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Abstract: A simple yet effective numerical method using orthogonal hybrid functions consisting of piecewise constant orthogonal

sample-and-hold functions and piecewise linear orthogonal triangular functions was proposed to numerically solve fractional order non-

stiff and stiff differential-algebraic equations. The complementary generalized one-shot operational matrices, which are the foundation

for the developed numerical method, were derived to estimate the Riemann-Liouville fractional order integral in the new orthogonal

hybrid function domain. It was theoretically and numerically shown that the numerical method converges the approximate solutions to

the exact solutions in the limit of step size tends to zero. Numerical examples were solved using the proposed method and the obtained

results were compared with the results of some popular numerical techniques used for solving fractional order differential-algebraic

equations in the literature. Our results were in good accordance with the results of the semi-analytical methods in case of non-stiff

problems. In addition, our method provided valid approximate solution to stiff problem (fractional order version of Chemical Akzo

Nobel problem) which the semi-analytical methods failed to solve.

Keywords: Orthogonal hybrid functions, generalized hybrid function operational matrices, fractional order differential-algebraic

equations.

1 Introduction

In this paper, we solve the fractional order differential-algebraic equations of the following form

C
0 Dα

t yi (t) = fi (t,y1 (t) ,y2 (t) , . . . ,yn (t)) , i = 1,2, . . . ,n− 1,n ∈ Z+, (1)

0 = gi (t,y1 (t) ,y2 (t) , . . .yn (t)) ,α ∈ (0,1] , t ∈ [0,1] . (2)

Here yi (t) is the ith unknown function, fi, gi can be linear or nonlinear functions, C
0 Dα

t is the Caputo fractional order
derivative [1]

C
0 Dα

t f (t) = J1−αD1 f (t) =
1

Γ (1−α)

∫ t

0
(t − τ)1−α−1

f (1) (τ)dτ, (3)

where Jα f (t) is Riemann-Liouville fractional order integral,

Jα f (t) = 1
Γ (α)

∫ t
0 (t − τ)α−1

f (τ)dτ .

The fractional order differential-algebraic equation is a special class of fractional differential equations. The fractional
differential equations are the ordinary differential equations involving integrals and/or derivatives of arbitrary order. The
subject which deals with the theory of arbitrary order differentiation and arbitrary order integration is fractional calculus
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[2],[3]. The applications of the subject can be broadly categorized into modelling physical phenomena [4]-[13] and
fractional order controllers [14]-[16]. For many decades, fractional calculus did not receive much attention as analytical
and numerical methods were unavailable to analyze the physical processes, which exhibit fractional order behavior,
modelled by the fractional calculus concepts. Hence, devising analytical and numerical methods, to solve fractional order
integral equations, fractional order integro-differential equations, fractional order ordinary, partial differential equations
and fractional order differential-algebraic equations, has been a significant research area. Abdelkawy et al. (2015)
developed a numerical technique based on shifted Jacobi polynomials and spectral collocation method to solve Abel’s
integral equations of first kind [17]. Agarwal et al. (2015) solved fractional Volterra integral equations and
non-homogeneous time fractional heat equation using Pα -transform (integral transform of pathway type) [18]. Legendre
wavelets have been used by Yi et al. (2016) for numerical solution of fractional order integro-differential equations with
weakly singular kernels [19]. Using Chebyshev polynomials with spectral tau method, a direct solution technique has
been developed in [20] to solve multi-order fractional differential equations. Unlike fractional order integral equations,
fractional order integro-differential equations and fractional order differential equations, the fractional order partial
differential equations are more problematic and more efficient analytical and numerical methods are needed to solve
them. In this regard, Fu et al. (2013) proposed a solution procedure to solve time fractional diffusion equations [21].
They have used the Laplace transform to convert the fractional diffusion equation into time-independent inhomogeneous
equation and then employed truly boundary-only meshless boundary particle method to solve the obtained
inhomogeneous equation. In [22], the Kansa method has been used for the first time in the solution of fractional diffusion
equation. Efforts are continuously made in proposing analytical, semi-analytical and numerical techniques for solving
time fractional order partial differential equations [23]-[27]. Formulating mathematical models for some real processes
which are memory or history based and calls for the use of fractional derivative and/or fractional integral while
mathematically describing them leads to the emergence of fractional order differential-algebraic equations. Unless those
fractional order differential-algebraic equations are either analytically or numerically solvable, there is no another way
except performing experiments for deep perception of those physical processes. It is very uncommon that all sorts of
fractional order differential-algebraic equations bear analytical solutions. Unsurprisingly many pure and applied
mathematicians have been motivated by this inevitable hurdle to broaden the range of applicability of the existing
semi-analytical and numerical techniques to solve numerically fractional order differential-algebraic equations [28]-[33].
None of the numerical methods can solve all categories of fractional differential-algebraic equations, so there is a
constant need for more accurate and computationally effective numerical methods which work for most fractional order
differential-algebraic equations.
Deb et al. [34], [35] proposed the orthogonal hybrid functions (HFs), which are actually a linear combination of the
piecewise constant orthogonal sample-and-hold functions and the piecewise linear orthogonal right-handed triangular
functions, to find the numerical solution of the linear ordinary differential equations. The orthogonal HFs were further
applied for time-invariant, time-varying, delay and delay-free system analysis and identification [36]. Realizing the
power of the orthogonal HFs, we aim to extend the application of the orthogonal HFs to the fractional order
differential-algebraic equations. We accomplish the objective in two steps: The first step is to find a highly accurate
approximation using the orthogonal HFs for the Riemann-Liouville fractional order integral and the second step
encompasses the development of the numerical method using the derived HFs estimate for fractional order integral. The
proposed numerical method does not require the computation of fractional integrals or fractional derivatives and
recursive relations. Thus it reduces CPU usage, and transforms the given fractional order differential-algebraic equation
into a system of algebraic equations which can be solved with minimum effort. The remaining part of the paper is
organised as follows. The second section involves a brief introduction to the new orthogonal hybrid functions and their
properties. The important result of the paper is presented in the third section. Based on the result of the third section, an
elegant numerical method is developed in the fourth section. The fifth section comprises the convergence of the HF
approximate solution of the fractional order differential-algebraic equations. A set of fractional order
differential-algebraic equations are solved by the proposed numerical method in the sixth section. The seventh section is
dedicated to conclusion.

