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Abstract: A fractional PID (PIλ Dµ ) controller is an extension of the classical PID controller, employing five tuning parameters
rather than just three. General guidelines are available for the effect of classical controller parameters on the time domain specification.
However, no guidelines are available for fractional PID controllers, particularly for the order of differentiation (µ) and integration (λ ).
To assist with fine tuning, the effect of the order of differentiation and integration parameters on the time domain specifications for
various plants are investigated. The relationship with thetime domain specification serves as general guideline for manual tuning, and
the effect of parameters will also assist with auto-tuning.In this paper, five plants covering integer order as well as non-integer order
are simulated. The relationship between time domain specifications is plotted by varying the order of differentiation and integration
between 0 and 2. Simulation results have revealed an association between the order of differentiation (µ) and the maximum overshoot
(MP) for all plants. No other particular behavior was observed with other time domain specifications. However, some remarkson time
domains specifications are made from the simulation results. Simulation results were validated using an experimental set up of the
quadruple tank system.

Keywords: Fractional PID controller,fractional calculus, effect ofparameters, fractional order controller, auto tuning of fractional PID
controller.

1 Introduction

The prospects of fractional calculus continue to get brighter. The applications of fractional calculus in control systems
include the designing of fractional PID controllers and themodeling of plants using fractional differentiation equations.
Fractional PID controllers concern an area of research thathas been receiving growing attention [1,2,3,4,5,6]. A fractional
PID controller is an extension of the classical PID controller and encompasses two additional parameters, namely the order
of differentiation (µ) and integration (λ ), which are not found in the classical PID controllers. These two extra parameters
enable the fractional PID controller to improve the performance of the system.

A fractional PID controller is recognized to provide robustperformance [7,8,9,10,11]; secures five different types of
objectives; and offers better results for fractional and integer-order plants [13]. Many real systems can be modelled more
accurately using fractional order systems , for instance electrical circuits, electro-analytical chemical analysis, and nuclear
reactors [12], as well as many physical phenomena [13].

The current work sought to study the relationship between different parameters of a fractional PID controller and the
specifications related to the time domain for the order of differentiation and integration. Knowledge of such relationships
will facilitate in tuning a fractional-order PID controller both manually and automatically. The relationships between
different parameters based on tuning parameters in the caseof the classical PID controller are shown in Table1 [14,15],
which serves as a general guideline for fine tuning and works with most plants.

Tuning of any controller is always a challenging task [16]. Although many auto-tune algorithms are currently available
for designing classical and fractional PID controllers [17], yet it is necessary to fine-tune a controller. In practice,the tuning
of any controller needs to be followed by fine tuning. Even in amodel-based control design, the performance of the system
depends on the accuracy of the model; if it is not accurate enough, fine tuning is necessary. For fine-tuning a classical
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Table 1: Effects of increasing a parameter independently.

Parameter Rise Time
Tr

Overshoot
MP

Settling
Time Tss

Steady
State
Error Ess

Stability

KP Decrease Increase Small
change

Decrease Degrade

KI Decrease Increase Increase Eliminate Degrade

KD Minor
change

Decrease Decrease No effect in
theory

Improve if
KD is small

PID controller, general guideline regrading the effect of parameters is available (Table1): but for fine-tuning a fractional
PID controller, no such guidelines are available, althoughmany heuristic methods for tuning have been developed for
that purpose. The summary of different tuning methods for fractional PID controller was presented by D. Valerio and J.
Costa in 2010 [18]. The current work was designed to find out the effect of fractional-order parameters on time-domain
specifications in the case of a fractional PID controller.

The effect on the order of differentiation (µ) and integration (λ ) (from 0 to 2) was ascertained experimentally as well
as by using a simulation. The simulation studied five different plant order systems, namely first order, second order, higher
order, fractional order and first order delay time, coveringdifferent dynamics of various plants. Initially, these plants were
tuned based on the Nelder Mean optimization approach. The Nelder Mean optimization method is based on the concept of
simplex approach (sort, reflection, expansion, contraction, shrink). Afterwards, the order of differentiation and integration
was raised in steps of 0.1 and the results were plotted for allthe five plants.

