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ConsiderN -transmitM -receive antenna systems with multiple frequencies and delay

spread. Expansions are given for the distribution and quantiles of the channel capacity

efficiencyC in powers ofN−1/2 for fixed M . The first term gives normality. This

gives a good approximation forM/N small. ForM < N the second or third term is

generally sufficient for accuracy. An important duality principle is given: expansions

for the distribution and quantiles ofC in powers ofM−1/2 for fixed N follow. The

first term gives a good approximation forN/M small. Both discrete and continuous

time models are considered.
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1 Introduction

The aim of this paper is to provide asymptotic solutions of the capacity cumulant mo-

ments in the limit of many transmitter antennasM and fixed receiver antennasN and

vice versa. The approach taken is different from other approaches in the literature, where

the ratioM/N is kept fixed and both are assumed to be large (Foschini and Gans, 1998;

Telatar, 1999; Hochwaldet al., 2004). We also mention Boche and Jorswieck (2002),

where the full distribution is calculated for correlated antennas for the multi-transmitter

single-receiver case; Martin and Ottersten (2002), where second order approximations are

calculated for eigenvalue moments for MIMO channels; Moustakaset al. (2003), where

the full distribution is calculated for anyM , N for independent and identically distributed

channels; Wang and Giannakis (2004), where the first three moments are calculated for

correlated channels for largeM , N . For more recent work, see Tulino and Verdu (2004)

and Hachemet al. (2008).
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Withers and Vaughan (2001) consideredN -transmitM -receive antenna systems, where

the power of the noise at themth receiver isQm and the power of thenth transmitter is

Pn/(Nλ) for λ = 1 if the mean total power is bounded andNλ = 1 if the mean total

power is increasing. Adapting Foschini and Gans (1998), lets(t) denote theN × 1 signal

transmitted at timet, e(t) theM × 1 noise at the receiver at timet, andr(t) theM × 1
received signal. The vector equation describing the channel operating on the signal is

r(t) = g(t)⊗ s(t) + e(t), (1.1)

where⊗ denotes convolution andg(t) is theM × N matrix channel impulse response.

Assuming thats(t) = 0 for t ≤ 0, its Fourier transform is

Rw = G0wSw + Ew, (1.2)

say. The convolution and Fourier transforms are discrete for discrete time models and con-

tinuous for continuous time models. Assuming that a randomly selected channel is not

changing during a burst, Foschini and Gans (1998) gave the capacity efficiency (capac-

ity/bandwidth) as

C = log2 (detAs detAr/ detAu) ,

whereAs = ESwS+
w , Ar = ERwR+

w , Au = EUwU+
w , andUw =

(
Sw

Rw

)
, andxT , x and

x+ denote the transpose, conjugate and transpose conjugate ofx. SinceAs = DP /(Nλ)
andAr = DQ + G0wDP G+

0w/(Nλ), where

DP = diag (P1, . . . , PN ) ,

DQ = diag (Q1, . . . , QM ) ,

this gives the capacity efficiency in bps/Hz as

C = log2 det
(
IM + XwX+

w/(Nλ)
)
, (1.3)

whereIM = diag(1, . . . , 1) and

Xw = D−1/2
Q G0wD1/2

P . (1.4)

As in Foschini and Gans (1998) we replace{Pn, Qm} by their means{pn, qm}. For their

case,As = PN−1IN andAr = QIM + PN−1G0wG+
0w. Their formula goes back to

equation (21) of Winters (1987). AlsoG0w = (H10w, . . . ,HN0w), where for independent

transmitters,{Hn0w} are independentCNM (µ0,V0) andµ0, V0 do not depend on{pn}
or {qm}. For Raleigh fadingµ0 = 0. For independent receiversV0 is diagonal. Typically

V0 ∝ IM but for line-of-sight the elements ofV0 all have the same value.
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When multiple frequencies are used, (1.3) becomes

C =
∫ ∞

0

log2 det
(
IM + XwX+

w/(Nλ)
)
dν(w), (1.5)

whereW is a random frequency independent of the random processXw with distribution

determined by the spectrum of frequencies used, say

P (W ≤ w) = ν(w). (1.6)

The simplest example isW ∼ U(w0, w0 + B) uniform with bandwidthB and base fre-

quencyw0, that isdν(w) = B−1I(w0 < w < w0 + B)dw, whereI(A) is 1 or 0 forA

true or false. Another example isW uniform over a number of non-overlapping intervals

I1, . . . , IJ of bandwidthsB1, . . . , BJ and total bandwidthB = B1 + · · ·+ BJ , that is

dν(w) = B−1I (w ∈ I1 ∪ · · · ∪ IJ ) dw. (1.7)

The columns ofG0w of (1.4),{Hn0w}, are again independent copies ofH0w, the Fourier

transform of a column ofg(t), sayg0t.

