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ConsiderN-transmitM -receive antenna systems with multiple frequencies and delay
spread. Expansions are given for the distribution and quantiles of the channel capacity
efficiency C' in powers of N /2 for fixed M. The first term gives normality. This
gives a good approximation fav//N small. ForM < N the second or third term is
generally sufficient for accuracy. An important duality principle is given: expansions
for the distribution and quantiles & in powers of M ~1/2 for fixed N follow. The

first term gives a good approximation fof/M small. Both discrete and continuous
time models are considered.
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1 Introduction

The aim of this paper is to provide asymptotic solutions of the capacity cumulant mo-
ments in the limit of many transmitter antenn&é and fixed receiver antennd$é and
vice versa. The approach taken is different from other approaches in the literature, where
the ratioM /N is kept fixed and both are assumed to be large (Foschini and Gans, 1998;
Telatar, 1999; Hochwale@t al, 2004). We also mention Boche and Jorswieck (2002),
where the full distribution is calculated for correlated antennas for the multi-transmitter
single-receiver case; Martin and Ottersten (2002), where second order approximations are
calculated for eigenvalue moments for MIMO channels; Moustaitad. (2003), where
the full distribution is calculated for any/, NV for independent and identically distributed
channels; Wang and Giannakis (2004), where the first three moments are calculated for
correlated channels for large, V. For more recent work, see Tulino and Verdu (2004)
and Hachenet al. (2008).
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Withers and Vaughan (2001) consider€dransmitM -receive antenna systems, where
the power of the noise at theth receiver isQ,,, and the power of theth transmitter is
P,/(N)) for A = 1 if the mean total power is bounded and\ = 1 if the mean total
power is increasing. Adapting Foschini and Gans (1998}%(lgtdenote theV x 1 signal
transmitted at time, e(t) the M x 1 noise at the receiver at timte andr(¢) the M x 1
received signal. The vector equation describing the channel operating on the signal is

r(t) = g(t) ®s(t) + e(t), (1.1)

where® denotes convolution ang(¢) is the M x N matrix channel impulse response.
Assuming thas(t) = 0 for ¢ < 0, its Fourier transform is

Rw = GOwa + Ew7 (12)

say. The convolution and Fourier transforms are discrete for discrete time models and con-
tinuous for continuous time models. Assuming that a randomly selected channel is not
changing during a burst, Foschini and Gans (1998) gave the capacity efficiency (capac-
ity/bandwidth) as

C =log, (det Agdet A,/ det A,,),

whereA, = ES,, S}, A, = ER, R}, A, = EU, U}, andU,, = (5*), andx”, X and
xT denote the transpose, conjugate and transpose conjugateSafceA, = Dp/(N))

andA, = Dg + Go,DpG{, /(N)), where

Dp :dz’ag(Ph...,PN),
DQ :diag(Ql,...,QM),

this gives the capacity efficiency in bps/Hz as

C = log, det (IM + X, X+ (N)\)) , (1.3)

wherel,,; = diag(1,...,1) and
Xw = Dél/zGOwD}D/2' (14)

As in Foschini and Gans (1998) we repldd®,, Q.,,} by their meangp,,, ¢, }. For their
case,A; = PN~ Iy andA, = QI + PN—lGOUJGO*w. Their formula goes back to
equation (21) of Winters (1987). Al98(,, = (Hiow; - - - , Hnow), Where for independent
transmitters{ H,,q,, } are independer@\ y; (o, Vo) andpg, Vo do not depend o#p,, }
or {¢., }. For Raleigh fading:y = 0. For independent receiveks, is diagonal. Typically
Vo o I but for line-of-sight the elements &f all have the same value.
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When multiple frequencies are used, (1.3) becomes
C= / log, det (Ins + XX /(N X)) dv(w), (1.5)
0

whereW is a random frequency independent of the random praXgssvith distribution
determined by the spectrum of frequencies used, say

P(W <w) =v(w). (1.6)

The simplest example B ~ U(wg, wo + B) uniform with bandwidthB and base fre-
quencywy, that isdv(w) = B~ 1I(wg < w < wg + B)dw, whereI(A) is 1 or O for A
true or false. Another example & uniform over a number of non-overlapping intervals
Iy,...,1; of bandwidthsBy, ..., B; and total bandwidttB = B, + --- + By, thatis

dv(w) =B 'T(we L U---UlIy)duw. .7)

The columns ofG,, of (1.4),{H,.., }, are again independent copiesk{,,, the Fourier
transform of a column of(t), saygo:-

We consider two models fatelay spread The first assumes that each columrggf
takes the form

8ot = /Zog5(t —0)dP(L < ¢)inCcM, (1.8)

where{Z,} are independerd 'y, (o, Vo). We assume that the transmitters are close
enough together and the receivers close enough together so that the distidb(tieh ()

of the random delay.,,,,, from transmittem to receiverm does not depend om, m. To
cover both continuous and discrete delayflebe the density of the delay distribution with
respect to a dominating measuye dP(L < ¢) = f,de,. Assumingcontinuous time