To validate the results of the simulation, the effect of the fractional-order parameters was analyzed experimentally
using a quadruple tank system. This set-up was connected to MATLAB/Simulink by the Open Platform Communication
(OPC) protocol. Only one controlled variable was considered. Using FOMCON, afractional order modeling and control
tool, a fractional PID controller was implemented in real time.

The simulation results reveal the specific relationship between maximum overshoot and the order of differentiation
(µ). There exists no straightforward relationship with othertime domain specifications. However, following points are
observed in this study:

–There exists a particular relationship betweenµ and maximum overshoot (MP).
–By changing the values ofλ andµ , the time domain specifications can be further improved which is advantage of the
fractional PID controller.

–For a fractional order model, the influence is almost same fordifferent values ofλ on time domain specifications.
–The settling time goes worst asµ approaches 2 for integer order system.

Maximum overshoot is an important characteristic of a control system. For many critical systems such as pressure,
even a small overshoot can be dangerous. However, as shown inthe current paper, this maximum overshoot can be varied
using the order of differentiation of a fractional PID controller. For optimization of the controller, maximum overshoot
can be used as a measure of performance.

This paper is organized as follows. In Section 2, basics of fractional calculus and fractional order controller are
covered at the elementary level. The different types of tuning methods are also listed out in this section. In Section 3,
design for simulation work is specified. This simulation work is validated using experimental set up by the quadruple tank
system. Results and discussions are presented in Section 4.In Section 5, conclusions are presented for this work. Finally,
references are given at the end.

2 Basics of Fractional Calculus and Fractional PID Controller

2.1 Fractional calculus

Fractional calculus, although it predates classical calculus by more than 300 years, is rarely appreciated in research[19].
However, over the last few decades, many researchers have explored the applications of fractional calculus in different
areas including control systems, speech signal processing, process modeling, chaos, and fractals [7,10,20].

c© 2017 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl.3, No. 2, 141-154 (2017) /www.naturalspublishing.com/Journals.asp 143

In fractional calculus,aDα
t , the differentiation integration operator, is defined as follows [21]:

aDα
t =



















dα

dxα α > 0

1 α = 0
∫ t

a(dτ)−α α < 0

(1)

whereα is the order of the operator andα ∈ R. The theory of fractional calculus is dogged by some controversy, as a
consequence of which fractional calculus is defined in many different ways. The relevant definitions are briefly described
below.

2.1.1 Caputo definition

The Caputo definition is extensively used in engineering [1,22,23], as the definition offers a straightforward association
between the type of initial conditions and fractional operator. A derivative of the constant is bounded in the case of the
Caputo definition, which is given by

aDα
t =

1
Γ (n−α)

∫ t

a

f n(τ)
(t − τ)α−n+1dτ (2)

wheren is an integer number, which satisfies the condition(n−1)≤ α ≤ n, α is a real number, anda andt are the limits
of integration. For example, ifα is 0.8, then n would be 1 because 0≤ 0.8≤ 1.

2.1.2 Riemann-Liouville definition

The Riemann Liouville (RL) fractional definition is given bythe following equation

aDα
t = DnJn−α f (t) =

1
Γ (n−α)

(

d
dt

)n ∫ t

a

f (τ)
(t − τ)α−n+1 dτ (3)

wheren is an integer number, which satisfies the condition(n−1)≤ α ≤ n, α is a real number,J is the integral operator,
anda andt are the limits of integration.

2.1.3 Grunwald-Letnikov definition

The Grunwald Letnikovs (GL) fractional definition is definedas

aDα
t = lim

h→0

1
hα

[ t−a
h ]

∑
r=0

(−1)r
(

n
r

)

f (t − rh) (4)

wheren is an integer number, which satisfies the condition(n−1)≤ α ≤ n, a andt are the limits of differentiation, h is
the step size for differentiation,[ t−a

h ] is integer part and
(n

r

)

is the binomial coefficient.