We consider two models fordelay spread. The first assumes that each column ofg0t

takes the form

g0t =
∫

Z0`δ(t− `)dP (L ≤ `) in CM , (1.8)

where{Z0`} are independentCNM (µ0,V0). We assume that the transmitters are close

enough together and the receivers close enough together so that the distributionP (L ≤ `)
of the random delayLnm from transmittern to receiverm does not depend onn, m. To

cover both continuous and discrete delay letf` be the density of the delay distribution with

respect to a dominating measureε`: dP (L ≤ `) = f`dε`. Assumingcontinuous time,

H0w =
∫

Z0` exp (−jw`) f`dε` (1.9)

is finite with probability with probability 1. Fordiscrete delay, ε` is counting measure so

that

f` = P (L = `), g0t = (ftZ0t)⊗d δ(t), H0w =
∑

`

f`Z0` exp (−jw`) , (1.10)

where⊗d denotes discrete convolution. The simplest example isdiscrete rectangular delay

L = ` with probabilityI−1 for ` = 0, 1, . . . , I − 1 (1.11)

for some integerI ≥ 1 (labeledf = f1 in Section 2), so that

g0t = I−1
I−1∑

`=0

Z0`δ(t− `),

H0w = I−1
I−1∑

`=0

Z0` exp (−j`w) .
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One could absorb the factorI−1 into Z0` by replacingµ0, V0 by I−1µ0, I−2V0.

This includes the delay model of Pedersenet al. (2001)

g(t) =
I∑

i=1

aiδ (t− di)

so that

r(t) =
I∑

i=1

ais (t− di) + e(t). (1.12)

Here,I is the number of paths,di is the delay of pathi, andai is the gain of pathi. Raleigh

and Cioffi (1998) modelai in terms of angles of departure and arrival. Note that (1.12) can

be written as (1.1) with⊗ = ⊗c denoting continuous convolution and

g(t) = ftZ̃0t = ai (1.13)

for t = di, whereft = 0 for t 6= di and the columns of̃Z0t are independent copies ofZ0t

as above, where the scalarft may now be complex and
∑

t |ft| < ∞. That is, we assume

that the columns ofai are independently distributed as

g0t = ftZ0t ∼ CNM

(
ftµ0, |ft|2 V0

)
, (1.14)

wheret = di.

As well as (1.8), we also consider thediscrete timedelay model

g0t = ftZ0t (1.15)

for Z0t as above, where the scalarft may be complex. This includes (1.12), the static delay

model of Telatar and Tse (2000) - (1) and the equation before (18): (1.12) can be written

as (1.1) with⊗ = ⊗d andg(t) of (1.13). So, (1.14) holds and (1.9) again holds - withε`

counting measure.

We assume that the delay distribution has finite Fisher information:

h0 =
∫
|f`|2 dε` < ∞.

We callh−1
0 the delay factoras it increases with mean delay. For example, the delay factor

equals the mean delay if the delay is a scaled exponential random variable. We shall see

thatthe random delayL reduces the SNR by the delay factor. It can be shown thatH0w is a

Gaussian process inCM with mean and covariance determined byµ0, V0 and the (discrete

or continuous) Fourier transforms of the delay density and its square:

EH0w = µ0F (w), cov (H0w1 ,H0w2) = V0h (w1 − w2) (1.16)
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for

F (w) =
∫

exp (−jw`) f`dε` = E exp (−jwL) , (1.17)

h(w) =
∫

exp(−jw`) |f`|2 dε` = h0E exp
(
−jwL̃

)
, (1.18)

whereL̃ is a random variable with distribution

P
(
L̃ ≤ t

)
= h−1

0

∫ t

|f`|2 dε`. (1.19)

The use of E in (1.17) is for the casef` real and
∫

f`dε` = 1, as in (1.8). For the case

(1.12), (1.17) and (1.18) take the form

F (w) =
I∑

i=1

exp (−jwdi) f̃i,

h(w) =
I∑

i=1

exp (−jwdi)
∣∣∣f̃i

∣∣∣
2

,

wheref̃i = ftdi
, and the analysis is conditional on the delay times{di}. We call L̃ the

associated delay.

For no delayF (w) = h(w) = h0 = 1. For discrete delay (1.10), (1.16) assumes that

cov (Z0`1 ,Z0`2) = V0δ`1`2 , (1.20)

whereδ`1`2 = 1 or 0 for `1 = `2 or `1 6= `2. For continuous delay,dε` = d` Lebesgue

measure, (1.16) assumes that

cov (Z0`1 ,Z0`2) = V0δ (`1 − `2) . (1.21)

It is convenient to absorb the factorD−1/2
Q : set

Hnw = D−1/2
Q Hn0w,

Gw = D−1/2
Q G0w = (H1w, . . . ,HNw) .

So,{Hnw} are independent copies ofHw, the Fourier transform ofgt = D−1/2
Q g0t. For

the continuous time delay model (1.8),

gt =
∫

Z`δ(t− `)f`dε`

while for the discrete time delay model (1.15),gt = ftZt: in both cases{Z` = D−1/2
Q Z0`}

are independentCNM (µ,V), whereµ = D−1/2
Q µ0 andV = D−1/2

Q V0D
−1/2
Q .
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It can be shown that for fixedM andr ≥ 1, therth cumulant of

θ̂ = C0, (1.22)

whereC0 = M ln λ + C ln 2, can be expanded as

κr

(
θ̂
)

=
∞∑

i=r−1

ariN
−i. (1.23)

Note that (1.23) implies that asN →∞

YN = (N/a21)
1/2

(
θ̂ − a10

)
→ N (0, 1) (1.24)

forN (0, 1) a unit real normal random variable, and that the distribution, density and quan-

tiles of YN (and so ofC0 andC) can be expanded in powers ofN−1/2 about those of the

unit normal. LetΦ(x) andφ(x) = (2π)−1/2 exp(−x2/2) be the distribution and density

of N (0, 1). Set

PN (x) = P (YN ≤ x) .

