher information matrnk(6 B,0) is given by taking
expectation of minus (16)-(21), which can be written as

_ou % 9%
902 ~ JddB ~ 9500

i 0% %0 0%
1(3,B,0) = | —3pas —opz —apas : (22)
L % %«
0005 0008 062 ¢(5,p,9):(3ﬁ,é)

Therefore, the asymptotic variance-covariance matrihefNILEs is obtained by taking inverse of the elements on the
observed Fisher information matrix and written by

cov(6,9d) cov(

var(d) cov(d,3) cov(d,0)
“(5,B,0) = (cov(&é) var () cov(B,e>> : (23)
(6,0 0,8 )
1(8,B,6)=(5.8.6)

wherevar(S) var(ﬁ) andvar(8) are the elements of the main diagonal in variance-covagianatrix [ (3,3, 6).
Approximate confidence intervals fdr, B and 8 can be given by to be multivariate normal with me@ 3, 6) and
variance-covariance matrix1(3, 8, 6). Thus, the{1 — y)100% ACls ford, B and6 can be obtained by

<5iZy/2m) (BiZV/Z\/\?(ﬁO and <é:|:Zy/2\/\m>. (24)

whereZ,, is the percentile of the standard normal distribution wigt-tail probabilityy/2.

In order to find the approximate estimates of the varianc8(bf andh(t), we use the delta method discussed in
Greene [7]. The delta method is a general approach for cangpabnfidence intervals for functions of MLEs. It takes a
function that is too complex for analytically computing tverriance, creates a linear approximation of that funcior
then computes the variance of the simpler linear functiah ¢an be used for large sample inference.

Let
. [0S(t) aS(t) as(t) . (0h(t) oh(t) oh(t)
Bl_(aa’ B’ ae)a”d82_<05’ B’ 09)’ (25)
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)B}, (26)

and

oht) _ B
95 0

B—1
—"22) g(a) +%(5) '09(%)’
-1

ohit) B2
06 62 (5) ’ @0
Then, the approximate estimatesvaf (5(t)) andvar (h(t)) can be given, respectively, by
var (S) ~ [BllA‘lBl](aiﬁﬁ) 655 and var (h) ~ [BllA‘lBl](M’g) 5.4.0)- (28)
Thus, . -
BSOS 0,1y ang OO o0, (29)
var(S) var (h)

asymptotically. These results yield the asymptotic(100y)% confidence interval foB(t) andh(t) given by
St)£2,\/var(S) and h(t) £2Z,,1/var (). (30)

4 Bootstrap Confidence Intervals

The bootstrap is a resampling method for statistical infeeeln common bootstraping is used for measurment of acgura
(as defined in trems bias, variance, confidence intervalgegdiction error) and constructing hypothesis tests. ia th
section we construct two approixmate confidence intervaked on the parametric bootstrap percentile methods: (i)
percentile bootstrap-p method (we call it BP) based on tha if Efron[5] and (ii) bootstrap-t method (we call it BT)
based on the idea of Hall [8]. The algorithms for estimatimg ¢onfidence intervals using both methods are illustraged a
follow

4.1 BP method

Algorithm 1.

1.Based on the original data= Xt:mn, X2:mn; -+, Xmmn cOMpute the MLEs 0, 3 andé, sayS, B andé . Then used
their values to obtain the MLES(t) andh(t) from (14) and (15).

2.Used, 3 andé to generate the bootstrap sample= X Xomuns - X
i=12..m.

3.As ir’1 étép 1, obtain the MLEs based gh and compute the bootstrap estimatesdoB, 6,S(t) and h(t), say
5, B*, 6%, S (t) andh*(t).

4.Repeat Steps 2M times and obtaigy, §5,..., py whered; = (A EJ ,AJ ,AJ ,AJ

5.Arrange allp;’, j =1,2,...,N in an ascending order to obtafif, ¢, ..., . LetU1(2) = P(¢* < z) be the cumulative
distribution function ofcﬁ* Definedpoot—p = Uy L(2) for givenz The approximatél — y)100% Cls ofdgp is given

by
[PBr(Y/2), Per(1—y/2)] (31)

with the same values & andm, where
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4.2 BT method

Algorithm 2.