2 A brief review of orthogonal hybrid functions

Definition 1.Let Si (t) and Ti (t) be the ith component of the set of piecewise constant sample-and-hold functions, S(m) (t),

and the set of piecewise linear right-handed triangular functions, T(m) (t), respectively, and be defined as

Si (t) =

{

1, if t ∈ [ih,(i+ 1)h) ,
0, otherwise,

,Ti (t) =

{
(

t−ih
h

)

, if t ∈ [ih,(i+ 1)h) ,
0, otherwise,

, (4)

where i ∈ [0,m− 1], m is the number of subintervals of the interval t ∈ [0,T ], h = T/m.
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Definition 2.The ith orthogonal hybrid function (HF) is defined as

Hi (t) = ciSi (t)+ diTi (t) , (5)

where ci and di are real arbitrary constants.

Definition 3.Let us consider a time function, f (t), of Lebesgue measure, which is defined on t ∈ [0,T ]. The approximation

for f (t) in the orthogonal HF domain is derived as

f (t)≈
m−1

∑
i=0

(ciSi (t)+ diTi (t)) =CT
S S(m) (t)+CT

T T(m) (t) , (6)

where CT
S =

[

c0 c1 c2 · · · cm−1

]

, CT
T =

[

d0 d1 d2 · · · dm−1

]

,

S(m) (t) =
[

S0 (t) S1 (t) S2 (t) · · · Sm−1 (t)
]T p

, ci = f (ih), di = ci+1 − ci,

T(m) (t) =
[

T0 (t) T1 (t) T2 (t) · · · Tm−1 (t)
]T p

, [· · · ]T p
implies transpose.

Definition 4.Let P1ss(m), P1st(m), P1ts(m) and P1tt(m) be the complementary one-shot operational square matrices of size

m×m. The HF estimate for the first order integral of f (t) is

∫ t

0
f (τ)dτ ≈

(

P1ss(m)C
T
S +P1ts(m)C

T
T

)

S(m) (t)+
(

P1st(m)C
T
S +P1tt(m)C

T
T

)

T(m) (t) , (7)

where P1ss(m) = h
[[

0 1 1 · · · 1
]]

, P1st(m) = h
[[

1 0 0 · · · 0
]]

,

P1ts(m) =
h
2

[[

0 1 1 · · · 1
]]

, P1tt(m) =
h
2

[[

1 0 0 · · · 0
]]

,
[[

a b c
]]

=





a b c

0 a b

0 0 a



.

The following are some useful properties of orthogonal HFs which bring the ability to HFs to solve the fractional order
differential-algebraic equations [36].
The piecewise constant sample-and-hold functions and the piecewise linear right-handed triangular functions are
orthogonal, for i, j ∈ [0,m− 1],

∫ T

0
Si (t)S j (t)dt =

{

h, if i = j,
0, if i 6= j,

∫ T

0
Ti (t)Tj (t)dt =

{

h
3
, if i = j,

h
6
, if i 6= j.

(8)

The components of S(m) (t) and T(m) (t) are mutually disconnected,

Si (t)S j (t) =

{

Si (t) , if i = j,
0, if i 6= j,

Ti (t)Tj (t) =

{

Ti (t) , if i = j,
0, if i 6= j,

(9)

The product Si (t)Tj (t) can be expanded into the orthogonal HFs as

Si (t)Tj (t) =

{

Ti (t) , if i = j,
0, if i 6= j,

i, j ∈ [0,m− 1] . (10)

A function g(t) = (h(t))n
, where n can be an integer or a non-integer, is approximated by means of orthogonal HFs as

follows:

g(t) =
[

c0 c1 · · · cm−1

]

S(m) (t)+
[

d0 d1 · · · dm−1

]

T(m) (t) , (11)

where c j = (h( jh))n
, d j = c j+1 − c j, j = 0,1,2, . . . . . . ,m− 1.

The set of time functions; f1 (t) , f2 (t) , f3 (t) , · · · · · · , fp−1 (t) , fp (t), where p is an integer, is defined on [0,T ]. The function
N (t, f1 (t) , f2 (t) , f3 (t) , . . . . . . , fp (t)), which can be linear or nonlinear, can be expanded into orthogonal TFs domain as

N (t, f1 (t) , . . . , fp (t)) =
[

c0 · · · cm−1

]

S(m) (t)+
[

d0 · · · dm−1

]

T(m) (t) , (12)

where c j = N ( jh, f1 ( jh) , f2 ( jh) , . . . , fp ( jh)), d j = c j+1 − c j, j = 0,1,2, . . . ,m− 1.
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3 Generalized one-shot operational matrices for fractional integration of f (t)

In this section, we generalize the one-shot operational matrices in (7) to the general case of fractional order integration of
f (t). The generalized one-shot operational matrices are the basis for the numerical method we shall develop in the next
section.