2.2 Fractional PID controller

The fractional-order controller was introduced by I. Podlubny for fractional-order systems [13,24,25]. I. Podlubny
demonstrated that a fractional-order controller had a better response than an integer-order controller for a
fractional-order plant. The beauty of well tuned fractional PID controller is that it is less sensitive to changes in the
variables of the controlled system and the controller [11]. This type of controller makes it possible to adjust greater
number of system dynamics. Many researchers confirm that fractional-order controllers outperform classical PID
controllers in many applications [16,26,27].
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A fractional PID controller has five parameters for tuning, as shown in Eq. (5). Fig. 1 shows a block diagram of the
fractional PID controller, which has the following structure [28,27]:

C(s) =
U(s)
E(s)

= KP +
KI

sλ +KDsµ ;(0≤ λ ,µ ≤ 2) (5)

whereC(s) is the controller transfer function,U(s) is the Laplace of control signal,E(s) is the Laplace of error signal,
KP is the proportional constant gain,KI is the integration constant gain,KD is the derivative constant gain,λ is the order
of integration andµ is the order of differentiator. A fractional PID controllerbecomes a PID controller ifλ = µ = 1 as
shown in the Fig.2.

Fig. 1: Block diagram of fractional PID controller.

Fig. 2: The fractional PID controller plane.
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A fractional PID controller is also implemented in real-time applications using analog as well as digital approximation
methods. In most cases, the orders of the fractional PID controller lie between 0 and 2. Many variations of the fractional-
order controller have been investigated, including(PI)λ , non-liner fractional PID controller, TID (tilted proportional and
integral), and CRONE controller (Commande Robuste d’OrdreNon Entier, meaning non-integer order robust control).

Tuning a fractional PID controller [29] is harder than that of a classical PID controller, because as the former offers
more parameters. Tuning methods can be numerical, analytical, or rule based. Tuning methods based on optimization,
such as genetic algorithm, adaptive genetic algorithm, enhanced particle swarm optimization, andMS (peak value of
sensitivity function) constrained integral optimization(MIGO) fall under the category of numerical methods. In analytical
methods, the parameters of a controller are obtained by solving equations, which are calculated with the help of the desired
specifications. In rule-based methods, a modified version ofthe Ziegler Nichols technique has been developed for tuning
a fractional PID controller. Apart from the above methods, internal model based (IMC) and auto-tuning methods are also
used for tuning a fractional-order controller [17]. The review of different tools associated to fractional calculus and control
can be found in [30,31].

3 Simulation and Experiment Work

3.1 Simulation work

Five different systems were simulated to study the relationships between the order of fractional parameters and the time-
domain specifications by varying the order of fractional parameters in the fractional PID controller. As mentioned earlier,
the plants were of first order, second order, higher order, fractional order systems, and first order system with delay time
system (FOPDT). The higher-order plant was described by H. Panagopoulos in 2002 [32], whereas the fractional-order
plant was described by I. Podlubny in 1994 [24]. The general structure of the first order delay time and second-order
systems was considered for the simulations.

P1(s) =
5

4s+1
(6)

P2(s) =
1

(3s+1)(10s+1)
(7)

P3(s) =
1

s(s+1)3 (8)

P4(s) =
1

0.8s2.2+0.5s0.9+1
(9)

P5(s) =
2

5s+1
e−3s (10)

Time-domain specifications can be divided into two categories, namely transient performance and steady-state
performance. Both were covered in the simulation. Rise time, peak time, settling time, and maximum overshoot were
perceived as performance parameters for evaluating the effects of the fractional-order parameters. Time-domain
specifications are relevant parameters in designing control systems, and are are frequently considered as performance
indices even for the optimization of controllers [16].

The optimization approach used for tuning the plants is shown in Fig. 3. The Nelder Mead method was used for
the simulation [33] for optimizing the parameters of the fractional PID controller. This method finds out minimum of a
function from more than one independent variables without using derivatives. A simplex hasn+1 points inn dimensional
space, which represents the number of independent variables. For tuning of fractional PID controller, the integrated square
error (ISE) was chosen as the performance index. This measure is more useful because the range of error was large in
most cases and was thus more appropriate for designing the controller. . The integrated square error is defined as follows,

ISE =

∫ t

0
e2(t) dt (11)

wheree(t) is the error signal, and it is given for unity feedback systemconsidering unit step input,

e(t) = 1−L−1
(

1
s

GP(s)GC(s)
1+GP(s)GC(s)

)

(12)
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Note:L−1{F(s)} represents the inverse Laplace transform ofF(s). In this case, the number of independent variables (n)
is five. Firstly, initial simplex is generated for six points. Now, the cost function (ISE) is calculated for all points. Then, all
the points are sorted based on cost function. In this space, the first point is considered best solution and last point as the
worst solution. Finally, the algorithm iteratively updates the worst point by four possible actions: reflection, expansion,
contraction, and multiple contraction. The optimal solution could be found by iterating the above steps.