1-4. The same as the BP algorithm 1 o
5.0btaining the asymptotic variance-covariance maitrix (6*, 3*, 8*) and the variances of the reliability and hazard

functionsvar(é*) andvar(ﬁ*) by applying the asymptotic variance-covariance matrix @glth method.
6.Define the statistit * as

where¢ = 5, 8,8, S(t) andh(t).
7.Repeat Steps 246 times and obtaiﬁ'l*‘p,Tz*‘p, ...,T,\’,“"_
8. ArrangeT, *, 7,;¢,... ¢ in an ascending order to obtalfif, T}, T,{.
6.LetUp(2) = P(T* < 2) be the cumulative distribution function @f* for givenz, define

fer = ¢ +N"V2\Nar (§1)U, (2
The approximatél — y)100% Cls ofggr is given by

[PBT(Y/2), P57 (1—Yy/2)] (32)

5 Bayesian Estimation

In this section we discuss how to obtain the Bayes estimaigshee corresponding credible intervals of paramede|fs,
andp as well as the reliabilits(t) and hazardh (t) functions of the NWPD. Let us consider the paramedei3 and6 are
independent and follow the gamma prior distributions, therplensity functions ob, B and 8 are given, respectively,
by

m(d) 06" texp{—-md}, &>0, >0, N >0, (33)

m(B) 08% texp{—n2B}, B>0, >0, n2>0, (34)
and

m(0) 06% texp{—n30}, B>0, >0, N3>0, (35)

whereyi, N1, 2, N2, ¥3 andns are selected to reflect the prior knowledge abduf and 6. Note that ifyy = y» = 5 =
N1 = N2 = n3 = 0, they the non-informative priors @, B and @, we call it prior 0. Using the likelihood function given
in (7), the joint posterior density function &f 3 andf givenx is thus

B L(x;0,B,0) x (0) x TR(P) x TB(0)
70 (8:B.8X) = fom et (15 B.6) x 10(3) x T6(B) x 76(8)055598
- pmYe-1gmin-1 [ m (Xi )Bl‘|

gmys—1 ]

XEXP{—023—039—5<§1(R‘+1)(%)ﬁ+'71>} (36)

It is clear that, the integral in (36) is so hard to evalautalgically. To solve this problem we applied the MCMC
technique to provide alternative method for parametenedion. By using the MCMC technique we can obtain the
Bayesian estimators of parametérs and 6 also approixmate the credible intervals. From (36), we carive the
conditional posterior distributions @, 3 and@, respectively, as

m

m(3|B,6,x) O 6'“+VlleXp{—5 <_Z(Ra +1) (%)E + ’71) } : (37)

(815,60, 0 g™ []j(%)” l] exp{—nzﬁ—5§1(Ra+1) (5)° } (38)
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and

7%(016,8.6) 0 gy [ﬂ(%)ﬂ exp{—nse—é_zmimu) (%)B}. (39

It can be seen that as in (37) the full conditional postet@nsity is a gamma density with shape paramter y;) and
scale parameteE (Ri+ 1)( )B + ny, therefor, it is easy to generate the samples ofy using any gamma generating

routine. However in our case, we do not have well-knowrridigtions that the marginal posterior distributiongénd
6 can have been analytically reduced and therefore the sthnaketheds is not possible use to direct sampling, but the
plots of them show that they are similar to the normal distitn see Figures 1 and 2.

4.3 10723
o —aE ]
R
o,
o2k 1073 b .
1.x10-23
ok ;
] 1 2 3 4 5
A
Fig. 1: Posterior density functiorg; (3|9, 8, x) of B.
3x1070 b
as5x1078 |
T oaxwtf
=
o L1kl
=
Lxio™®
5x10°7 B
ok

Fig. 2: Posterior density functiorg (8|9, 8,x) of 6.

To solve this problem we use a Metropolis-Hasting (M-H) skngpwith the Gibbs sampling scheme by using the
normal proposal distribution, as discussed in Tierney.[Td}sample from (38) and (39), we generate a proposal vafues o
B and@ from a normal distributionsl(81~Y var(B)) andN(6U~Y, var(8)) respectively, wher@(i-1) and8- are
the current values g8 and6 andvar () andvar (8) are the varinaces @ and8 obtained from the variance-covariance
matrix in (23). The hybrid algorithm M-H and Gibbs samplemmas follows:

1.Start with initial gues$s(®, 50, 9(0),

2.Setj = 1.

3.Generatd(}) from Gamme<m+ Vi, 2 (Ri+1) (ﬁ)ﬁ +n1).
i=1

4.Using M-H, generate3(}) and 6\ from G (B|0,0,x) and (6|5, B,x) with normal proposal distribution

N(BU~Y, var (B8)) andN(8U~Y, var(6)).