Then forθ̂ non-lattice, the distribution, density and quantiles ofYN (and so those of̂θ) are

given by the asymptotic expansions

PN (x) ≈ Φ(x)− φ(x)
∞∑

r=1

N−r/2hr(x),

pN (x) ≈ φ(x)

{
1 +

∞∑
r=1

N−r/2h′r(x)

}
,

Φ−1 (PN (x)) ≈ x−
∞∑

r=1

N−r/2fr(x),

P−1
N (Φ(x)) ≈ x +

∞∑
r=1

N−r/2gr(x),

where{hr(x), h′r(x), fr(x), gr(x)} are polynomials in bothx andAri = ari/a
r/2
21 , the

standardized cumulant coefficients. These expansions are called the Edgeworth-Cornish-

Fisher expansions. See Withers (1984) for these polynomials. ForR = 1, 2, . . . theRth

order approximationstruncate these toR terms giving remainderO(N−R/2). ForR = 1,

the Central Limit Theorem (1.24), one needsa10, a21. ForR = 2 one needsa11, a32 and

for R = 3 one needsa22, a43.

Now apply this to θ̂ = C0 of (1.22). So,a10 = M ln λ + c ln 2 and YN =
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(ln 2)(N/a21)1/2(C − c), wherec is the mean ofC for largeN . So, one obtains

c = cRaleigh + cRice, (1.25)

cRice =
∫ ∞

0

log2

(
1 + 2Rµ |F (w)|2

)
dν(w) = E log2

(
1 + 2Rµ |F (W )|2

)
,

pT =

(
N∑

n=1

pn

)
/(Nλ),

Rµ = µ+
(
p−1

T IM + h0V
)−1

µ/2,

where

cRaleigh = log2 det (IM + h0pT V) (1.26)

andpT is the average total power transmitted. The delay reduces the power by the delay

factor. For no delayF (w) = h0 = 1 so thatcRice = log2(1 + 2Rµ) does not depend on

the spectrum used. NoteRµ may be identified as a scaled Rice factor: it depends on the

delay only throughh0. If the delayL is discrete so that (1.10) holds thenmin` f` ≤ h0 ≤
max` f` ≤ 1, so that the delay factor reduces the effective SNR. For rectangular delay

(1.11),h0 = I−1.

So, in situations, where one can affect the distribution of the delayL, one should seek

to maximizeh0.

However, ifL is continuous, (for example, a scaled exponential), thenh0 can take on

values greater than one if the scale factor is small enough! In fact, as the scale factor

decreases to zero (corresponding toL = 0, that is no delay,) thenh0 → ∞. This is

counter-intuitive but it reflects the different assumptions (1.20) and (1.21).

Although (1.25) was calculated assuming transmitters (but not receivers) to be indepen-

dent, by the Law of Large Numbers asN → ∞, C converges toc even if transmitters are

correlated.

The Raleigh component of the asymptotic capacitycRaleigh, does not depend onµ (so

its name); nor on the frequency distributionν(w)! It depends on the delay only throughh0.

The Rice componentcRice depends onh0, F (w) of (1.17) andν(w); it is zero ifµ = 0.

Each cumulant coefficientari = ari(µ) say, can also be written as the sum of a Raleigh

termari(0) and a Ricean term. Each Raleigh term can be written in terms of

γ′r = prNΓr (1.27)

for

prN = N−1
N∑

n=1

pr
n, (1.28)

Γr =





hr
0 trace

(
λ−1V (IM + h0pT V)−1

)r

,

p−r
1N trace

(
IM + h−1

0 p−1
T V−1

)−r
, if det(V) 6= 0,

(1.29)
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and real functions[·]′ of the formE exp(−jK) = E cosK, whereK is a real symmetric

random variable determined by the distributions ofL, W through those of̃L1 − L̃2 and

W1−W2, whereL̃1, L̃2 independent copies of̃L of (1.19) andW1, W2 independent copies

of W of (1.6). Theseshrinkage functions[·]′ lie in [−1, 1] and act as shrinkage factors as

they are less than 1 unless eitherW is constant (a single frequency) or ifL is constant (a

fixed delay), in which caseK ≡ 0 so[·]′ ≡ 1. For example, by (1.22)-(1.23) the asymptotic

variance ofC is a21/N(ln 2)2 for a21 = a21(µ), where

a21(0) = γ′2[12]′ (1.30)

for

[12]′ = h−2
0 E |h (W1 −W2)|2 (1.31)

= E exp(−jK) = E cos K (1.32)

= E
∣∣∣ν̃L̃1−L̃2

∣∣∣
2

, (1.33)

K = (W1 −W2)
(
L̃1 − L̃2

)
, (1.34)

ν̃` = E exp (−j`W ) . (1.35)

Note ν̃` is the Fourier transform of the frequency distribution.