Theorem 1.The fractional integral of order α of the set of sample-and-hold functions, S(m) (t), is approximated via the

orthogonal TFs as

Jα S(m) (t) =
1

Γ (α)

∫ t

0
(t − τ)α−1

S(m) (τ)dτ = Pαss(m)S(m) (t)+Pαst(m)T(m) (t) , (13)

where

Pαss(m) =
hα

Γ (α+1)

[[

0 ς1 · · · ςm−1

]]

, ςk =
(

kα − (k− 1)α)
, k ∈ [1,m− 1],

Pαst(m) =
hα

Γ (α+1)

[[

1 ξ1 · · · ξm−1

]]

,ξk = (k+ 1)α − 2kα +(k− 1)α ,k ∈ [1,m− 1].

Proof.The fractional integral of order α of S0 (t) is

Jα S0 (t) =
1

Γ (α)

∫ t

0
(t − τ)α−1

S0 (τ)dτ =

{

0, for t = 0, j = 0,
hα

Γ (α+1)

(

jα − ( j− 1)α) , for t > 0, j > 0.
(14)

Evaluating the expression in (14) at j = 1,2, . . . ,m− 1 yields the following coefficients.

c0 = 0,c1 =
hα

Γ (α + 1)
,c2 =

hα

Γ (α + 1)
(2α − 1α) , (15)

c j =
hα

Γ (α + 1)

(

jα − ( j− 1)α) , j = 3,4, . . . ,m− 1. (16)

The difference between the consecutive coefficients,

d0 = c1 − c0 =
hα

Γ (α + 1)
,d1 = c2 − c1 =

hα

Γ (α + 1)
(2α − 1α)−

hα

Γ (α + 1)
, (17)

d2 = c3 − c2 =
hα

Γ (α + 1)
(3α − 2α)−

hα

Γ (α + 1)
(2α − 1α) , (18)

d j = c j+1 − c j =
hα

Γ (α + 1)

(

( j+ 1)α − 2 jα +( j− 1)α) , j = 3,4, . . . . . . ,m− 1. (19)

We can approximate Jα S0 (t) in terms of TFs,

Jα S0 (t) =
[

c0 c1· · · cm−1

]

S(m) (t)+
[

d0 d1 · · · dm−1

]

T(m) (t) . (20)

We can approximate Jα S0 (t) in terms of TFs,

Jα S0 (t) =
[

c0 c1· · · cm−1

]

S(m) (t)+
[

d0 d1 · · · dm−1

]

T(m) (t) . (21)

Substituting the expressions for ci and di in (21),

Jα S0 (t) =
hα

Γ (α + 1)
A1S(m) (t)+

hα

Γ (α + 1)
B1T(m) (t), (22)

where A1 =
[

0 1 (2α − 1) · · ·
(

jα − ( j− 1)α) · · ·
(

(m− 1)α − (m− 2)α) ]
,

B1 =
[

1 (2α − 2) · · ·
(

( j+ 1)α − 2 jα +( j− 1)α) · · · B01
]

,

B10 =
(

(m)α − 2(m− 1)α +(m− 2)α)
.

Rewriting (22),

JαS0 (t) =
hα

Γ (α + 1)
A2S(m) (t)+

hα

Γ (α + 1)
B2T(m) (t) , (23)
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where
A2 =

[

0 ς1 ς2 ς3 · · · ςm−1

]

, B2 =
[

1 ξ1 ξ2 ξ3 · · · ξm−1

]

, ςk =
(

kα − (k− 1)α)
,

ξk = (k+ 1)α − 2kα +(k− 1)α
, k ∈ [1,m− 1].

Conducting fractional integration on the remaining terms and expressing the results via orthogonal TFs,

JαS1 (t) =
hα

Γ (α + 1)
A3S(m) (t)+

hα

Γ (α + 1)
B3T(m) (t) , (24)

where A3 =
[

0 0 ς1 · · · ςm−2

]

, B3 =
[

0 1 ξ1 · · · ξm−2

]

.

...

...

JαSm−2 (t) =
hα

Γ (α + 1)
A4S(m) (t)+

hα

Γ (α + 1)
B4T(m) (t) , (25)

where A4 =
[

0 0 · · · 0 ς1

]

, B4 =
[

0 · · · 0 1 ξ1

]

.

JαSm−1 (t) =
hα

Γ (α + 1)
A5S(m) (t)+

hα

Γ (α + 1)
B5T(m) (t) , (26)

where A5 =
[

0 0 · · · · · · 0 0
]

, B5 =
[

0 · · · · · · 0 0 1
]

.
Therefore,

JαS(m) (t) = Pαss(m)S(m) (t)+Pαst(m)T(m) (t) , (27)

where Pαss(m) =
hα

Γ (α+1)A6 , Pαst(m) =
hα

Γ (α+1)B6,

A6 =
[[

0 ς1 ς2 ς3 · · · ςm−1

]]

, B6 =
[[

1 ξ1 ξ2 ξ3 · · · ξm−1

]]

.
This proves Theorem 1.

Corollary 1.If α = 1, the generalized one-shot operational matrices; Pαss(m), Pαst(m) in (27) become the one-shot

operational matrices, P1ss(m), P1st(m), for first order integration of S(m) (t).