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

508 N SS 2 M. Mahmoud et. al: Inferences for New Weibull-Pareto Distion Based - -

(i)Generate a proposgl* from N(BU~Y var(B)) and@* from N(8U-1 var(8)).
(iEvaluate the acceptance probabilities

T m(es, 800 x) -
Yp = min [1’ (B0 D50, a0 D 5 | 2N We=min|L,

5 (6*16V), BV, %)
5(00-050, 30, x)

(iiiyGenerate au; andu, from a Uniform(0, 1_) distribution. _ _
(iv)If up < g accept the proposal and ) = B*, esle sep!) = -1,
(iiv)If up < g accept the proposal and #4) = 6*, esle sef(l) = gli-1),

5.Compute the reliability and hazard functions as
[3(]) () () B(J')fl
_ _ t . Bl t
D) = _oW( 2 Dpy=2"""(___
sht) exp{ 5 (em) }andh ) ="455 (em) :
6.Setj =j+1.

7.Repeat Steps 346 times. In order to guarantee the convergence and to reme\adféction of the selection of initial
value, the firstM simulated varieties are discarded. Then the selected saanpb(), (1), 8() S0 (t) andh()(t),
i=M+1,...,N, for sufficiently largeN forms an approximate posterior sample which can be usedvielajethe
Bayes estimate.

8.Based on SEL, the approixmate Bayes estimate @herev = 9, 3, 6, S(t) andh(t)) under MCMC can be given as

NG
ol (40)
+1

Ome = E(UX) = 5= ~
whereM is burn-in andw ) = 50, g1 () Si)(t) andh()(t) respectively.

9.To compute the credible interval of, order{ M+, 0M+2 _ uN} as{u<1>, v@, u<N>} . Then the 1001 — y)%
symmetric credible intervals af (wherev = 9, 3,6, S(t) andh(t) ) can be given by

[UN (y/2)): UN (1-y/2) (41)

6 Numerical Computations

To illustrate the computation of methods proposed in thizepawe discuss two different examples. The first example
uses a simulated data set and the second uses a real lifeetlata s

Example 1: (Simulated data set). By using the the algorithm descrihegbilakrishnan and Sandhu [2], we generate
the progressive Type-Il censored sample from NWPD with petars(9d, 3,0) = (19.5,2.5,5) of sizem= 20, which’s
generated randomly of sample size- 30 with censoring schenfe=(1,0,1,1,0,1,1,0,0,1,0,0,1,0,1,0,1,0, 1,
0). The progressive Type-Il censored sample is

0.1686 0.3892 0.4738 0.7142 0.7780 0.9456 1.0200 1.1951227.21.2483
1.2546 1.3254 1.3347 1.3846 1.4535 1.5786 1.6805 1.7143368.02.3460

1.MLEsmethod: Under the progressive Type-Il censored sample and the mhelikoussed in Section 2, we compute the
MLEs of the parameterd, 3 and®, relaibility S(t) and hazardh(t) functions the results become
5, B, 6, St =0.3), h(t = 0.3) = 20.6205 2.4988 5.2849 0.9842 0.1323

Using the formula and the delta method as described in $e8tiove obtian the 95% ACIs &, 3, 6, S(t = 0.3) and
h(t = 0.3) , the results are displayed in Table 1.

2.Bootstrap methods. Using the algorithms of the BP and BT methods described ini@ed, we present the mean of
1000 bootstrap (BP and BT) of the parameters, reliability laazard functions are given, respectively, by

Sep, Pep. Bep, Sep(t = 0.3), hep(t = 0.3) = 20.3037, 2.6539 5.2221 0.9836 0.1330Q

and
dsT, BT, BBT, St (t=0.3), hgr(t =0.3) =20.7372 2.6333 5.3055 0.9837, 0.1329

Also, the 95% BP and BT Cls are displayed in Table 1.
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3.MCMC method: Under the Gibbs sampler within M-H algorithm as describe@éttion 5, we generate a Markov
chain with 30 000 observations. Discarding the first 500Qeslas ‘burn-in’ and taking every tenth variate as iid
observations . We used the informative gamma priordfg and@, with the hyperparameteyg = y» = s = 1.1 and
N1 = N2 = n3 = 0.015. Based on the sample of size 25 000 the Bayes MCMC estwh#te parameters, reliability
and hazard functions under SEL function are obtained as:

dvc, Buc, Buc, Suc(t =0.3), five(t = 0.3) = 21.3713 2.5039 5.2854 0.9839 0.1355

Also, 95% CRI ofd, 3, 8, S(t) andh(t) are displayed in Table 1.
Table 2, provides the MCMC results of the posterior mean,iamdnode, standard deviation (S.D.) and skewness
(Ske) of the parameters, reliability and hazard functions.