It can be shown more generally for the Raleigh caseµ = 0 that if only one frequency

is used thendelay has no effect on capacity except for the delay factor in the effective SNR,

and if the delay is constant thenthe choice of spectrum has no effect on capacity.

If neither L nor W are constant and either are increased stochastically (typically by

increasing a scale parameter, sayε → ∞) in such a way that̃L1 − L̃2 or W1 − W2

become stochastically unbounded, then each shrinkage function tends to zero so that each

ari(0) → 0 except for(ri) = (10), so that for the Raleigh caseµ = 0, C converges in

probability tocRaleigh of (1.26).

Note that (1.31)-(1.33) remind one of Parseval’s identity written in the form

(2π)−1

∫
|E exp (−jwX)|2 dw = (2π)−1

∫
E exp {−jw (X1 −X2)} dw =

∫
f(x)2dx,

where X1, X2 are independent random variables with densityf(x) with respect to

Lebesgue measure.

For the asymptotic variance for the Ricean case (that isa21 whenµ 6= 0).

Example 1.1. Suppose that the transmitters have the same average powerpn = p, and the

receiver noises have the same average powerqm = q. TakeV0 = v0IM . Set

ρ3 = h0v0p/q, ρ1 = ρ3/λ, ρ2 = ρ1/h0. (1.36)
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These are scaled forms of the total signal to individual receiver noise ratioρ2/v0 = p/(λq).
Then

cRaleigh = M log2 (1 + ρ1) , (1.37)

γ′r = M
(
1 + ρ−1

1

)−r
.

So,ρ1 is the effective SNR. Figure 1.1 plotscRaleigh/M in bits/sec/hz against the scaled

SNRρ2 for h0 = 2−i, 0 ≤ i ≤ 4.

How far can the assumption that M be bounded asN → ∞ be relaxed? If

N ≥ M → ∞ thenA11 ∼ M3/2, A32 ∼ M−1/2, A22 ∼ M , A43 ∼ M−1 so that

g1(x)N−1/2 ∼ (M3/N)1/2 → 0 (implying the Central Limit Theorem) ifM = o(N1/3).
(Here,aM,N ∼ bM,N means thataM,N/bM,N → 1 in the limit.) This rules out the case

whenM, N have the same order of magnitude. The second order approximation to the

percentiles requires the weaker requirement thatg2(x)/N ∼ M/N → 0. The third order

approximation appears to require the intermediate conditionM = o(N3/5).

For the case ofW or L constant Figures 1.2 plot the three approximations to the 1

percentile of capacity, while Figures 1.3 plot the mean and third order approximations to 8

percentiles.

Unlike the first order approximations, the third order approximations are not symmetric

about the asymptotic meanc. As M increases toN , c crosses over the upper percentiles.

This example is continued in Example 2.1 with plots ofcRice.
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negative for low db forM ≤ 2 and fail to show increasing capacity below 5db forM = 2
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The 1 percentile of the distribution of the capacity efficiencyC are plotted for some

examples in Section 2, showing as in Withers and Vaughan (2001) that even forN as small

as three (for the case of no delay) the third order approximations hardly differ from the

second order approximations unlessM À N .

Section 3 gives an important duality result between{pn} and{q−1
m }. This allows all

these expansions in powers ofN−1 or N−1/2 for fixed M to be re-interpreted as powers
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of M−1 or M−1/2 for fixedN :

For example, for Raleigh fading withpn ≡ p, qm ≡ q then for fixedN , asM → ∞,

C → c∗Raleigh = N log2(1 + ρ∗1) for ρ∗1 = ρ1M/N . If M , N are both large and of the

same magnitude then asymptotic normality no longer holds: see, for example, Smith and

Shafi (2001) and Johnstone (2001).

Throughout, we shall writeCn ≈
∑∞

r=0 crn to mean that that fori ≥ 1 under suitable

regularity conditionsCn −
∑i−1

r=0 crn converges to zero asn → ∞. We shall also write

ω̇(·) to denote the first derivative ofω(·).

2 Examples

Here, we assume that the transmitters have the same average power and receivers have

the same average power, saypn = p, qm = q so thatprN = pr. Defineρi as in (1.36).

We consider (1.8) for both discrete and continuous delayL. The discrete delay density

is the rectangular(1.11),f = f1 say. Forf = f1, the mean delay is(I − 1)/2, h0 = I−1

andF (w), h(w) of (1.17), (1.18) are

I F (w) = h(w) = {1− exp (−jwI)} / {1− exp (−jw)} .

So,

I2 |F (w)|2 = |h(w)|2 = (1− cos Iw) / (1− cosw) .

Also for f = f1, L̃ has the same distribution asL.

The continuous delay density,f2 say, is that ofL = σGα, whereσ is a scale parameter

andGγ is a gamma random variable with meanγ and density

dP (Gγ ≤ x) /dx = xγ−1 exp(−x)/Γ(γ) (2.1)

for x, γ > 0. To obtainF andh for f2, note that forL = σL0, if f0, F0, h0 denotef , F , h

for L0 with dε` = d`, then

f` = σ−1f0`/σ,

F (w) = F0(wσ),

h(w) = σ−1h0(wσ),

L̃ = σL̃0.