Theorem 2.The HF estimates for the fractional integral of order α of the set of piecewise linear right-handed triangular

functions, T(m) (t), is

JαT(m) (t) =
1

Γ (α)

∫ t

0
(t − τ)α−1

T(m) (τ)dτ = Pαts(m)S(m) (t)+Pαtt(m)T(m) (t) , (28)

where Pαts(m) =
hα

Γ (α+2)

[[

0 φ1 φ2 φ3 · · · φm−1

]]

,

φk = kα+1 − (k− 1)α (k+α), k ∈ [1,m− 1],

Pαtt(m) =
hα

Γ (α+2)

[[

1 ψ1 ψ2 ψ3 · · · ψm−1

]]

,

ψk = (k+ 1)α+1 − (k+ 1+α)kα − kα+1 +(k+α)(k− 1)α ,k ∈ [1,m− 1] .

Proof.We get the following expression upon performing fractional integration on T0 (t),

Jα T0 (t) =
1

Γ (α)

∫ t

0
(t − τ)α−1

T0 (τ)dτ =

{

0, for t = 0,
B02, for t > 0, j ∈ [1,m− 1] .

(29)

where B02 = hα

Γ (α+2)

(

jα+1 − ( j− 1)α ( j+α)
)

.

In the orthogonal HF domain, Jα T0 (t) is expressed as

Jα T0 (t) =
[

c0 c1 · · · cm−1

]

S(m) (t)+
[

d0 d1 · · · dm−1

]

T(m) (t) , (30)

where c j =
hα

Γ (α+2)

(

jα+1 − ( j− 1)α ( j+α)
)

, j = 1,2,3,4, . . . ,m− 1,

d j = c j+1 − c j =
hα

Γ (α+2)

(

( j+ 1)α+1 − ( j+ 1+α)iα − iα+1 +( j+α)( j− 1)α
)

.

Using the expressions for c j and d j and rearranging,

JαT0 (t) =ΨA7S(m) (t)+ΨB7T(m) (t) , (31)
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where A7 =
[

0 1 · · ·
(

jα+1 − ( j− 1)α ( j+α)
)

· · · Ω1

]

, Ψ = hα

Γ (α+2) ,

B7 =
[

1 · · · ( j+ 1)α+1 − ( j+ 1+α)iα − iα+1 +( j+α)( j− 1)α · · · Ω2

]

,

Ω1 =
(

(m− 1)α+1 − (m− 2)α (m− 1+α)
)

.

Ω2 = mα+1 − (m+α)(m− 1)α − (m− 1)α+1 +(m− 1+α)(m− 2)α .
We now rewrite (31),

JαT0 (t) =
hα

Γ (α + 2)
A8S(m) (t)+

hα

Γ (α + 2)
B8T(m) (t) (32)

where A8 =
[

0 φ1 · · · φm−1

]

, B8 =
[

1 ψ1 · · · ψm−1

]

,

φk = kα+1 − (k− 1)α (k+α),

ψk = (k+ 1)α+1 − (k+ 1+α)kα − kα+1 +(k+α)(k− 1)α
.

Following the same procedure, the remaining components of T(m) (t) can be fractional integrated and the resulting

expressions can be approximated via HFs. The fractional integral of order α of T(m) (t) in HFs domain is

Jα T(m) (t) = Pαts(m)S(m) (t)+Pαtt(m)T(m) (t) , (33)

where Pαts(m) =
hα

Γ (α+2)

[[

0 φ1 φ2 φ3 · · · φm−1

]]

,

Pαtt(m) =
hα

Γ (α+2)

[[

1 ψ1 ψ2 ψ3 · · · ψm−1

]]

.

This completes the proof.

Corollary 2.The complementary pair of one-shot operational matrices; P1ts(m) and P1tt(m) for first order integration of

T(m) (t) in the orthogonal TFs domain can be recovered from the generalized one-shot operational matrices; Pαts(m) and

Pαtt(m) using α = 1.

Theorem 3.The formula for approximating the Riemann-Liouville fractional integral of order α of f (t) by orthogonal

TFs is

Jα f (t)≈
(

CT
S Pαss(m)+CT

T Pαts(m)

)

S(m) (t)+
(

CT
S Pαst(m)+CT

T Pαtt(m)

)

T(m) (t) . (34)

Proof.The Riemann-Liouville fractional order integral of f (t) is

Jα f (t) =
1

Γ (α)

∫ t

0
(t − τ)α−1

f (τ)dτ =
1

Γ (α)

(

tα−1 × f (t)
)

, (35)

where the symbol × is the convolution operator of two functions.
By means of Definition 3,

Jα f (t) =
1

Γ (α)

(

tα−1 ×
(

CT
S S(m) (t)+CT

T T(m) (t)
))

=CT
S Jα S(m) (t)+CT

T Jα T(m) (t) . (36)

Using Theorems 1 and 2,

Jα f (t)≈
(

Pαss(m)C
T
S +Pαts(m)C

T
T

)

S(m) (t)+
(

Pαst(m)C
T
S +Pαtt(m)C

T
T

)

T(m) (t) . (37)

Hence, Theorem 3 is proved.

Corollary 3.It follows from Corollary 1 and Corollary 2 that the above-mentioned expression reduces to that in (7)
forα = 1.

4 Numerical method to solve fractional order differential-algebraic equations

We consider the following fractional order differential-algebraic equations.

