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Abstract: In this article we show several methods that are useful to introduce students to the derivation of Stirling’s formula. The
methods shown here use the normal density as the limiting distribution to other distributions. The last procedure uses Laplace’s method
by completing a definite integral to the kernel of a normal distribution in order to solve it. The advantages of these procedures over
many others found in the literature are their simplicity andtheir relationship with a normal limiting distribution. Under this approach,
Laplace’s method can also be considered as an approximationto a normal distribution to obtain the derivation of Stirling’s formula.
The derivations shown here are simple enough and sufficiently short such that they can be used for educational purposes onsome
undergraduate courses in statistics.
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1 Introduction

Stirling’s approximation or Stirling’s formula is an approximation for large factorials. We can trace the practical origins
of Stirling’s formula back to De Moivre [1] , whose method was later modified to a more elegant solution by James
Stirling as it is mentioned by Stigler [10]. In this article we discuss some statistical derivations of Stirling’s formula
by using convergence in distributions that have a limiting normal distribution. Convergence in distribution is studied in
mathematical statistics courses and is commonly referred to as asymptotic theory. We say that the distribution ofX is the

asymptotic distribution or the limiting distribution of the sequence{Xn}. We may write this convergence asXn
D→ X , see

Hogg and Craig [5]. In this paper,X will always be a normal distribution, and we will refer to this limiting distribution as
a “normal approximation”.

Most elementary statistics students are already familiar with this convergence in distribution to a normal density, even
if they have not been formally introduced to this concept, through their exposure to the central limit theorem. Another
concept that elementary statistics students commonly see is that the binomial distribution has a limiting normal distribution
for a large number of trials, so that binomial probabilitiescan be approximated by a normal distribution when the number
of trials is large. These approximations are often mentioned in elementary statistics courses without explicit reference
to the formal asymptotic theory. In this article we use a similar approach and provide some examples of convergence to
a normal distribution that lead to simple derivations of Stirling’s formula using only the formulas of distributions and
basic algebra or, in one case, calculus. The convergence to anormal approximation provides a useful framework in which
students can apply previously learned statistics conceptsthat allow them to derive Stirling’s formula. These examples
provide the students with a clear understanding of the convergence to a limiting normal distribution, the Laplace’s method,
and Stirling’s formula. These procedures will empower the students to reinforce the learned concepts and to link them
together in a cohesive manner.
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2 Deriving Stirling’s Formula

2.1 Deriving Stirling’s Formula Using Convergence to a Normal Approximation

The first derivation of Stirling’s formula shown here uses a probability distribution function that approaches a normal
distribution for large values of one of the parameters. It isa heuristic proof that is adequate for the purposes in this
article. Consider for example a gamma probability distribution with shape parameterα and scale parameterβ written as
Γ (α,β ). This distribution approaches the shape of a normal distribution for large values of the shape parameterα, see for
example Grice [4]. This gamma distribution is then compared with a similarlyshaped normal distribution with meanµ
and varianceσ2, written asN(µ ,σ2), that exhibits the same mean and variance as the gamma distribution. In order to do
that we set up the parameters as follows;α ·β = µ , andα ·β 2 = σ2. We substituteα by n and for the sake of simplicity
we use the parameterβ = 1, then each of the two distributions has both its mean and variance equal ton. The modes of
these distributions are evaluated and equated at the commonmean atx = n. By equating a gamma distributionΓ (n,1) to
a Normal distributionN(n,n) we get,

1
Γ (n)

xn−1e−x ≈ 1√
2πn

exp

[

− (x− n)2

2n

]

. (1)

Evaluating (1) at x = n yields

n ·Γ (n) = n! ≈ nne−n
√

2πn,

which is the well known Stirling’s approximation.

2.2 Deriving Stirling’s Formula Using the Central Limit Theorem

Students that already took a course in elementary statistics know that the sum of a large number of random variables,
under certain conditions, has a normal limiting distribution, this result is known as the central limit theorem (CLT), see
Lehmann [8]. The CLT can also be used to provide a derivation of Stirling’s Formula. First, we defineS as a sum ofn
gamma random variablesXi ∼ Γ (1,β ), each with meanβ and varianceβ 2, then

S = X1+X2+ · · ·+Xn. (2)

Methods from mathematical statistics show thatS ∼ Γ (n,β ), see Hogg and Craig [5]. On the other hand, applying
the central limit theorem for a sum of large enoughn independent, identically distributed variables shows that the sum
approaches a normal distribution with a mean equal ton times the mean of each individual variable and a variance equal
to n times the variance of each individual variable, see Lehmann[8], that is

S
D→ N(nβ ,nβ 2). (3)

Then, from (2) and (3) we have

Γ (n,β ) D→ N(nβ ,nβ 2). (4)

Thus, by equating these expressions for largen and applying the convergence in distribution shown in (3) and (4), we
can write

1
Γ (n)β n xn−1e−x/β ≈ 1√

2π
√

nβ 2
exp

[

− (x− nβ )2

2nβ 2

]

.