Also for L0 = Gα, F0 = Fα andh0(w) = hα(w), whereFα(w) = (1+ jw)−α, hα(w) =
hα(0)bα(1 + jw/2)−α1 for α1 = 2α− 1 > 0, hα(0) = bα2−α1 , bα = Γ(α1)Γ(α)−2. For

α ≤ 1/2, bα = ∞. So, forf = f2, the mean delay isσα, h0 = σ−1hα(0), L̃ = σ2−1Gα1 .
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Wheref2 is used below we take exponential delay (α = 1) with mean delayσ, b1 = 1,

h0 = (2σ)−1,

f2` = σ−1 exp (−`/σ) , F (w) = (1 + jwσ)−1, h(w) = h0 (1 + jwσ/2)−1
, L̃ = σG1/2.

We consider five frequency distributions (1.6):

for ν1,W = w0 + iδ with probabilityJ−1 for i = 0, 1, . . . , J − 1;

for ν2,W ∼ Uniform(w0, w0 + 2δ) ;

for ν3,W = w0Gβ , wherew0, β > 0;

for ν4,W =

{
w0, with probabilityp,

w0 + δ, with probabilityq = 1− p;

for ν5,W ∼ Uniform(I1 ∪ I2)

for Gγ of (2.1) andI1, I2 the non-overlapping intervals[w0, w0+B1], [w0+δ, w0+δ+B2].
Noteν2, ν5 are of standard type (1.7). Noteν1 approximates a spectrum ofJ equally spaced

narrow bands each of bandwidthB say with total bandwidthJB. Noteν2 is for one broad

band of bandwidth2δ. Noteν5 is for two broad bands of bandwidthsB1, B2 and total

bandwidthB = B1 + B2. Note that forν1, ν2, ν4 andν5, whenµ = 0 capacity does not

depend on the base frequencyw0 since the shrinkage functions[·]′ do not. Their Fourier

transforms (1.35), are for̀ 6= 0

ν̃1` = J−1 exp (−jw0`) {1− exp (−jJδ`)} / {1− exp (−jδ`)} ,

ν̃2` = exp (−jw0`) {1− exp (−j2δ`)} /(2δ`),

ν̃3` = (1 + jw0`)
−β

,

ν̃4` = exp (−jw0`) {p + q exp (−jδ)} ,

ν̃5` = (Bj`)−1 exp (−jw0`) {1− exp (−jB1`) + [1− exp (−jB2`)] exp (−jδ`)} .

Note thatν̃1` has period2π in δ, so the same is true for[12]′ with ν = ν1. As J → ∞,

ν̃1` → 0, so that[12]′ → 0 whenν = ν1.

In every case except forν4, there is a parameterε say, such that whenµ = 0 (Raleigh

fading),C → c asε → ∞. For, takeε = J , δ, w0 or β, B for i = 1, 2, 3, 5. Then as

ε →∞, ν̃` → 0 for ` 6= 0 so that[12]′ → 0.

Whereν3 is used below we takeW exponential (β = 1).

Example 2.1. This continues Example 1.1. Consider Raleigh fading, that is,µ0 = 0,

V0 = v0IM . By (1.26), the asymptotic (largeN ) capacity is given by (1.37).

Example 2.2. Consider Raleigh fading (that isµ0 = 0) with V = v0ττ+, where|τ | = 1.

This includes the regular line of sight caseτ = M−1/21M . For example, forVrs ≡ 1,

v0 = M . Then{ari} except fora10 are the same as for Example 2.1 withM = 1. Also

cN = cRaleigh = log2 (1 + ρ1) , a10 = M ln λ + ln (1 + ρ1) , γ′r =
(
1 + ρ−1

1

)−r
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for ρ1 of (1.36). So, for Raleigh fading theN −M MIMO system behaves like anN − 1
MIMO system. But for regular line of sightv0 is amplified by a factorM over its value

in Example 2.1, so that the effective SNR is also amplified by a factorM . So, the figures

given in Examples 1.1, 2.1 for the caseM = 1 apply withρi interpreted asMρi.

More generally, we have

Example 2.3. Let {vi, τi} be the eigenvalues and eigenvectors ofV0. So,

V0 =
M∑

i=1

viτiτ
+
i ,

whereτ+
i1

τi2 = δi1i2 . If µ0 = 0 then

cRaleigh =
M∑

i=1

log2 (1 + viρ̃) ,

γ′r =
M∑

i=1

{(
1 + v−1

i ρ̃−1
)−r

: 1 ≤ i ≤ M, vi 6= 0
}

for ρ̃ = h0p/(λq). A case of interest is that intermediate betweenV0 = v0IM of Example

2.1 andV0 = v0ττ+ of Example 2.2, where|τ | = 1. That isV0/v0 = ηIM +(1−η)ττ+

for 0 ≤ η ≤ 1, with eigenvalues1, η, . . . , η. So,

cRaleigh = log2 (1 + ρ1) + (M − 1) log2 (1 + ηρ1) ,

γ′r =
(
1 + ρ−1

1

)−r
+ (M − 1)

(
1 + η−1ρ−1

1

)−r

for ρ1 = v0ρ̃ = h0v0p/(λq).