C
0 Dα

t yi (t) = fi (t,y1 (t) , . . . ,yn (t)) , i = 1,2, . . . ,n− 1, t ∈ [0,1] ,

0 = g(t,y1 (t) , . . . ,yn (t)) ,α ∈ (0,1] , ,y j (0) = a j, j = 1,2, . . . ,n. (38)
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Rewriting (38),
yi (t) = yi (0)+ Jα fi (t,y1 (t) ,y2 (t) ,y3 (t) , . . . . . . ,yn (t)) , (39)

0 = g(t,y1 (t) ,y2 (t) ,y3 (t) , . . . . . . ,yn (t)) . (40)

Utilizing Definition 3 and Equation (12), we get

yi (t)≈CT
SiS(m) (t)+CT

TiT(m) (t) ,yi (0) =CT
S0iS(m) (t)+CT

T0iT(m) (t) . (41)

fi (t,y1 (t) ,y2 (t) ,y3 (t) , . . . . . . ,yn (t))≈ C̃T
SiS(m) (t)+ C̃T

TiT(m) (t) . (42)

g(t,y1 (t) ,y2 (t) ,y3 (t) , . . . . . . ,yn (t))≈CT
SgS(m) (t)+CT

TgT(m) (t) . (43)

Equations (39) and (40) become,

CT
SiS(m) (t)+CT

TiT(m) (t) =CT
S0iS(m) (t)+CT

T0iT(m) (t)+ Jα
(

C̃T
SiS(m) (t)+ C̃T

TiT(m) (t)
)

, (44)

0 =CT
SgS(m) (t)+CT

TgT(m) (t) . (45)

Using Theorem 3,

CT
SiS(m) (t)+CT

TiT(m) (t) =CT
S0iS(m) (t)+CT

T0iT(m) (t)+B03S(m) (t)+B04T(m) (t) , (46)

0 =CT
SgS(m) (t)+CT

TgT(m) (t) . (47)

where B03 =
(

C̃T
SiPαss(m)+ C̃T

TiPαts(m)

)

, B04 =
(

C̃T
SiPαst(m)+ C̃T

TiPαtt(m)

)

.

Comparing the coefficients of S(m) (t) and T(m) (t),

CT
Si =CT

S0i +
(

C̃T
SiPαss(m)+ C̃T

TiPαts(m)

)

CT
Ti =CT

T 0i +
(

C̃T
SiPαts(m)+ C̃T

TiPαtt(m)

)

0 =CT
Sg

0 =CT
T g















. (48)

Solving (48) produces the HF estimate for the ith unknown, yi (t), i = 1,2, . . . ,n.

5 Convergence analysis

Let ỹi (t) be the HF estimate for the actual solution, yi (t), of fractional order differential-algebraic equations in (38).
The error between the approximate solution and the exact solution of (38) is defined on jth subinterval, [ jh,( j+ 1)h), as

εi (t) = |yi (t)− ỹi (t)| , i ∈ [1,n] , t ∈ [ jh,( j+ 1)h) , j ∈ [0,m− 1] . (49)

Using Definitions 1 and 3,

εi (t) = yi (t)−
(

yi ( jh)+ (yi (( j+ 1)h)− yi ( jh)) (t− jh)
h

)

,

= yi (t)−
(

yi ( jh)+ (yi(( j+1)h)−yi( jh))
h

(t − jh)
)

,

= yi (t)−

(

yi ( jh)+
(

dyi(t)
dt

)

t= jh
(t − jh)

)

.

(50)

The Taylor series expansion of yi (t) with center jh is

yi (t) = yi ( jh)+

(

dyi (t)

dt

)

t= jh

(t − jh)+

(

d2yi (t)

dt2

)

t= jh

(t − jh)2

2!
+B05, (51)
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where B05 = ∑∞
k=3

(

dkyi(t)

dtk

)

t= jh

(t− jh)k

k!
.

Considering the second order Taylor series approximation for yi (t) and employing it in (50),

εi (t) =

(

d2yi (t)

dt2

)

t= jh

(t − jh)2

2!
= y

′′

i ( jh)
(t − jh)2

2!
. (52)

Let us make the following assumption.

M = max
(∣

∣

∣
y
′′

i (0)
∣

∣

∣
,
∣

∣

∣
y
′′

i (h)
∣

∣

∣
,
∣

∣

∣
y
′′

i (2h)
∣

∣

∣
,
∣

∣

∣
y
′′

i (3h)
∣

∣

∣
, . . . . . . ,

∣

∣

∣
y
′′

i ((m− 1)h)
∣

∣

∣

)

. (53)

We now calculate ‖εi (t)‖1 on jth subinterval, [ jh,( j+ 1)h).

‖εi (t)‖1 =
∫ ( j+1)h

jh
|εi (t)|dt =

∫ ( j+1)h

jh

∣

∣

∣
y
′′

i ( jh)
∣

∣

∣

(t − jh)2

2
dtn = B06, (54)

where B06 = M
∫ ( j+1)h

jh
(t− jh)2

2
dt = Mh3

6
.

Let εm (t) be the sum of errors, εi (t).

εm (t) =
m−1

∑
i=0

εi (t) . (55)

Calculating ‖εm (t)‖1,

‖εm (t)‖1 =

∫ 1

0
|εm (t)|dt =

∫ 1

0

(

m−1

∑
i=0

|εi (t)|

)

dt =
m−1

∑
i=0

(

∫ 1

0
|εi (t)|dt

)

= B07,

where B07 = ∑m−1
i=0 ‖εi (t)‖1 =

mMh3

6
= M

6m2 .
Taking limit,

lim
m → ∞

‖εm (t)‖1 =
lim

m → ∞
M

6m2
= 0. (56)

Therefore,
lim

m → ∞
εm (t) = 0. (57)

The approximate solution, ỹi (t), of fractional order differential-algebraic equation obtained by the proposed numerical
method converges to the actual solution when sufficiently large number of subintervals are considered.