Hy, = /Zoe €xXp (—ng) fede, (1.9)

is finite with probability with probability 1. Fodiscrete delaye, is counting measure so
that

f@ = P(L = 6)7 got = (ftZOt) Rd 5(t)7 Hy, = Zf€Z0€ €Xp (_]we) ) (110)
4

where®y denotes discrete convolution. The simplest examplésisrete rectangular delay
L = ¢ with probabilityI~! for ¢ = 0,1,...,1 — 1 (1.11)

for some integed > 1 (labeledf = f; in Section 2), so that
I-1
gor =171 Zoed(t — 1),
=0
I—-1
How =" Zosexp (—jlw).
£=0
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One could absorb the factér ! into Z, by replacingug, Vo by I~ g, I72V),.
This includes the delay model of Pederstml. (2001)

I
g(t) = Zaié (t — dz)
=1
so that
I
r(t) = as(t—d;) +e(t). (1.12)
i=1

Here,I is the number of pathgj is the delay of path, anda; is the gain of path. Raleigh
and Cioffi (1998) moded; in terms of angles of departure and arrival. Note that (1.12) can
be written as (1.1) witt® = ®. denoting continuous convolution and

gt) = ftZOt =a; (1.13)

fort = d;, wheref, = 0 for ¢t # d; and the columns dZOt are independent copies @f;
as above, where the scalarmay now be complex an, | f;| < co. That is, we assume
that the columns a4; are independently distributed as

9o = f:Zor ~ CNas (futsos |2 Vo) (1.14)

wheret = d;.
As well as (1.8), we also consider tHescrete timedelay model

8ot = ftZot (1.15)

for Zy; as above, where the scalamay be complex. This includes (1.12), the static delay
model of Telatar and Tse (2000) - (1) and the equation before (18): (1.12) can be written
as (1.1) with® = ®4 andg(t) of (1.13). So, (1.14) holds and (1.9) again holds - with
counting measure.

We assume that the delay distribution has finite Fisher information:

m:/mﬁm<w

We callhg1 the delay factoas it increases with mean delay. For example, the delay factor
equals the mean delay if the delay is a scaled exponential random variable. We shall see
thatthe random delay. reduces the SNR by the delay factibican be shown thdt,, is a
Gaussian process (" with mean and covariance determinedihy, V, and the (discrete

or continuous) Fourier transforms of the delay density and its square:

EHy,, = poF (w), cov (How, , How,) = Voh (w1 — ws) (1.16)
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for
F(w) = /exp (—jwl) fedey = E exp (—jwL), (1.17)
h(w) = /exp(—jwﬁ) | fol? deg = hoE exp (—ij) , (1.18)
whereL is a random variable with distribution
. t
P (L < t) - hgl/ | fol? dey. (1.19)

The use of E in (1.17) is for the cage real and| f,de, = 1, as in (1.8). For the case
(1.12), (1.17) and (1.18) take the form

I

F(w) = Zexp (—jwd) fi,
11_1 )
h(w) = Zexp (—jwd;)
i=1

)

fi

whereﬁ- = fi,,,» and the analysis is conditional on the delay tids}. We call L the
associated delay
For no delayF'(w) = h(w) = ho = 1. For discrete delay (1.10), (1.16) assumes that

cov (Z0€1 ) Z0£2) = V05f1f2a (120)

wheredy, o, = 1 0r 0 forf; = ¢, or {1 # ¢5. For continuous delayje, = d¢ Lebesgue
measure, (1.16) assumes that

cov (Zoe, , Zoe,) = Voo (61 — L2) . (1.21)

It is convenient to absorb the factDrggl/ % set

—1/2

Hnw = DQ / Hn(]un
Guw=Dg"*Gow = (Hiu,....Hyy) .

So,{H,,, } are independent copies Hf,,, the Fourier transform of; = Dél/QgOt. For
the continuous time delay model (1.8),

g = / Z06(t — ) fydeg

while for the discrete time delay model (1.18),= f,Z;: in both case§Z, = D,"*Z,}
are independer®t\ s (11, V), wherep = D,,'/* g andV = D,"/*V,D, '/,
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It can be shown that for fixed/ andr > 1, therth cumulant of
0= Co, (1.22)

whereCy = M In A + C'In 2, can be expanded as

o (5) - i ariN~1. (1.23)

i=r—1

Note that (1.23) implies that @8 — oo
Yy = (N/az)"? (é\— alo) — N(0,1) (1.24)

for A/(0,1) a unit real normal random variable, and that the distribution, density and quan-
tiles of Yy (and so ofC, andC) can be expanded in powers df~!/2 about those of the

unit normal. Let®(x) and¢(x) = (2r)~ /2 exp(—22/2) be the distribution and density

of N'(0,1). Set

Then ford non-lattice, the distribution, density and quantile§gf (and so those (ﬁ) are
given by the asymptotic expansions