Considering equal probability density function values of these distributions at the common mean, that is atx = nβ , we get

1
Γ (n)β n (nβ )n−1e−n ≈ 1√

2π
√

nβ 2
, (5)

evaluating (5) for n! yields
n! ≈ nne−n

√
2πn.
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3 Laplace’s Method

3.1 Derivation of Laplace’s Method Using the Kernel of a Normal Distribution

First, we introduce the idea that the Laplace’s method can also be considered as an approximation to the definite integral
of a normal distribution. We use a truncated Taylor series approximation and rearrange terms in order to solve a definite
integral that can be expressed in terms of a normal distribution whose solution is known. The result from this integral,
widely known as Laplace’s method [9], can also be used to derive Stirling’s formula. First consider a non-normalized
probability density functionf (x) with continuous second derivatives and positive values of the function between the
constantsa andb. First consider rewriting the functionf (x) as

f (x) = exp[Ln f (x)] . (6)

Using Taylor’s approximation we have

f (x) = f (x0)+ f ′(x0)(x− x0)+
1
2

f ′′(x0)(x− x0)
2+ ε, (7)

Whereε includes all higher order terms, which in this approximation will be considered negligible. Then from (6) we
have

∫ b

a
f (x)dx =

∫ b

a
exp[Ln f (x)]dx, (8)

and applying Taylor series approximation toLn f (x) in (8) we have

∫ b

a
f (x)dx =

∫ b

a
exp

{

[Ln f (x0)]+
d[Ln f (x)]x=x0

dx
(x− x0)+

1
2

d2[Ln f (x)]x=x0

dx2 (x− x0)
2+ ε

}

dx, (9)

After dropping the higher order termsε, and computing the first derivative on (9), we have

∫ b

a
f (x)dx ≈

∫ b

a
exp

{

[Ln f (x0)]+
f ′(x0)

f (x0)
(x− x0)+

1
2

d2[Ln f (x)]x=x0

dx2 (x− x0)
2
}

dx, (10)

Assuming thatf (x) has a global maximum atx0 and thusf ′(x0) = 0, then from (8) and (10) we have

∫ b

a
f (x)dx ≈

∫ b

a
exp

{

[Ln f (x0)]+
1
2

d2[Ln f (x)]x=x0

dx2 (x− x0)
2
}

dx, (11)

Rearranging terms in (11) to set up the kernel of a normal probability density function, whose integral is known, we
have the following expression

∫ b

a
f (x)dx ≈ exp[Ln f (x0)]

∫ b

a
exp































−1
2

(x− x0)
2

1

−d2[Ln f (x)]
dx2 |x=x0































dx, (12)

Expression (12) can be evaluated by recognizing the well known kernel of thenormal distribution, then, the solution
of this integral whena → −∞ and b → ∞ is the normalizing constant of the Gaussian distribution, that is

√
2πσ2.

Heuristically it is not hard to imagine that asn gets large, and assuming that the variance term decreases, the most
important contribution to the value of the integral will be betweena fixed andb. We can evaluate this definite integral by
identifying and matching the corresponding terms to these constants. This method of evaluating a definite integral is the
well known Laplace’s method. As can be seen here, this methodis related to the previous methods by again
approximating a normal distribution, this time with a Taylor polynomial. Then we have

∫ b

a
f (x)dx ≈ f (x0) ·

√

√

√

√

√

2π

−d2[Ln f (x)]x=x0

dx2

which is the well known Laplace’s method.
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3.2 Using Laplace’s Method to Derive Stirling’s Formula

Now let’s use Laplace’s method to approximate the definite integral of the Chi-square distribution. Let the random variable
X have a Chi-square distribution withp degrees of freedom, written asX ∼ χ2

p. Considering the definite integral of the
Chi-square distribution, we know that for any probability density function

1=
∫ ∞

0

1

Γ (p/2)2p/2
x(p/2)−1e−x/2dx

or equivalently

Γ (p/2)2p/2 =
∫ ∞

0
x(p/2)−1e−x/2dx, (13)

Then we define
f (x) = x(p/2)−1e−x/2,

the mode for a Chi-square distribution [3] is at

x0 = p−2. (14)

The second derivative ofLn[ f (x)] is
d2Ln( f (x))

dx2 =− (p−2)
2x2 (15)

Applying Laplace’s method to approximate the integral in (13) we have

Γ (p/2)2p/2 ≈ f (x0)

√

√

√

√

√

2π
(

−d2[Ln f (x)]x=x0

dx2

) . (16)

Then substituting (14) and (15) into (16), we get

Γ (p/2)2p/2 ≈ (p−2)p/2−1e−(p−2)/2
√

4π(p−2).

Considering large degrees of freedom, in a way that the Chi-square distribution reduces skewness and looks relatively
symmetric, and allowingn = p−2

2 yields

n! ≈ nne−n
√

2πn,

obtaining Stirling’s formula again.

4 Conclusion

The derivations shown above are simple enough and sufficiently short that they can be used for educational purposes in
some undergraduate courses in statistics. These proofs arerelated to other proofs of a probabilistic nature shown in Hu[6],
Diaconis and Freedman [2], and Kahn [7]. The relationship between Laplace’s method and a normal approximation seems
intuitive and easy to remember as applicable in the derivation of Stirling’s formula. There is an abundance of methods
leading to Stirling’s formula, but many of them are not suitable for students with only an elementary statistics background.
The approaches developed here are appropriate for studentswith a basic background in statistics and mathematics. We
emphasize that these methods are simple enough to be used in acalculus based introduction to mathematical statistics,
and the first two methods may be suitable for courses in statistics without any calculus prerequisites.
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