Fig. 3: Optimization approach for design of fractional PID controller.

Calculation of the time-domain specifications for a fractional-order system is a little tricky as thestepinfo function
is valid only for integer systems. Here, the time-domain specifications for the fractional PID controller were calculated
using FOMCON toolbox as follows.

–Define a plant transfer function in a fractional transfer function object (G(s)).

G(s) = fotf(BPOLY,APOLY)

For plant 4,G(s) = fotf(‘1′, ‘0.8s2.2+0.5s0.9+1′)
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–Based on the parameters of the fractional PID controller, create a fractional-transfer function of the controller (C(s)).

C(s) = fracpid(KP,KI ,λ ,KD,µ);

–Find out the closed-loop fractional-order transfer function.

Closed loop transfer functionGcl(s) =
G(s)C(s)

1+G(s)C(s)

–Obtain an integer-order approximation of the fractional-order system using Oustaloups method (refer equation13 ).

sys int = oustapp(Gcl, wb, wh, N)

wherewb andwh indicate the range of frequency for approximation, andN is the order of the approximation.
–Get the specifications of the time domain using thestepinfo function of MATLAB.

S= stepinfo(sysint)

The fractional-order system can be approximated by many methods [34,35,36], out of which the Oustaloup recursive
approximation is the most popular [26,37,38], and the best approximation order (N) can be found by formula given by F.
Merrikh-Bayat [39]:

sv ≈ K
N

∏
k=−N

1+ s/ωk

1+ s/ω ′

k

(13)

For the above steps, the FOMCON toolbox was used for creatingthe fractional-order system. The toolbox, which is
based on a fractional-order calculus, is used for designingcontrol systems as well as modeling fractional-order systems
[40,41,42].

3.2 Experiment validation using a quadruple tank system

A quadruple tank system is a non-linear as well as multivariable control system and contains four tanks and two pumps.
Only one control variable, namely the level of lower tankh2, was considered in the current experiment. This variable was
controlled by adjusting the speed of the pump (υ2). Pump 1 feeds tanks 1 and 4, and pump 2 feeds tanks 2 and 3 (Fig.4).
Fig. 5 exhibits a photograph of the plant. Different specifications of the quadruple tank system are shown in Table2.

Table 2: Constants for experimental set-up.

Constant Description Value

Ai Cross section area of tank i 196cm2

ai Cross section area of the outlet hole(for tank i) 0.64cm2

g Acceleration due to gravity 981cm/s2

ki Pump flow constants 3.3cm3/sV

The quadruple tank system is connected to the OPC protocol. This protocol allows real-time plant data to be shared
between control devices from different manufacturers of programmable logic controllers (PLC). Using the OPC protocol,
data can be read and written in milliseconds. In Simulink, anOPC client can be configured with a local or a remote
host, depending on the location of the OPC server. For reading and writing operations, the OPC read-and-write block of
Simulink is used with an appropriate tag as configured in the OPC server. The schematic block diagram of the experimental
setup is shown in Fig.6. The speed of motor (υ2) is driven by output of the variable frequency drive (VFD). The output
of level sensor is given to PLC, which is logged into OPC server and fetched to Simulink. Similarly, the output of the
fractional PID controller is sent to PLC through OPC server and is given to manipulated variable VFD.
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Fig. 4: A schematic diagram of the quadruple tank.

Fig. 5: Experiment set up quadruple tank plant.