Py(z) ~ ®(x) — () Y N?h,(x),

pn(x) ~ ¢() {1 + ZN_T/Qh’T(x)} ,

r=1

oY (Py(x)) mx— Y N2, (x),

r=1

Pyt (®(z)) ~ o+ ZNﬁT/Qg,ﬁ(z)7

r=1

where {h,(x), hl.(x), fr(z), g-(x)} are polynomials in both: and A,; = am-/a;f, the
standardized cumulant coefficients. These expansions are called the Edgeworth-Cornish-
Fisher expansions. See Withers (1984) for these polynomialsRFer1,2, ... the Rth

order approximationgruncate these t&® terms giving remainde®(N~%/2). ForR = 1,

the Central Limit Theorem (1.24), one needs, a>;. For R = 2 one needs;1, azs and

for R = 3 one needdss, a43.

Now apply this tod = Cp of (1.22). So0,a10 = MInA 4+ ¢cln2 andYy =
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(In2)(N/ag1)'/?(C — ¢), wherec is the mean of for large N. So, one obtains

C = CRaleigh + CRices (125)

CRice = / log, (1 +2R, |F(w)|2) dv(w) = Elog, (1 +2R, |F(W)|2) :
0

N
pr = <an> /(NX),

n=1
_ —1
R, = ut (pTIIM + hOV) w/2,
where
CRaleigh = 10g2 det (I]u + }LopTV) (126)

andpr is the average total power transmitte@he delay reduces the power by the delay
factor. For no delay”’(w) = hy = 1 so thatcg;.. = log,(1 + 2R,,) does not depend on

the spectrum used. Nofe,, may be identified as a scaled Rice factor: it depends on the
delay only througth. If the delayL is discrete so that (1.10) holds thenin, f, < hy <

maxy fy < 1, so that the delay factor reduces the effective SNR. For rectangular delay
(1.12),ho =171,

So, in situations, where one can affect the distribution of the deJayne should seek
to maximizehy.

However, if L is continuous, (for example, a scaled exponential), thenan take on
values greater than one if the scale factor is small enough! In fact, as the scale factor
decreases to zero (corresponding/to= 0, that is no delay,) thehg — oo. This is
counter-intuitive but it reflects the different assumptions (1.20) and (1.21).

Although (1.25) was calculated assuming transmitters (but not receivers) to be indepen-
dent, by the Law of Large Numbers &5 — oo, C converges t@ even if transmitters are
correlated.

The Raleigh component of the asymptotic capacity,iq,, does not depend qgm (so
its name); nor on the frequency distributiofw)! It depends on the delay only through.

The Rice componenty;.. depends o, F'(w) of (1.17) andv(w); itis zero if u = 0.

Each cumulant coefficient.; = a,; (1) say, can also be written as the sum of a Raleigh

terma,.;(0) and a Ricean term. Each Raleigh term can be written in terms of

Yy = prNTr (1.27)

for
N
pev=N"1Y 00 (1.28)
n=1

hy, trace ()ﬁlV (Tar + hopTV)_1> ;

I, = _
pin trace(Ins + hy'pr' V) T if det(V) # 0,

(1.29)
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and real function$ ]’ of the formE exp(—jK) = E cos K, whereK is a real symmetric
random variable determined by the distributionsiofiv’ through those ofl — EQ and
W, — W, whereL;, L, independent copies df of (1.19) and¥;, W- independent copies
of W of (1.6). Theseshrinkage function§]’ lie in [—1, 1] and act as shrinkage factors as
they are less than 1 unless eith&ris constant (a single frequency) orlifis constant (a
fixed delay), in which cas&” = 0 so[-]' = 1. For example, by (1.22)-(1.23) the asymptotic
variance ofC' is az; /N (In 2)? for as; = as;(u), where

a21(0) = 7 [12] (1.30)
for

[12]' = ho E|h (Wi —Wy)[? (1.31)

= Fexp(—jK)=FEcosK (1.32)

= FE ‘gfdffa 2’ (133)

K = (W, —Wa) (El - Eg) , (1.34)

vy = FEexp(—jlW). (2.35)

Note v, is the Fourier transform of the frequency distribution.

It can be shown more generally for the Raleigh case 0 that if only one frequency
is used themlelay has no effect on capacity except for the delay factor in the effective SNR
and if the delay is constant théime choice of spectrum has no effect on capacity

If neither L nor W are constant and either are increased stochastically (typically by
increasing a scale parameter, say— oo) in such a way thaﬁl — ZQ or Wy — Wy
become stochastically unbounded, then each shrinkage function tends to zero so that each
a-;(0) — 0 except for(ri) = (10), so that for the Raleigh cage = 0, C converges in
probability tocraieign Of (1.26).