6 Numerical examples

In this section, we shall solve linear and nonlinear differential-algebraic equations of fractional order using the numerical
method devised in Section 4.

Example 1.The linear fractional order differential-algebraic equations are [15]

C
0 D0.5

t x1 (t)+ 2x1 (t)−
Γ (3.5)

2
x2 (t)+ x3 (t) = 2t2.5 + sin t,x1 (0) = 0, (58)

C
0 D0.5

t x2 (t)+ x2 (t)+ x3 (t) =
2

Γ (2.5)
t1.5 + t2 + sint, t ∈ [0,1] ,x2 (0) = 0, (59)

0 = 2t2.5 + t2 − sint − (2x1 (t)+ x2 (t)− x3 (t)) ,x3 (0) = 0. (60)

The exact solution of this problem is x1 (t) = t2.5, x2 (t) = t2, x3 (t) = sin t.
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Table 1: Maximal absolute errors for Example 1

m ‖ε1‖∞ ‖ε2‖∞ ‖ε3‖∞ CPU time

(s)

10 5.754133e-04 7.429639e-04 0.001673 0.212426

50 2.357914e-05 4.136157e-05 6.635931e-05 0.584962

100 5.929472e-06 1.114655e-05 1.706158e-05 1.661539

150 2.642181e-06 5.117727e-06 7.699577e-06 3.334825

200 1.488526e-06 2.934228e-06 4.375460e-06 5.454437

250 9.536572e-07 1.902277e-06 2.820419e-06 8.695571

300 6.627709e-07 1.333553e-06 1.969844e-06 12.425064

Table 2: Performance of the proposed numerical method for Example 2

m ‖ε1‖∞ ‖ε2‖∞ ‖ε3‖∞ CPU time

(s)

10 0.001372267 0.020472485 9.106405e-04 0.244156

50 5.500109e-05 0.004986160 6.182205e-05 0.811694

100 1.325811e-05 0.002628090 2.036216e-05 2.402352

150 5.705400e-06 0.001795134 1.074409e-05 4.802019

200 3.120540e-06 0.001366376 6.853949e-06 8.209396

250 1.948521e-06 0.001104311 4.846044e-06 12.625149

300 1.323821e-06 9.272787e-04 3.655260e-06 18.467165

The given fractional order linear differential-algebraic system is solved and ∞-norm of the error between the exact solution
and the piecewise linear HF approximate solution is computed for various values of m and given along with the respective
elapsed times in Table 1. As proved theoretically in the preceding section, the HF solution converges to the actual solution
as the step size, h, decreases. The method produces approximate solution with acceptable accuracy with h = 1/300 in just
12.425064 seconds, therefore, it is pretty fast.

Example 2.The fractional order nonlinear differential-algebraic equations are [15]

C
0 D0.5

t x1 (t)+ x1 (t)x2 (t)− x3 (t) =
6

Γ (3.5)
t2.5 + 2t4 + t7 − et − sint, t ∈ [0,1] , (61)

C
0 D0.5

t x2 (t)−
Γ (5)

Γ (4.5)
t0.5x1 (t)+ 2x2 (t)+ x1 (t)x3 (t) =

2

Γ (1.5)
t0.5 +B08, (62)

0 = et + t sin t − 2t3 −
(

x2
1 (t)− x2 (t)t2 + x3 (t)

)

,x1 (0) = 0,x2 (0) = 0,x3 (0) = 1, (63)

where B08 = 4t + 2t4 + t3et + t4 sin t.
We have the analytical solution, x1 (t) = t3, x2 (t) = 2t + t4, x3 (t) = et + t sin t, for the given fractional order differential-
algebraic equations.

Table 2 presents the maximal absolute errors produced by the proposed numerical method with different values of m.
Since the fractional differential-algebraic equations in (61) to (63) is nonlinear and a bit harder than Example 1, the
numerical method needs little higher CPU usage than it required to solve Example 1 yet it maintains good accuracy and
takes reasonable computational time.

Example 3.Consider the following fractional order nonlinear differential-algebraic equations

C
0 Dα

t x(t)− x(t)+ z(t)x(t) = 1, t ∈ [0,1] , (64)

C
0 Dα

t z(t)− y(t)+ x2 (t)+ z(t) = 0,α ∈ (0,1] , (65)

y(t)− x2 (t) = 0,x(0) = 1,y(0) = 1,z(0) = 1. (66)

This problem has closed form solution, x(t) = et , y(t) = e2t , z(t) = e−t , when the fractional order , α , equals 1.
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Table 3: Error analysis for Example 3

m ‖ε1‖∞ ‖ε2‖∞ ‖ε3‖∞ CPU time

(s)