Example 2.4. Consider again Example 2.1, Raleigh fading. The approximations used

above can be improved by stabilizing the variance,a21 = M [12]′(1 + ρ−1
1 )−2 for ρ1

of (1.36). Setŵ = C0/M andw = a10/M = ln(λ(1 + ρ1)). Note (1.23) holds for

θ̂ = ŵ with cumulant coefficientsari0 = M−rari. So, by Withers (1982) (1.23) holds

for θ̂ = t(ŵ) for any smooth functiont(ŵ) with cumulant coefficients given as follows in

terms oftr = t(r)(w):

a′10 = t(w),

a′21 = t21a210,

a′11 = t1a110 + t2a210/2,

a′32 = t31a320 + 3t21t2a
2
210,

a′22 = t21a220 + t1t2a320 +
(
t22/2 + t1t3

)
a2
210 + 2t1t2a110a210,

a′43 = t41a430 + 12t31t2a210a320 + 4
(
3t21t

2
2 + t31t3

)
a3
210.
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Applying this tot(ŵ) = ln{exp(ŵ)− λ} − ln ρ3 gives

t1 = 1 + ρ−1
1 ,

t2 = −t1/ρ1,

t3 = (1 + ρ1) (2 + ρ1) /ρ3
1,

so thata′10 = 0 anda′21 = M−1[12]′, that is, the variance has been “stabilized”, no longer

depending onρ1. We illustrate this for the case of no delay. One obtains

a′21 = M−1,

a′11 = − (
Mρ1 + M−1

)
(1 + ρ1)

−1
/2,

a′32 = −M−2
(
3 + 7ρ1 + ρ2

1

)
ρ−1
1 (1 + ρ1)

−1
,

a′22 = {ρ3
1 − 2ρ2

1 + M−2
(
4ρ2

1 + 13ρ1 + 6
)}ρ−1

1 (1 + ρ1)
−2

/2,

a′43 = 2M−3
(
18 + 37ρ1 − 10ρ2

1 − 11ρ3
1

)
ρ−1
1 (1 + ρ1)

−2
.

Figures 2.1a, b plot these “stabilized” approximations for the 1 percentiles of capacity for

the casesM ≤ N = 3 andM = N ≤ 3. For M = N = 1 there is no Law of Large

Numbers - so the wild third order curve.

Figures 2.2a, b compare the two methods forM = N ≤ 3. The solid lines are the

stabilized approximations and the dashed lines are the original approximations. The a and

b figures are for the first and third approximations. Agreement is fairly close: the stabilized

version removes the dip and negative values for the caseM = N = 1. An alternative when

M = 1 is to use the exact resultC = log2(1 + ρ1GN/N) for GN gamma with meanN .
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Figure 2.1a First three stabilized approximations to 1 percentile againstρ1 for M ≤ N =
3.
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Figure 2.1b First three stabilized approximations to 1 percentile againstρ1 for M = N ≤
3.
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Figure 2.2a First approximations to 1 percentile againstρ1 for M = N ≤ 3 (solid for

stabilized, dashed for original).
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Figure 2.2b Third approximations to 1 percentile againstρ1 for M = N ≤ 3 (solid for

stabilized, dashed for original).

For a given delay distribution we might seek to choose the spectrumν to minimize the

asymptotic variance. Consider the case of Raleigh fading so thata21 = γ′2[12]′ for [12]′ of

(1.34). We now give two examples showing that for delay distributionν4, the best we can

do is to reduce[12]′ to 1/2. Forν4, [12]′ = 1 − 2pq(1 − E cosw1∆L), where∆L is the

second factor in (1.34); so[12]′ has minimum1/2+h−2
0 infw |h(w)|2 achieved atp = 1/2

and atw = δ minimizing |h(w)|2.

Example 2.5. For f = f1 andI > 1, |h(w)|2 has a minimum of zero atw = 2Lπ/I for

L = 1, 2, . . ., giving [12]′ = 1/2.

Example 2.6. For f = f2, |h(w)|2 has a minimum of zero atw1 = ∞. So,[12]′ can be

arbitrarily close to 1/2.

3 Duality

In (1.5), we gave the capacity of anN − M MIMO system with delay speed and

frequency spread in terms ofXw of (1.4). But

det
(
IM + XwX+

w/(Nλ)
)

= det
(
IN + X∗

wX∗
w

+/ (Mλ∗)
)

,

where

Mλ∗ = Nλ, X∗
w = X+

w = D1/2
p G∗

0wD−1/2
Q , G∗

0w = G+
0w = (H∗

10w, . . . ,H∗
M0w) , (3.1)
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say. We use∗ to denote a dual quantity. Assume that the transmitters and the receivers are

independent of each other and behave identically.

Then{H∗
m0w} are independent copies ofH∗

0w, the Fourier transform of a row ofg(t),
say

g∗0t = EZ∗0Lδ(t− L)|Z0 =
∫

Z∗0`δ(t− `)dP (L ≤ `) =
∫

Z∗0`δ(t− `)f`dε`,

whereZ∗0` are independentCNN (µ∗0,V
∗
0). If we writeZ0` for thenth column asZn0` and

Z∗0` for themth row asZ∗m0`, then

(Z∗10` · · ·Z∗m0`) = (Z10` · · ·ZN0`)
+

.