Note that (1.31)-(1.33) remind one of Parseval’s identity written in the form

(27r)_1/|Eexp(—ij)|2dw: (277)_1/Eexp{—jw (X1 — Xo)}dw = /f(x)2dx,

where X, X, are independent random variables with densfity) with respect to
Lebesgue measure.
For the asymptotic variance for the Ricean case (thatisvhenp # 0).

Example 1.1. Suppose that the transmitters have the same average ppwep, and the
receiver noises have the same average pgwer q. TakeVy = vgl,,. Set

ps = hovop/q, p1 = p3/A, p2 = p1/ho. (1.36)
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These are scaled forms of the total signal to individual receiver noisexatig = p/(\q).
Then

CRaleigh = M10g2 (1 + pl) ) (137)
v=M(1+p7")"

So, p1 is the effective SNR. Figure 1.1 plotgeiqgn/M in bits/sec/hz against the scaled
SNRp, for hg =27%,0 < i < 4.

How far can the assumption that M/ be bounded asN — oo be relaxed? If
N > M — ocothendy; ~ M3/2, Agy ~ M~Y2 Ay ~ M, Ay ~ M~ so that
g1(x)N=Y2 ~ (M3/N)'/2 — 0 (implying the Central Limit Theorem) il = o( N''/3).
(Here,apr,ny ~ bas,y means thatiys, v /b,y — 1in the limit.) This rules out the case
when M, N have the same order of magnitude. The second order approximation to the
percentiles requires the weaker requirement ghéat)/N ~ M/N — 0. The third order
approximation appears to require the intermediate conditios: o( N3/°).

For the case ofV or L constant Figures 1.2 plot the three approximations to the 1
percentile of capacity, while Figures 1.3 plot the mean and third order approximations to 8
percentiles.

Unlike the first order approximations, the third order approximations are not symmetric
about the asymptotic meanAs M increases tdV, c crosses over the upper percentiles.

This example is continued in Example 2.1 with plots:gf...

35

N
[

N

/M (bits/sec/Hz)

Rale@h
o

C,

~ho=1/8

signal-to—noise ratio per branch (dB)

Figure 1.1 craieigh/M versus scaled SNR) log, p2.
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Approximations for 1 percentile capacity for N=5 against 10*Ioglo(rhol)

— — First order s
O second order P 7
—— third order

1percentile capacity (bits/sec/Hz)

-2 0 2 4 6 8 10 12 14 16 18 20
signal-to—noise ratio per branch (dB)

Figure 1.2a First three approximations to 1 percentile agamstor V = 5.

Approximations for 1 percentile capacity for M=N against 10*Ioglo(rh01)

40
— — First order
O second order
35+ —— third order P
30+

25

151

101

1percentile capacity (bits/sec/Hz)

-5 0 5 10 15 20 25 30 35 40
signal—to—noise ratio per branch (dB)

Figure 1.2b First three approximations to 1 percentile agamstor M = N < 3 become
negative for low db forM/ < 2 and fail to show increasing capacity below 5db fdr= 2
and below 10b foi\/ = 1.
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Mean and third order approximation for percentile capacity. N=5, vs 10*|oglo(rh01)

30 W/
[— Percentiles: 99.99, 99.9, 99, 95, 90, 10, 5, 1, 0.1, 0.01]
251
y M=5
://
,'//'
20+ /

Capacity (bits/sec/Hz)
&
T
Il
w

1
10 12 14 16 18 20
signal-to—noise ratio per branch (dB)

Figure 1.3a Mean and third approximations to percentiles agaimgor N = 5.

Mean and third order approximation for percentile capacity. N=10, vs 10*IoglO(rhql)

30 z
[— Percentiles: 99.99, 99.9, 99, 95, 90, 10, 5, 1, 0.1, 0.01]
251
201
=
I
S
[
3
2
S15F
=
& M=10
o
©
(&) /

1 1
10 12
signal—to—noise ratio per branch (dB)

Figure 1.3b Mean and third approximations to percentiles agaimdgbr N = 10.

The 1 percentile of the distribution of the capacity efficieti¢yare plotted for some
examples in Section 2, showing as in Withers and Vaughan (2001) that ev&refosmall
as three (for the case of no delay) the third order approximations hardly differ from the
second order approximations unlégs>> N.

Section 3 gives an important duality result betwdep} and{q;,'}. This allows all
these expansions in powers Bf! or N—1/2 for fixed M to be re-interpreted as powers
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of M~ or M~1/2 for fixed N:

For example, for Raleigh fading with, = p, ¢,, = ¢ then for fixedN, asM — oo,
C' — CRateign = Nlogy(1 + p7) for p7 = p1M/N. If M, N are both large and of the
same magnitude then asymptotic normality no longer holds: see, for example, Smith and
Shafi (2001) and Johnstone (2001).