10 0.0022695 0.0123438 3.06898e-04 0.207223

50 9.06163e-05 4.92649e-04 1.22631e-05 0.524952

100 2.26527e-05 1.23153e-04 3.06569e-06 1.540332

150 1.00677e-05 5.47341e-05 1.36252e-06 3.077976

200 5.66308e-06 3.07877e-05 7.66417e-07 5.316336

250 3.62436e-06 1.97040e-05 4.90506e-07 8.200463

300 2.51690e-06 1.36833e-05 3.40629e-07 11.630141

Table 4: Absolute errors for Example 3(α = 1mm = 300)

t x (t) y(t) z(t)
0 9.9999999e-08 9.9999999e-08 1.0000000e-06

0.1 8.999999e-08 8.99999999e-07 4.000000e-07

0.2 1.999999e-07 1.20000000e-06 0

0.3 2.999999e-07 1.80000000e-06 0

0.4 6.000000e-07 2.49999999e-06 1.0000000e-06

0.5 8.000000e-07 3.29999999e-06 0

0.6 1.000000e-06 4.60000000e-06 0

0.7 1.999999e-06 6.1999999e-06 9.99999999e-07

0.8 2.499999e-06 7.6999999e-06 0

0.9 1.999999e-06 1.0500000e-05 0

1 2.499999e-06 1.3700000e-05 3.00000000e-07

Table 5: HF solution of Example 3 (α = 0.5,m = 300)

t x(t) y(t) z(t)
0 0.9999999 1 0.9999999

0.1 1.4678387 2.1545505 0.7235289

0.2 1.7411092 3.0314614 0.6437595

0.3 1.9927769 3.9711600 0.5919981

0.4 2.2392505 5.0142429 0.5535905

0.5 2.4871417 6.1858739 0.5231438

0.6 2.7401229 7.5082735 0.4980139

0.7 3.0006555 9.0039339 0.4766936

0.8 3.2706177 10.696940 0.4582380

0.9 3.5515825 12.613738 0.4420143

1 3.8449601 14.7837188 0.4275772

Table 3 presents the maximum absolute error between the HF solution and the exact solution of the integer order version of
the problem in (64) to (66). The HF solutions given in Tables 4 (α = 1) to 6 are in accordance with the solutions obtained
by homotopy analysis method, Adomian decomposition method, variational iteration method in [17] (see Example 5.3 in
[17]), fractional differential transform method in [19] (see Example 2 in [19]) and iterative decomposition method in [20]
(see Example 2 in [20]). Comparing with those semi-analytical techniques, the TFs based numerical method exhibited
good performance in terms of accuracy and computational speed (Tables 3 and 7).

Example 4.Let us consider the fractional order linear differential-algebraic equations

C
0 Dα

t x(t)− t2x(t)+ y(t)− 2t = 0, t ∈ [0,1] ,x(0) = 0, (67)

C
0 Dα

t y(t)− 2z(t)+ 2(t + 1) = 0,α ∈ (0,1] ,y(0) = 0, (68)

z(t)− y(t)− 2tx(t)+ t4 − t − 1 = 0,z(0) = 1. (69)

In case of α = 1, the exact solution is x(t) = t2, y(t) = t4, z(t) = 2t3 + t + 1.
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Table 6: HF solution of Example 3 (α = 0.75,m = 300)

t x(t) y(t) z(t)
0 1 1 1

0.1 1.2187008 1.4852318 0.8282436

0.2 1.4000240 1.9600672 0.7325794

0.3 1.5841244 2.5094501 0.6603331

0.4 1.7769073 3.1573996 0.6021174

0.5 1.9813863 3.9258918 0.5535994

0.6 2.1997456 4.8388809 0.5122823

0.7 2.4338850 5.9237964 0.4765525

0.8 2.6856270 7.2125927 0.4452903

0.9 2.9568156 8.7427588 0.4176801

1 3.2493726 10.558422 0.39310661

Table 7: CPU time (in seconds) required by our method

α Example 3 Example 4 α Example 5

1 11.630141 11.682081 1 82.839503

0.75 11.655617 11.748390 0.8 75.263996

0.5 12.331451 14.243483 0.9 81.163712

Table 8: Error analysis for Example 4

m ‖ε1‖∞ ‖ε2‖∞ ‖ε3‖∞ CPU time

(s)

10 0.00604678222 0.01569367613 0.00569062735 0.213382

50 2.3933286e-04 6.3246700e-04 2.3315865e-04 0.538698

100 5.9813254e-05 1.5815094e-04 5.8324203e-05 1.557116

150 2.6582116e-05 7.0290756e-05 2.5928395e-05 3.058464

200 1.4952174e-05 3.9537932e-05 1.4584885e-05 5.223770

250 9.5693235e-06 2.5303467e-05 9.333862e-06 8.087865

300 6.6453513e-06 1.7571084e-05 6.4814216e-06 11.68208

Table 9: Absolute errors for Example 4 (α = 1,m = 300)

t x (t) y(t) z(t)
0 1.50350000e-15 6.563500000e-13 0

0.1 9.99999999e-08 9.999999999e-08 9.9999999e-08

0.2 1.00000000e-07 4.999999999e-07 4.0000000e-07

0.3 1.99999999e-07 1.199999999e-06 1.0999999e-06

0.4 3.00000000e-07 2.300000000e-06 2.0000000e-06

0.5 6.99999999e-07 3.79999999e-06 3.2000000e-06

0.6 1.19999999e-06 5.80000000e-06 4.5000000e-06

0.7 1.8999999e-06 8.29999999e-06 5.5999999e-06

0.8 2.9999999e-06 1.11999999e-05 6.4000000e-06

0.9 4.6000000e-06 1.43000000e-05 6.2000000e-06

1 6.7000000e-06 1.7500000000-05 4.2000000e-06

The piecewise linear approximate solutions (Tables 9 to 11) produced by the proposed method match the semi-analytical
solutions via fractional differential transform method and homotopy analysis method in [19] (see Example 4 in [19]). The
results show that our numerical method is not only accurate but also computationally attractive (Tables 7 and 8).