4 Results and Discussions

4.1 Results of simulation

Initially, the plants were tuned using the Nelder Mean optimization method for fractional PID controller (the results are
summarized in Table3). The FOMCON toolbox was used for designing and tuning of fractional PID controller [43].
For each plant, the effect ofλ and µ for time-domain specifications are plotted as bar plots to perceive the particular
relationship with various time domain specifications. The following constraints were considered for the optimization:

0≤ λ ,µ ≤ 2 and 0≤ KP,KI ,KD ≤ 1000 (14)

The maximum overshoot was associated to the order of differentiation in all the plants as shown Figs. (d) of8, 10,
12, 14 and16. As the order of differentiation increases, the value of maximum overshoot decreases initially but starts
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Fig. 6: Schematic block diagram of the experimental setup.

to increase after a certain point. If the objective of the controller is to minimize the overshoot, such a result will helpin
tuning fractional PID controllers.

Table 3: Fractional PID controller tuning parameters.

Plant
Fractional order parameters

KP KI λ KD µ

P1(s) 703.3 984.68 0.78455 84.544 0.11691

P2(s) 987.87 43.702 0.18499 999.92 1.0637

P3(s) 3.4415 0.1 1.0763 6.6299 1.7424

P4(s) 92.141 549.14 0.84797 392.21 1.1767

P5(s) 1000 1000 0.5273 1000 1.1279

Also, the settling time of a system approaching order 2 of thedifferentiation (µ) was longer for an integer order
system, as shown in Figs. (c) of8, 10, 12 and16. For a fractional order system, the effect on time domain specifications
by changing the order of integration (λ ) is almost the same (refer Fig.13). The effect on time domain specifications by
varying the order of integration (λ ) is shown in Figs.7, 9, 11, 13 and15. There exists no particular relationship between
order of integration and time domain specifications. However, by changing the values ofλ and µ , the time domain
specifications can be further improved, which is advantage of the fractional PID controller.

4.2 Results of quadruple tank system

The effect of the order of differentiation on the quadruple tank system is shown in Fig.17, and the step response for
different values ofµ is shown in Fig.18 for set point of level 35 cm. The range ofµ in the experimental set-up was from
0.1 to 1.2. The tuning parameters are shown in Table4, which is obtained by process model of the experimental set-up,
and is fine tunned for better responses. From Fig.17, it is evident that the maximum overshoot is minimum for 0.4 order
of differentiation.

The quadruple tank system also showed the same relationshipbetween the order of differentiation and maximum
overshoot as that obtained by the simulation. This result can be useful for automatic and manual tuning of fractional order
controllers.
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Fig. 7: Effect ofλ on different specifications (Plant 1).
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Fig. 8: Effect of µ on different specifications (Plant 1).
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Fig. 9: Effect ofλ on different specifications (Plant 2).
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Fig. 10: Effect of µ on different specifications (Plant 2).
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Fig. 11: Effect ofλ on different specifications (Plant 3).
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Fig. 12: Effect of µ on different specifications (Plant 3).
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Fig. 13: Effect ofλ on different specifications (Plant 4).
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Fig. 14: Effect of µ on different specifications (Plant 4).
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Fig. 15: Effect ofλ on different specifications (Plant 5).
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Fig. 16: Effect of µ on different specifications (Plant 5).
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Fig. 17: Experimental results for effect of fractional order parameters.

Table 4: Fractional PID controller tuning parameters for experimental set-up.

Parameter KP KI λ KD µ

Value 3.85 3.99 0.48 16.25 0.4
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Fig. 18: Step response of the quadruple tank system for different values of ofµ .

5 Conclusion

In this paper, the effect of differentiation (µ) and integrator (λ ) order are investigated on various time domain
specifications. Maximum overshoot has a particular characteristic of the order of differentiation from 0 to 2. Other
specifications (rise, peak, and settling times) showed no particular pattern that matched the increase in the value of the
parameters independently. However, following points are observed:

–There exists a particular relationship betweenµ and maximum overshoot (MP).
–By changing the values ofλ andµ , the time domain specifications can be further improved, which is advantage of the
fractional PID controller.

–For a fractional order model, the influence is almost same fordifferent values ofλ on time domain specifications.
–The settling time goes worst asµ approaches 2 for integer order system.

The finding will facilitate in the tuning of fractional PID controllers, an especially useful feature for the plug-and-play
type of controllers. The effect on the fractional-order parameters may be estimated for a given system, such as a first-order
system or a second-order system.
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