Throughout, we shall writ€,, ~ ZTZO c-n 10 mean that that for > 1 under suitable
regularity conditiong”,, — Zi;é ¢, CONverges to zero as — oo. We shall also write
w(-) to denote the first derivative af(-).

2 Examples

Here, we assume that the transmitters have the same average power and receivers have
the same average power, $ay= p, ¢, = ¢ SO thatp,.;y = p”. Definep; as in (1.36).

We consider (1.8) for both discrete and continuous délayhe discrete delay density
is the rectangulal.11), f = f; say. Forf = f, the mean delay i6 — 1)/2, hg = [*
andF'(w), h(w) of (1.17), (1.18) are

I F(w) = h(w) = {1 — exp (—jwl)} /{1 — exp (—jw)} .
So,
I |[F(w))? = |h(w)]> = (1 — cos Tw) / (1 — cosw) .

Also for f = f1, L has the same distribution ds
The continuous delay densitf; say, is that ofL = oG, whereo is a scale parameter
andG., is a gamma random variable with meamand density

dP (G, < z) /dr = 2" exp(—x)/T'(7) (2.1)

for z,+ > 0. To obtainF' andh for f, note that forl = oLy, if fo, Fy, ho denotef, F, h
for Ly with de, = d¢, then

fe=0"fot)o,
F(w) = Fy(wo),
h(w) = o~ ho(wo),

L= O'zo.

Also for Ly = G, Fy = F,, andhg(w) = ho(w), whereF, (w) = (14 jw) ™%, ho(w) =
ha(0)bo (14 jw/2)~% for ag = 2a— 1 > 0, ho(0) = by27%1, b, = T'(ay)T(a) 2. For

a < 1/2,b, = c0. S0, forf = f,, the mean delay isa, hg = 0~ ho(0), L = 0271G,, .
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Where f, is used below we take exponential delay £ 1) with mean delay, b; = 1,
hog = (20)71,

foo =0 Yexp (—L/o), F(w) = (14 jwo)~t, h(w) = ho (1 + jwo/2)”", L= 0G4 /2.
We consider five frequency distributions (1.6):

for v, W = wq + 46 with probability J ! fori = 0,1,...,J — 1;

for vy, W ~ Uniform (wg, wo + 29) ;

for vs, W = woGg, wherewy, 8 > 0;

wo, with probability p,

foruv,, W = . .
wo + 6,  with probabilityqg = 1 — p;
for vs, W ~ Uniform (I; U I5)

for G, of (2.1) andI,, I, the non-overlapping intervalsy, wo+ Bi], [wo+6, wo+J+ Ba).
Notews, v; are of standard type (1.7). Nate approximates a spectrum gequally spaced
narrow bands each of bandwidthsay with total bandwidtty B. Notews is for one broad
band of bandwidtt2é. Note vy is for two broad bands of bandwidtts;, B, and total
bandwidthB = By + Bs. Note that fory, vs, v4 andvs, whenp = 0 capacity does not
depend on the base frequeney since the shrinkage functiorid’ do not. Their Fourier
transforms (1.35), are fdr£ 0

Ure = J exp (—jwol) {1 — exp (—jJ60)} / {1 — exp (—j6l)},

Vo = exp (—jwol) {1 — exp (—3j26¢)} /(26¢),

Uge = (1+ jwol) ™",

vag = exp (—jwol) {p + qexp (—jo)},

Use = (Bj€) ™" exp (—jwol) {1 — exp (—jB1f) + [1 — exp (—jBzl)] exp (—jol)} .
Note that,, has perio@r in ¢, so the same is true fgt2)’ with v = v4. AsJ — o0,
vy — 0, so thaf{12]" — 0 whenv = v4.

In every case except for, there is a parametersay, such that whep = 0 (Raleigh
fading), C — c ase — oo. For, takee = J, 6, wg or 3, B fori = 1,2,3,5. Then as
€ — 00, vy — 0 for £ # 0 so that[12]" — 0.

Wherevs is used below we takd” exponential ¢ = 1).

Example 2.1. This continues Example 1.1. Consider Raleigh fading, thatis= 0,
Vo = vols. By (1.26), the asymptotic (larg®¥) capacity is given by (1.37).

Example 2.2. Consider Raleigh fading (that js = 0) with V = vy77, where|r| = 1.
This includes the regular line of sight case= M~1/21,,. For example, fo,; = 1,
vg = M. Then{a,;} except fora;, are the same as for Example 2.1 with= 1. Also

CN = CRaleigh =108y (1 + p1), atjo = MInA+1In(1+p1), 7. = (1+ Pfl)_T
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for p; of (1.36). So, for Raleigh fading th& — M MIMO system behaves like aN — 1
MIMO system. But for regular line of sighty is amplified by a facto\/ over its value
in Example 2.1, so that the effective SNR is also amplified by a fakfoiSo, the figures
given in Examples 1.1, 2.1 for the caké = 1 apply with p; interpreted as/ p;.