Example 5.The fractional order version of Chemical Akzo Nobel problem is [34]

C
0 Dα

t y1 (t) =−2k1y4
1 (t)y0.5

2 (t)+ k2y3 (t)y4 (t)−
k2

K
y1 (t)y5 (t)−B09, (70)

C
0 Dα

t y2 (t) =−0.5k1y4
1 (t)y0.5

2 (t)− k3y1 (t)y2
4 (t)− 0.5k4y2

6 (t)y0.5
2 (t)+B010, (71)
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Table 10: HF solution of Example 4 (α = 0.5,m = 300)

t x(t) y(t) z(t)
0 0 0 1

0.1 0.0468822 0.0048011 1.1140776

0.2 0.1256645 0.0446632 1.2933290

0.3 0.2069145 0.1654736 1.5815223

0.4 0.2635181 0.4099565 1.9951711

0.5 0.2692106 0.7956850 2.5023956

0.6 0.2064134 1.2918180 3.0099141

0.7 0.0771310 1.8063493 3.3742327

0.8 -0.087456 2.1991365 3.4496062

0.9 -0.224929 2.3316429 3.1706707

1 -0.253600 2.1480028 2.6408020

Table 11: HF solution of Example 4 (α = 0.75,m = 300)

t x(t) y(t) z(t)
0 0 0 1

0.1 0.0220867 0.000664 1.1049819

0.2 0.0738818 0.008001 1.2359541

0.3 0.1483868 0.034736 1.4156685

0.4 0.2403191 0.098820 1.6654756

0.5 0.3435439 0.222038 2.0030821

0.6 0.4503364 0.427807 2.4386113

0.7 0.5510685 0.737687 2.9690832

0.8 0.6342655 1.166249 3.5714742

0.9 0.6871904 1.714147 4.1949900

1 0.6972347 2.359606 4.7540760

C
0 Dα

t y3 (t) = k1y4
1 (t)y0.5

2 (t)− k2y3 (t)y4 (t)+
k2

K
y1 (t)y5 (t) , (72)

C
0 Dα

t y4 (t) =−k2y3 (t)y4 (t)+
k2

K
y1 (t)y5 (t)− 2k3y1 (t)y2

4 (t) , (73)

C
0 Dα

t y5 (t) = k2y3 (t)y4 (t)−
k2

K
y1 (t)y5 (t)+ k4y2

6 (t)y0.5
2 (t) , (74)

0 = KSy1 (t)y4 (t)− y6 (t) , (75)

where B09 = k3y1 (t)y2
4 (t), B010 = klA((p(CO2)H)− y2 (t)).

The values of parameters are
k1 = 18.7,k2 = 0.58,k3 = 0.09,k4 = 0.42,KS = 115.83,K = 34.4,klA = 3.3,
H = 737, p(CO2) = 0.9,
and the initial values are
y1 (0) = 0.444,y2 (0) = 0.00123,y3 (0) = 0,y4 (0) = 0.007,y5 (0) = 0,
y6 (0) = KS × 0.444× 0.007.

The proposed TFs based numerical method is applied to the Chemical Akzo Nobel problem (CANP). The step size of
1/200 is used for all computations. The numerical solution by modified Rosenbrock method of order 2, MRM2 [35] is
too determined to authenticate that the piecewise linear HF solution by the proposed numerical method converges to
the original solution (i.e. numerical solution obtained by MRM2) when α equals 1. In addition to MRM2, Adomian
decomposition method (ADM), fractional differential transform method with Adomian polynomials (FDTM) [36] and
homotopy analysis method (HAM) are employed to solve CANP and the respective approximate solutions are plotted
in Figures 1 to 6. The semi-analytical techniques; ADM, FDTM and HAM exhibited numerical instability and failed to
approximate the solution of CANP in both the integer order case and non-integer order case. Figures 7 and 8 exhibit that,
in case of α = 1, the HF solution is in good compliance with the solution obtained by MRM2 and the fractional order
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Fig. 1: ADM solution of Chemical Akzo Nobel problem for α = 1(first column), α = 0.8(second column), α = 0.6(third column)

Fig. 2: ADM solution of Chemical Akzo Nobel problem for α = 1(first column), α = 0.8(second column), α = 0.6(third column)

HF solutions approach the integer order solution in the limit of α tends to 1. Thus, the proposed HF based numerical
method is so powerful that it can handle even highly nonlinear, high dimensional and stiff differential-algebraic equations
of arbitrary order. The time elapsed during each computation is recorded and tabulated in Table 7. In both cases (integer
and fractional order), the proposed method needs higher CPU usage but such higher computational time is justified to get
acceptable approximate solutions to such a high dimensional and stiff system.
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Fig. 3: FDTM solution of Chemical Akzo Nobel problem for α = 1(first column), α = 0.8(second column), α = 0.6(third column)

Fig. 4: FDTM solution of Chemical Akzo Nobel problem for α = 1(first column), α = 0.8(second column), α = 0.6(third column)
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Fig. 5: HAM solution of Chemical Akzo Nobel problem for α = 1(first column), α = 0.8(second column), α = 0.6(third column)

Fig. 6: HAM solution of Chemical Akzo Nobel problem for α = 1(first column), α = 0.8(second column), α = 0.6(third column)
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Fig. 7: Comparison of HF solutions of Chemical Akzo Nobel problem for differentα

Fig. 8: Comparison of HF solutions of Chemical Akzo Nobel problem for differentα
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7 Conclusion

The derived HF estimates for the Riemann-Liouville fractional order integral worked well and can be used to approximate
integration of any order. The proposed numerical method is capable of solving a wide variety (stiff and non-stiff) of
differential-algebraic equations of arbitrary order.
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