Table 1.95% ACls, BPCIs, BTCIs and CRIs df, 3, 6, S(t) andh(t) for Example 1.

Parameters ACls BPCls
Interval Length Interval Length
o [16.328, 24.913] 8.5850 [15.2637, 26.2276] 10.9639
B [2.2235, 3.7740] 0.5506 [1.9961, 3.6433] 1.6472
6 [4.8447,8.7252] 3.8805 [2.0730, 6.8329] 4.7599
S(t=0.3) [0.9763,0.9921] 0.0158 [0.9547,0.9981] 0.0433
h(t=0.3) [0.0838, 0.1809] 0.0971 [0.0237, 0.3025] 0.2788
BTCIs CRIs
Interval Length Interval Length
o [13.5819, 25.0266] 11.4447 [13.205, 26.413] 13.208
B [2.0087, 3.7070] 1.6983 [2.1769, 3.5273] 1.3504
6 [2.8589, 6.6199] 3.7610 [2.2851, 6.2858] 4.0007
S(t=0.3) [0.9594,0.9977] 0.0383 [0.9761, 0.9901] 0.0140
h(t=0.3) [0.0286, 0.2958] 0.2672 [0.0831, 0.2015] 0.1184
Table 2. MCMC results for some posterior characteristics for Exknip
Parameters Mean Median Mode SD Ske
o 21.3713 20.9926 20.2353 4.6734 0.4394
B 2.5039 2.5054 2.5084 0.0128 -0.3379
6 5.2854 5.2854 5.2853 0.0002 0.4239
St=0.3) 0.9839 0.9842 0.9848 0.0036 -0.4698
h(t=0.3) 0.1355 0.1330 0.1279 0.0303 0.4730

Example 2: (Real life data). For illustrative purposes, considerimgreal data set of sample size 63 observed failure
times. The data is represented the strength data measuBRhinfor single carbon fibers and impregnated 1000 carbon
fiber tows, this data reported by Badar and Priest [1], as bieTa. We have computed the Kolmogorov-Smirnov (KS)
distance between the empirical and the fitted distributioicfions. Itis 016 and the associated p-value i59. Since the
p- value is quite high, we cannot reject the null hypothdsas the data is coming from the NWPD. Also, we plot both the
empirical survival function (ESF) and the estimated swaMunctions in Figure 3 and we found that the NWPD fits the
data very well.

Table 3. Areal life data as in Badar and Priest.
0.101 0.332 0.403 0.428 0.457 0.550 0.561 0.596 0.597 0.646540
0.674 0.718 0.722 0.725 0.732 0.775 0.814 0.816 0.818 0.828590
0.875 0.938 0.940 1.056 1.117 1.128 1.137 1.137 1.177 1.198301
1.325 1.339 1.345 1.420 1.423 1.435 1.443 1.464 1.472 1.498321
1546 1577 1608 1.635 1.693 1.701 1.737 1.754 1.762 1.828522
2.071 2.086 2.171 2.224 2227 2425 2595 3.22

Accordingly the data set, which’s discussed in Badar andsPiil4], we can generate the progressive Type-l|
censored sample of sizem = 25 taken from sample sizen = 63 with censoring scheme
R=(5,0,0,5,0,5,0,0,5,0,0,5,0,0,0,0,0,5,3,0,5,0,0,0,0). A progressively censored sample generated from the real
datais

0.101 0.332 0.403 0.428 0.457 0.561 0.940 1.056 1.117 1.128371 1.137
1196 1.230 1.339 1.345 1.420 1.423 1.435 1.443 1.701 1.737541 1.828
2.425
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As the same in Example 1, we obtain the computations forreiffemethods of estimations as follows:
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1.MLEs method: Under the progressive Type-Il censored sample and the melisoussed in Section 2, we compute the
MLEs of the parameterd, 3 and@, relaibility and hazard functior§t) andh(t), the results become

5, B, 6, St =0.3), h(t = 0.3) = 25.6641 2.4811 6.5614 0.5171 1.0908

Using the formula and the delta method as described in Se8tizve obtian the 95% ACIs &, 8, 6, S(t =0.3) and
h(t =0.3) , the results are displayed in Table 4.