More generally, we have

Example 2.3. Let {v;, 7; } be the eigenvalues and eigenvector¥gf So,
M
Vo = ZviTin,
i=1
wherer;t i, = 6;,4,. If po = 0 then

M
CRaleigh = Z 10g2 (1 + viﬁ) 5

i=1
M

’y;:Z{(lJrvi_lﬁ*l)ir : 1§i§M,v7;7éO}

i=1

for p = hop/(Aq). A case of interest is that intermediate betwd&n= voI,, of Example
2.1andV, = vgr7* of Example 2.2, whergr| = 1. ThatisVy /vy = Iy +(1—n)77 T
for 0 <n < 1, with eigenvalues, n, ..., n. So,

CRaleigh = 10g2 (]- + pl) + (M - ]-) 10g2 (]— + 77P1) P
Y=o ) M=) (L)

for p1 = vop = hovop/(A\q).

Example 2.4. Consider again Example 2.1, Raleigh fading. The approximations used

above can be improved by stabilizing the varianeg, = M[12)'(1 + p;*)~2 for p

of (1.36). Seti = Cy/M andw = ayo/M = In(A(1 + p1)). Note (1.23) holds for
0 = @ with cumulant coefficienta,.;o = M "a,;. S0, by Withers (1982) (1.23) holds
for § = (@) for any smooth function(@) with cumulant coefficients given as follows in
terms oft, = (") (w):

ajy = t(w),

ay = tiaz1o,

ahy = tia110 + taa210/2,

ahy = tlaseo + 3tTtaady,

ahy = tiasgo + titaas + (£3/2 4 tits) a3y + 2t1taaiioasio,

a3 = tiasso + 12t5taa10a300 + 4 (3315 + t113) a3y
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Applying this tot(w) = In{exp(@w) — A} — In p3 gives

31 :1+P;1,
to = —t1/p1,
ts=(14p1) (2+ p1) /p5,

so thata}, = 0 anda), = M ~![12]', that is, the variance has been “stabilized”, no longer
depending omw;. We illustrate this for the case of no delay. One obtains

ajy =— (Mp1+M™") (1+p1)7" /2,
gy = =M "> (3+Tp1+p1) pr (1+p1) 7",
ahy = {p} —2p% + M2 (4p} + 13p1 +6)}pr ' (1 +p1) 2 /2,

dyy = 2M 3 (18 + 37py — 10p2 — 119%) pr (14 p1) 2.

Figures 2.1a, b plot these “stabilized” approximations for the 1 percentiles of capacity for
the cases < N =3 andM = N < 3. ForM = N = 1 there is no Law of Large
Numbers - so the wild third order curve.

Figures 2.2a, b compare the two methodsfér= N < 3. The solid lines are the
stabilized approximations and the dashed lines are the original approximations. The a and
b figures are for the first and third approximations. Agreement is fairly close: the stabilized
version removes the dip and negative values for the tAse N = 1. An alternative when
M = 1isto use the exact result = log,(1 + p;Gn/N) for Gy gamma with meaiv.

Approximations for 1 percentile capacity for N=3 against 10*Ioglo(rhol)

— — First order
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—— third order
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Figure 2.1a First three stabilized approximations to 1 percentile againgr M < N =
3.

Approximations for 1 percentile capacity for M=N against 10*Ioglo(rh01)

— — First order
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Figure 2.1b First three stabilized approximations to 1 percentile againgr M = N <
3.

First approximations for 1 percentile capacity for N=M against 10*I0910(rh01)
40

351+
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-5 0 5 10 15 20 25 30 35 40
signal-to—noise ratio per branch (dB)

Figure 2.2a First approximations to 1 percentile agaipstfor M = N < 3 (solid for
stabilized, dashed for original).
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Third approximations for 1 percentile capacity for N=M against 10*IoglO(rh01)
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Figure 2.2b Third approximations to 1 percentile agaimpstfor M = N < 3 (solid for
stabilized, dashed for original).

For a given delay distribution we might seek to choose the speatrtmmminimize the
asymptotic variance. Consider the case of Raleigh fading sathat v5[12] for [12]’ of
(1.34). We now give two examples showing that for delay distributigrthe best we can
do is to reducd12]’ to 1/2. Forvy, [12) = 1 — 2pq(1 — E coswiAyL), whereAy, is the
second factor in (1.34); §62]’ has minimum /2 + hy ? inf,, |h(w)|? achieved ap = 1/2
and atw = & minimizing |h(w)|?.

Example 2.5. For f = f; andI > 1, |h(w)|? has a minimum of zero at = 2L /I for
L=1,2,...,0iving[12] = 1/2.