This allows transmitters to be correlated and non-stationary with receivers independent,

just as Section 1 allowed receivers to be correlated and non-stationary with transmitters

independent.

So, we have the same expression for capacity withM , N , pn, qm, µ0, V0, λ replaced

by their dual quantitiesM∗ = N , N∗ = M , q−1
m , p−1

n , µ∗0, V∗
0, λ∗. So, the results of

Section 1 hold with this switch. So,

C∗0 = N ln λ∗ + C ln 2,

κr (C∗0 ) =
∞∑

i=r−1

a∗riM
−i,

a∗10 = N ln λ∗ + c∗ ln 2,

Y ∗
M = ln 2(M/a∗21)

1/2 (C − c∗) = (M/a∗21)
1/2 (C∗0 − a∗10) → N (0, 1)

asM →∞, where

c∗ = c∗Raleigh + c∗Rice,

c∗Raleigh = log2 det (IN + h0p
∗
T V∗) ,

c∗Rice =
∫ ∞

0

log2

(
1 + 2R∗µ |F (w)|2

)
dν(w),

p∗T =

(
M∑

m=1

q−1
m

)
/ (Mλ∗) ,

R∗µ = µ∗+
(
p∗T

−1IN + h0V∗
)−1

µ∗/2,

µ∗ = D1/2
p µ∗0, V∗ = D1/2

p V∗
0D

1/2
p .

As M →∞, C converges toc∗ for N fixed even if receivers are correlated.

The distribution, density and quantiles ofY ∗
M (and so ofC) can be expanded in powers

of M−1/2 about those of the standard real normalN (0, 1). TheRth order approximations
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give remainderO(M−R/2). The truncated forms of these expansions increase in accuracy

asM increases, just as those of Section 1 do asN increases.

For total transmitted power bounded,λ = 1 so thatλ∗ = N/M . For total transmitted

power increasing,λ = N−1 so thatλ∗ = M−1.

For Raleigh fadingµ∗ = 0 so that by (1.30)

(ln 2)2v∗ = a∗21(0) = γ′∗2[12]′

for γ′∗r the dual of (1.27):

γ′∗r = p∗rMΓ∗r ,

p∗rM = M−1
M∑

m=1

q−r
m ,

Γ∗r = p∗−r
1M trace

(
IM + h0p

∗−1
T V∗−1

)−r

if det(V∗) 6= 0. The shrinkage functions[·]′ do not change for the dual results. Now

suppose that both receivers and transmitters are independent. Then for some scalarτ ,

µ0 = τ1M , µ∗0 = τ1N ,

V0 = v0IM , V∗
0 = v0IN ,

cRaleigh =
M∑

m=1

log2

{
1 +

(
N∑

n=1

pn

)
q−1
m h0v0η

−1

}
,

c∗Raleigh =
N∑

n=1

log2

{
1 + pn

(
M∑

m=1

q−1
m

)
h0v0η

−1

}
,

where1M is the vector ofM ones,η = Nλ = Mλ∗. These agree to a first approximation

if h0η
−1v0 or {pnq−1

m } are small thencRaleigh, c∗Raleigh both equal

(ln 2)−1

(
N∑

n=1

pn

)(
M∑

m=1

q−1
m

)
h0v0η

−1 + O
(
h2

0η
−2

)
.

To make a numerical comparison with the examples of Section 2, we also assume that

the transmitters are independent of each and behave identically, thenV0 = v0IM , V∗
0 =

v0IN , µ0 = τ1M , µ∗0 = τ1N . Here,τ = µ01 is zero for the Raleigh case and one for the

Ricean case.

Example 3.1. Suppose thatpn ≡ p, qm ≡ q, V∗
0 = v0IN . Then forρi of (1.36),

ρ∗3 = ρ3, ρ∗1 = ρ1M/N, ρ∗2 = ρ∗1/h0, c∗Raleigh = N log2 (1 + ρ∗1) .

So, for fixedN the effective SNR is notρ1 but ρ∗1. Also 1/λ∗ is proportional toM for

fixed N regardless of whetherλ = 1 (bounded total power) orλ = N−1 (increasing total
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power). So,

(ln 2)EC = M ln (1 + ρ3) + O
(
N−1

)
if λ = 1,

= M ln (ρ3N) + O
(
N−1

)
if λ = N−1,

= N ln (ρ3M) + O
(
M−1

)
,

where the first two lines hold for fixedM , and the last line holds for fixedN regardless of

whether total power is bounded or increasing.

The asymptotic variances ofC ln 2 by the two methods are

N−1a21(0) = N−1M
(
1 + ρ−1

1

)−2
[12]′,

M−1a21(0)∗ = M−1N
(
1 + ρ∗1

−1
)−2

[12]′.

To recap, forM ¿ N

C ≈ cRaleigh = M log2 (1 + ρ1) ,

varC ≈ (ln 2)−2MN−1[12]′
(
1 + ρ−1

1

)2

while for N ¿ M

C ≈ c∗Raleigh = N ln (1 + ρ∗1) ,

varC ≈ (ln 2)−2NM−1[12]′
(
1 + ρ∗1

−1
)2

,

whereρ1
∗ = ρ1NM−1. A different theory applies ifM , N are both large and comparable.