2.Bootstrap methods: Using the algorithms of the BP and BT methods described ini®@ed, we present the mean of
1000 bootstrap (BP and BT) of the parameters, reliability laazard functions are given, respectively, by

Sep, Pep, Bep, Sep(t = 0.3), Rgp(t = 0.3) = 24.2202 2.6137, 6.2769 0.5066 1.1992

and

81, Bat. Osr, Se7(t = 0.3), har (t = 0.3) = 26.0735 2.6043 6.6556 0.5136 1.1689

Also, the 95% BP and BT Cls are displayed in Table 4.

3.MCMC method: Under the Gibbs sampler within M-H algorithm as describe@éttion 5, we generate a Markov
chain with 30 000 observations. Discarding the first 500Qeslas ‘burn-in’ and taking every tenth variate as iid
observations . We used the non-informative gamma prior® fg# and 6. Based on the sample of size 25 000 the
Bayes MCMC estimate of the parameters, reliability and téfianctions under SEL function are obtained as

v, Buc, Buc, Suc(t = 0.3), Ayc(t = 0.3) = 25.37, 2.4738 7.0382 0.517, 1.153

Also, 95% CRI ofd, 3, 8, S(t) andh(t) are displayed in Table 4.

Table 5, provides the MCMC results of the posterior mean,iamdnode, standard deviation (S.D.) and skewness
(Ske) of the parameters, reliability and hazard functidfigures 4-8, display the histegram and the kerney desnsity
estimate of the parametedsp and@ as well as reliabilityS(t) and hazardh(t) functions of Example 2.
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Table 4.95% ACls, BPCIs, BTCls and CRIs @f 8, 6, S(t) andh(t) for Example 2.

Parameters ACls BPCls
Interval Length Interval Length
o [12.564, 28.7643] 16.2003 [11.4538, 30.4408] 18.987
B [1.2681, 4.694] 3.4259 [1.0461, 4.4412] 3.3951
0 [3.242, 7.8809] 4.6389 [3.7784,10.141] 6.3626
St=0.3) [0.3922,0.642] 0.2498 [0.3463,0.6522] 0.3059
h(t=0.3) [0.8116, 1.37] 0.5584 [0.7602, 2.1905] 1.4303
BTCls CRIs
Interval Length Interval Length
o [9.4578, 27.8403] 18.3825 [14.1179, 32.2699] 18.152
B [2.01, 3.5974] 1.5874 [1.789, 3.462] 1.673
6 [2.822, 8.4283] 5.6063 [4.2497,10.4319] 6.1822
St=0.3) [0.3483,0.6421] 0.2938 [0.2132,0.7726] 0.5594
h(t=0.3) [0.7524,1.9527] 1.2003 [0.4144,2.5248] 2.1103
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Table 5. MCMC results for some posterior characteristics for Exkn2p

Parameters Mean Median Mode SD Ske
0 25.37 24,5926 23.0379 6.9857 0.7124
B 2.4738 2.4244 2.3256 0.4214 0.668
C] 7.0382 6.7401 6.1437 1.8361 0.7983

St=0.3) 0.517 0.5251 0.5412 0.1458 -0.2733

h(t=0.3) 1.153 1.0457 0.8313 0.5485 1.4352

7 conclusion

In this paper, we have studied different methods such asrmarilikelihood, parameteric bootstrap and Bayes estimate
to obtain the estimation value for parameters having the Wegibull-Pareto distribution and their reliability andzzad
functions based on progressive Type-ll censored samplieFuore, the paper has explained how to construct the
approximate confidence intervals for the unknown pararadtgusing the asymptotic normality of maximum likelihood
estimation as well as the reliability and hazard functioegehding on the delta and parametric bootstrap metheds. It i
clear that, after studying the Bayesian estimate the gostdistribution equations of the unknown parameters is
complicated and so hard to reduce analytically to well-kndarms. For this reason we have applied the MCMC
techinque to compute the Bayes estimates also constructitteble intervals. The Bayes estimates have been obtained
under SEL function. For illustrative purposes, we have igddwo numerical example using a simulated data and a real
life data sets as well.
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