Example 2.6. For f = f, |h(w)|* has a minimum of zero at; = co. So,[12]’ can be
arbitrarily close to 1/2.

3 Duality

In (1.5), we gave the capacity of ai — M MIMO system with delay speed and
frequency spread in terms &f,, of (1.4). But

det (Tn + X, X5 /(NA)) = det (IN XX T/ (MA*)) ,
where

M) = NA, X;, =X} =D}?G;,D,'%, Gj, = G{, = (Hig,, .., Hig,) (3.1)
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say. We use to denote a dual quantity. Assume that the transmitters and the receivers are
independent of each other and behave identically.

Then{H},,,, } are independent copies H,,,, the Fourier transform of a row @f(¢),
say

g5 = EZ5,6(t — L)|Zo = / Z2,0(t — OdP(L < 1) = / Z8,6(t — ) foder,

whereZ, are independerit\ v (ug, V). If we write Z, for thenth column a<,,, and
Z;, for themth row asZ? ,,, then

(Ziop+ Zioe) = (Zioe -+ Zivoe)*

This allows transmitters to be correlated and non-stationary with receivers independent,
just as Section 1 allowed receivers to be correlated and non-stationary with transmitters
independent.

So, we have the same expression for capacity WithV, p,,, ¢, o, Vo, A replaced
by their dual quantities/* = N, N* = M, ¢}, p,*, us, Vi, A*. So, the results of
Section 1 hold with this switch. So,

Ci=Nhh\ +Cln2,
R (Cg): Z a:iM_i>

i=r—1

ajo=NIn\ +c"In2,
Yiy = In2(M/aj,) V2 (C — ¢*) = (M/ay)""? (Cy — a3) — N(0,1)

asM — oo, where

* ok *
c = CRaleigh + CRice>

C*Raleigh = 1Og2 det (IN + hop’?v*) )

Chice = [ Togs (1 25 [F(w)?) dv(w)
0

M
pr = <Z qn‘f> [ (MA),
m=1
* *+ * —1 * -1 *
R, =n (pT In + hoV ) 2,
p* =D s, V* =D)/2ViDL2

As M — oo, C converges te* for N fixed even if receivers are correlated.
The distribution, density and quantilesX5f; (and so ofC) can be expanded in powers
of M~1/2 about those of the standard real normv0, 1). The Rth order approximations
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give remainde (M ~%/2). The truncated forms of these expansions increase in accuracy
asM increases, just as those of Section 1 ddvaimcreases.

For total transmitted power bounded= 1 so that\* = N/M. For total transmitted
power increasing) = N ! so that\* = M1,

For Raleigh fading:* = 0 so that by (1.30)

(In2)*0* = a3, (0) = '5[12)'
for +'7 the dual of (1.27):
’Y/: = p*eri?
M
Pl =M g
m=1
I =p 1y trace(IM + hop*;lv**l) -

if det(V*) # 0. The shrinkage functionB]’ do not change for the dual results. Now
suppose that both receivers and transmitters are independent. Then for some, scalar

po="Tla, py =T1n,

*
Vo = volnr, Vg = voly,

M N
CRaleigh = Z log, {1 + (Z pn> q;lhovoﬂ_l} ;

m=1 n=1

N M
CRaleigh = Z log, {1 +Pn <Z qml> hovoﬁl} )
n=1 m=1

wherel,, is the vector ofM ones;y = NA = M \*. These agree to a first approximation
if hon™ v or {png;,'} are small themgareign, CRaleigh both equal

N M
(In2)~* (Z pn> (Z qm1> hovon ™t + O (R3n~2) .
n=1 m=1

To make a numerical comparison with the examples of Section 2, we also assume that
the transmitters are independent of each and behave identicallyVihen vy, Vi =
voln, o = 71, i = T1n. Here,r = po; is zero for the Raleigh case and one for the
Ricean case.

Example 3.1. Suppose that,, = p, ¢, = q, V§ = voIn. Then forp; of (1.36),
p3 = ps, p1 = prM/N, p3 = pi/ho, CRateign = Nlogy (14 p1).

So, for fixed N the effective SNR is nop; but pj. Also 1/\* is proportional toM for
fixed N regardless of whether = 1 (bounded total power) ok = N~! (increasing total
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power). So,

(In2)EC

MIn(1+p3)+O (N1 ifA=1,
MIn(psN)+O (N7') if A=N"1,
= Nln(psM)+0O (M),

where the first two lines hold for fixedl/, and the last line holds for fixed¥' regardless of
whether total power is bounded or increasing.
The asymptotic variances 6f1n 2 by the two methods are
N~lag (0) = N='M (14 p7Y) * 12/,
-2
M~as(0)* = M~IN (1 + p”{‘l) 2.
Torecap, forM < N

C & CRateigh = M logy (14 p1),

varC ~ (In2)2MN12) (1 + p7")?

while for N < M
O~ C?Zaleigh =Nln (1 + pT) ’
2
varC ~ (In2)~2NM 12’ (1 + p*;‘l) ,
wherep,* = py NM~!. Adifferent theory applies if/, N are both large and comparable.
All the figures from Figure 1.1 can be re-interpreted by repladifigp,, . . . by their

dualsN, p7, ... If M = N then dual quantities coincide; for exampdguleigh = CRaleigh
andv* = v.