All the figures from Figure 1.1 can be re-interpreted by replacingM , ρ1, . . . by their

dualsN, ρ∗1, . . . If M = N then dual quantities coincide; for example,c∗Raleigh = cRaleigh

andv∗ = v.

Note that expansions like

(ln 2)EC = −M ln λ +
∞∑

i=0

a1iN
−i = −N ln λ∗ +

∞∑

i=0

a∗1iM
−i

are not comparable as the first is likely to diverge forM/N large and the second forM/N

small, like the expansions forln(1 + x) valid for |x| < 1 and for|x| > 1 whenx = M/N .

Note that the use of (3.1) has remedied the loss of reciprocity noted in Remark 2 of

Telatar (1999).

4 The effect of variable transmitter power

In (1.5) we followed Foschini and Gans (1998) by replacing the random transmitter

powers{Pn/(Nλ)} by their means. The values ofa10 andcN are not changed but the



480 C. S. Withers and S. Nadarajah

other{ari} do change. See there for details. For example,a21 changes to

a21 = p2NΓ2 + kp(2)Γ2
1

for Γr of (1.29),prN of (1.28), and

kp(2) = N−1
N∑

n=1

var (Pn) .

So, if qm ≡ q andV0 = v0IM , then

a21 = M
(
1 + ρ−1

1

)−2 {p2N + Mkp(2)} p−2
1N

for ρ1 = h0v0pT /q as in Example 1.1. If also eachPn behaves like a random variableP

of meanp then

a21 = M
(
1 + ρ−1

1

)−2 {
1 + (M + 1)var(P )/p2

}
.

The effect of allowing variable receiver power is more profound as normality breaks down.

5 The effect of normalization

Consider again Example 1.1 withµ = 0. As N → ∞ capacity approachesc =
M log2(1 + h0v0ρ), whereρ = p/(λq) is the ratio of the average total power transmitted

to the average noise of a single transmitter, as in Foschini and Gans (1998). In fact, this

reduces to their resultM log2(1 + ρ) if we normalize by replacingG0w in (1.2) by

G′
0w = NM ||G0w||−1G0w (5.1)

for

||G0w||2 =
M∑

i=1

N∑

k=1

trace covar G0wik = N trace covar H0w,

trace covar Z = trace covar Z = E|Z|2 − |EZ|2 (5.2)

for Z a random complex vector. For, this is the same as replacingZ0t in Section 1 by

NM ||G0w||−1Z0t, that isµ by NM ||G0w||−1µ andV by (NM)2||G0w||−2V. Let C ′

denoteC when we normalize in this way.

In this example,||G0w||2 = NMh0v0 and ifµ = 0 then

C ′ ln 2 ≈ N
(
M ln(1 + ρ), [12]′

(
1 + ρ−1

)−2
M/N

)

asN →∞ and if there is no delay or for narrowband (1 frequency)C ′ behaves exactly as

if there is no delay and narrowband.
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For givenSw andEw, (1.2) gives

trace covar Rw = N−1||G0w||2 |Sw|2 .

If µ = 0, the left hand side is equal toE{|G0wSw|2|Sw}. So, if instead of (5.1) we

normalize by replacingG0w in (1.2) byG′′
0w = M−1G′

0w then

trace covar R′′
w = |Sw|2 ,

whereR′′
w is Rw with G0w replaced byG′′

0w. Some authors, for example, Chiurtuet

al. (2001), argue that one should use this second normalization to ensure that the total

receive power equals the total transmit power when averaged over the random channel

matrix. This has the effect of replacingρ by ρ/M so that the largeN capacity becomes

M log2(1 + ρ/M) → ρ asM → ∞. However, here we do not need to normalize keep

capacity finite when bothN, M →∞.

For the general case by (1.16)

||G0w||2 = Nh0 trace V,

so forµ = 0 this normalization gives

C ′ ln 2 ≈ N (ln det (IM + pT MV/ trace V) , [12]′p2NΓ′2/N) ,

whereΓ′r = p−r
1N trace (IM + M−1V−1 trace V)−r for detV 6= 0, and again if there is

no delay or narrowbandC ′ behaves exactly as if there is no delay and narrowband.

One cannot drop the termEZ in (5.2) if µ 6= 0 as otherwise||G0w||2 will depend on

the frequencyw.

6 Conclusions

The formula of Foschini and Gans (1998) for capacity has been extended to allow for

• transmitters of different powers;

• receivers of different powers;

• correlated transmitters (for the dual expansion);

• correlated receivers;

• Ricean as well as Rayleigh fading;

• line of sight;

• multiple frequencies;
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• delay spread;

• normalization.

In each case we have shown how to obtain approximate normality, and how to calculate

the distribution and outage probabilities as power series inN−1/2 (or in M−1/2 in the dual

case).

We have shown that one or two terms in these expansions is usually sufficient unlessN

is extremely small orN andM are close in magnitude.

We have shown that by spreading the frequencies used one can reduce the variance of

the capacity, and so achieve a given outage probability with less total power.
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