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Abstract: In this article we show several methods that are useful todiice students to the derivation of Stirling’s formulaeTh
methods shown here use the normal density as the limitirighiiion to other distributions. The last procedure usaplace’s method
by completing a definite integral to the kernel of a normatriistion in order to solve it. The advantages of these pfooes over
many others found in the literature are their simplicity aimeir relationship with a normal limiting distribution. der this approach,
Laplace’s method can also be considered as an approximati@mormal distribution to obtain the derivation of Stigis formula.
The derivations shown here are simple enough and suffigishtbrt such that they can be used for educational purposssroe
undergraduate courses in statistics.
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1 Introduction

Stirling’s approximation or Stirling’s formula is an appimation for large factorials. We can trace the practicégios
of Stirling’s formula back to De Moivrel] , whose method was later modified to a more elegant solutjodames
Stirling as it is mentioned by Stiglei()]. In this article we discuss some statistical derivatioh$tirling’s formula
by using convergence in distributions that have a limitiognnal distribution. Convergence in distribution is stutlia
mathematical statistics courses and is commonly refeared aisymptotic theory. We say that the distributioX a$ the

asymptotic distribution or the limiting distribution ofétsequencéXn}. We may write this convergenceﬁﬁg X, see
Hogg and Craig§]. In this paperX will always be a normal distribution, and we will refer togHimiting distribution as
a “normal approximation”.

Most elementary statistics students are already familihr this convergence in distribution to a normal densitgrev
if they have not been formally introduced to this conceptptigh their exposure to the central limit theorem. Another
conceptthat elementary statistics students commonlgshatithe binomial distribution has a limiting normal distition
for a large number of trials, so that binomial probabilittas be approximated by a normal distribution when the number
of trials is large. These approximations are often mentlaneclementary statistics courses without explicit refiee
to the formal asymptotic theory. In this article we use a Eimapproach and provide some examples of convergence to
a normal distribution that lead to simple derivations oflBij’'s formula using only the formulas of distributionsdan
basic algebra or, in one case, calculus. The convergenaedionaal approximation provides a useful framework in which
students can apply previously learned statistics condbptsallow them to derive Stirling’s formula. These exansple
provide the students with a clear understanding of the agevee to a limiting normal distribution, the Laplace’s huat,
and Stirling’s formula. These procedures will empower thuglents to reinforce the learned concepts and to link them
together in a cohesive manner.
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2 Deriving Stirling’s Formula

2.1 Deriving Stirling’'s Formula Using Convergence to a Normal Approximation

The first derivation of Stirling’s formula shown here usesralability distribution function that approaches a normal
distribution for large values of one of the parameters. l& iseuristic proof that is adequate for the purposes in this
article. Consider for example a gamma probability distidouwith shape parameter and scale parametg@rwritten as

I (a,B). This distribution approaches the shape of a normal digidh for large values of the shape parametesee for
example Grice4]. This gamma distribution is then compared with a similatyaped normal distribution with mean
and variances?, written asN(u, 0?), that exhibits the same mean and variance as the gamméuiitri. In order to do
that we set up the parameters as follows = i, anda - B% = 02. We substitutex by n and for the sake of simplicity
we use the paramet@r= 1, then each of the two distributions has both its mean andnee equal te. The modes of
these distributions are evaluated and equated at the commean ai = n. By equating a gamma distributidn(n, 1) to

a Normal distributiorN(n, n) we get,

)

Tl (x— ”)2} .

~ ——exp|—

I (n) V2mm p{ 2n
Evaluating () atx = nyields

n-r(n)=n!~n"e"v2m,

which is the well known Stirling’s approximation.

2.2 Deriving Stirling’'s Formula Using the Central Limit Theorem

Students that already took a course in elementary statiktiow that the sum of a large number of random variables,
under certain conditions, has a normal limiting distribatithis result is known as the central limit theorem (CLEg s
Lehmann 8]. The CLT can also be used to provide a derivation of Stifirfgprmula. First, we defin€ as a sum of
gamma random variablé§ ~ I (1, 8), each with meayB and variancgd?, then

S=X1+Xo+ -+ X (2)

Methods from mathematical statistics show tBat I (n,3), see Hogg and Craig]. On the other hand, applying
the central limit theorem for a sum of large enougimdependent, identically distributed variables shows tha sum
approaches a normal distribution with a mean equaltimes the mean of each individual variable and a variancalequ
to ntimes the variance of each individual variable, see Lehnfi@hithat is

S N(nB,nB?). 3

Then, from @) and (3) we have

r(n,B) 2 N(nB,nB?). (4)

Thus, by equating these expressions for larged applying the convergence in distribution showr3nand @), we
can write

2
1 Xn—le—x/ﬁ s (X_ nB) :|

1
———eXxp|————| .
r(mpn V2m,/np? p[ 2np?
Considering equal probability density function valueshafde distributions at the common mean, that is-ah3, we get