Note that expansions like

(n2)EC =-MInA+» aN'=-NlnX* +> aj, M~
=0 =0
are not comparable as the first is likely to diverge fiéy N large and the second fdd /N
small, like the expansions fai(1 + ) valid for || < 1 and for|z| > 1 whenaz = M/N.
Note that the use of (3.1) has remedied the loss of reciprocity noted in Remark 2 of
Telatar (1999).

4 The effect of variable transmitter power

In (1.5) we followed Foschini and Gans (1998) by replacing the random transmitter
powers{P,/(N))} by their means. The values af, andcx are not changed but the
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other{a,;} do change. See there for details. For example changes to
ag1 = panTa + ky(2)I'7

for I';. of (1.29),p,v of (1.28), and

N
ky(2) = N1 Z var (Py,) .
n=1
So, ifq,, = gandVy = vgI,, then

—1\—2 _
any :M(1+p1 1) {p2N+MkP(2)}p1]\2[

for p1 = hovopr/q as in Example 1.1. If also eadP, behaves like a random variahfe
of meanp then

as1 = M (1 +p1_1)72 {1+ (M + Lyvar(P)/p*}.

The effect of allowing variable receiver power is more profound as normality breaks down.

5 The effect of normalization

Consider again Example 1.1 wifh = 0. As N — oo capacity approaches =
M log, (1 + hovgp), Wherep = p/()\q) is the ratio of the average total power transmitted
to the average noise of a single transmitter, as in Foschini and Gans (1998). In fact, this
reduces to their result/ log, (1 + p) if we normalize by replacingx,, in (1.2) by

Géw = NMHGOwuilGOw (5.1)
for
M N
||G‘0w||2 = Z Z trace covar Gowir = N trace covar Hoy,
i=1 k=1
trace covar Z = trace covar Z = E|Z|* — |EZ|? (5.2)

for Z a random complex vector. For, this is the same as repld@ippgn Section 1 by
NM||Gow|| ™ Zos, that isp by NM||Goy ||~ e @and'V by (NM)?||Go,||2V. LetC’
denoteC' when we normalize in this way.

In this example}| G, ||> = N Mhovo and if u = 0 then

C'2~ N (M (1 + p), [12) (1 +p71) M/N)

asN — oo and if there is no delay or for narrowband (1 frequencybehaves exactly as
if there is no delay and narrowband.
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For givenS,, andE,,, (1.2) gives
—1 2 2
trace covar Ry, = N7 7||Gow||” |Sw]” -

If © = 0, the left hand side is equal t5{|Go.Sw|?|Sw}. So, if instead of (5.1) we
normalize by replacingo,, in (1.2) byG{,, = MGy, then

2
trace covar Rl = |Sy|”,

whereR! is R,, with Gg,, replaced byGy,. Some authors, for example, Chiurtt
al. (2001), argue that one should use this second normalization to ensure that the total
receive power equals the total transmit power when averaged over the random channel
matrix. This has the effect of replacingby p/M so that the largeV capacity becomes
Mlogy(1 4 p/M) — pasM — oo. However, here we do not need to normalize keep
capacity finite when bottV, M — co.

For the general case by (1.16)

||Gowl|* = Nhg trace V,
so for . = 0 this normalization gives
C'In2 ~ N (Indet (Ins + prMV/ trace V), [12]'panT5/N) ,

wherel,. = pi % trace (Ins + M~ V! trace V)~ for det V # 0, and again if there is
no delay or narrowban@”’ behaves exactly as if there is no delay and narrowband.

One cannot drop the terfiZ in (5.2) if u # 0 as otherwise|G,,||? will depend on
the frequencyw.

6 Conclusions

The formula of Foschini and Gans (1998) for capacity has been extended to allow for

transmitters of different powers;

e receivers of different powers;

e correlated transmitters (for the dual expansion);
e correlated receivers;

e Ricean as well as Rayleigh fading;

e line of sight;

e multiple frequencies;
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e delay spread;
e normalization.

In each case we have shown how to obtain approximate normality, and how to calculate
the distribution and outage probabilities as power seri@éin/2 (or in A/~'/2 in the dual
case).

We have shown that one or two terms in these expansions is usually sufficientAinless
is extremely small ofV andM are close in magnitude.

We have shown that by spreading the frequencies used one can reduce the variance of
the capacity, and so achieve a given outage probability with less total power.
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