1
r(n)p"

1
V2my/np?’

(nB)" e "~

(5)

evaluating ) for n! yields

n! ~ n"e""v2m.
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3 Laplace's Method
3.1 Derivation of Laplace’'s Method Using the Kernel of a Normal Distribution

First, we introduce the idea that the Laplace’s method camla¢ considered as an approximation to the definite integral
of a normal distribution. We use a truncated Taylor serigg@gmation and rearrange terms in order to solve a definite
integral that can be expressed in terms of a normal distoibwrhose solution is known. The result from this integral,
widely known as Laplace’s metho@][ can also be used to derive Stirling’s formula. First cdesia non-normalized
probability density functionf (x) with continuous second derivatives and positive valueshefftinction between the
constanta andb. First consider rewriting the functidiix) as

f(x) = exp[Lnf(x)]. (6)
Using Taylor’s approximation we have
£(0) = 00) + /(00) (<~ X0) + 2 17 (10) (x ~30)2 + £, )

Wheree includes all higher order terms, which in this approximatill be considered negligible. Then froré)(we
have

b b
/ f(x)dx = / exp[Lnf(x)] dx, (8)
a a
and applying Taylor series approximatioritof (x) in (8) we have

2
ab f(x)dx = /abexp{ [Lnf (xo)] + %(x—x@ + %%(x—m)%e}dx, 9)

After dropping the higher order terngsand computing the first derivative 08)( we have

b b / 2
| /a f(dxn /a exp{ [Lnf (x0)] + ‘;((XX;’)) (X— o) + %%(x— xo)Z} dx, (10)
Assuming thatf (x) has a global maximum ag and thusf’(xp) = 0, then from 8) and (L0) we have
/ f(x)dx ~ / exp{ [Lnf (x0)] + 1d2[L”;)((2)] (x—xo)z}dx, (11)

Rearranging terms inl@) to set up the kernel of a normal probability density funetiwhose integral is known, we
have the following expression

/b f (x)dx ~ explLnf (xo)] /b exp —% (x _1X0)2 dx, (12)

d [Lnf(x)]
dx2 Ix=x
Expression12) can be evaluated by recognizing the well known kernel ofniienal distribution, then, the solution

of this integral whena — —c andb — o is the normalizing constant of the Gaussian distributitway s v/ 2mo2.
Heuristically it is not hard to imagine that asgets large, and assuming that the variance term decreasemsdst
important contribution to the value of the integral will betlveena fixed andb. We can evaluate this definite integral by
identifying and matching the corresponding terms to thesestants. This method of evaluating a definite integralés th
well known Laplace’s method. As can be seen here, this methoctlated to the previous methods by again
approximating a normal distribution, this time with a Taypwlynomial. Then we have

b 2
/élf(x)dxzf(xo). —dZ[Lnfr([x)]X:xo

dx2

which is the well known Laplace’s method.
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3.2 Using Laplace's Method to Derive Stirling’s Formula

Now let’s use Laplace’s method to approximate the definttegiral of the Chi-square distribution. Let the random alga
X have a Chi-square distribution withdegrees of freedom, written a6~ X%- Considering the definite integral of the
Chi-square distribution, we know that for any probabiligngity function

© 1
1 (p/2)-1g-%/24
/o ripj22e2t &

or equivalently
r(p/2)2P/2 = / x(P/2)~1g~%/2gy (13)
0

Then we define
f (X) — X(p/z)_le_X/Z’

the mode for a Chi-square distributios] s at

Xo=p—2 (14)

The second derivative afn[f (x)] is
dPLn(f(x) __ (p—2)

22 (15)
Applying Laplace’s method to approximate the integrallif)(wve have
21
I (p/2)2P/2 ~ f : 16
dx2

Then substitutingX4) and (5) into (16), we get
I (p/2)2P2 ~ (p—2)P/% te (P-2/2,/am(p—2).

Considering large degrees of freedom, in a way that the Qinu® distribution reduces skewness and looks relatively
symmetric, and allowing = p%Z yields

n! ~n"e "v2m,

obtaining Stirling’s formula again.

4 Conclusion

The derivations shown above are simple enough and suffigiginort that they can be used for educational purposes in
some undergraduate courses in statistics. These proafslated to other proofs of a probabilistic nature shown irf6ju
Diaconis and Freedma@g]f and Kahn []. The relationship between Laplace’s method and a norn@begmation seems
intuitive and easy to remember as applicable in the deomati Stirling’s formula. There is an abundance of methods
leading to Stirling’s formula, but many of them are not shiiéefor students with only an elementary statistics backgdo
The approaches developed here are appropriate for stud@hta basic background in statistics and mathematics. We
emphasize that these methods are simple enough to be usexlcutus based introduction to mathematical statistics,
and the first two methods may be suitable for courses in statiwithout any calculus prerequisites.
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