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1 Introduction Definition 3.[4] The set K; is said to be invex with respect
ton(.,.), if, there exists a bifunction(.,.) such that

In recent years, several extensions and generalizations

have been considered for classical convexity. Aa+t'7(b’ a) € Ky, va,beKp,t€[0,1].

significant generalization of convex functions is that of The invex set is also calledrp— connected set.

invex functions introduced by Hansotj[ Hansons initial Wi Id like t tion that Definiti fani

result inspired a great deal of subsequent work which has € would like o mention that Detinition of an invex

greatly expanded the role and applications of invexity in Set has a clear geometric interpretation. If we demanq that

optimization and other branches of pure and applied® Should be an end point of the path for every pair of

sciences. Weir and Mond.§|, Jeyakumar and Mond3] point§ abeK, then n(b,a).: b-a, qn_d consequently
have studied the basic properties of the preinVexmvexny reduces to convexity. Thus, it is true that every

functions. It is well-known that the preinvex functions convex set is also an invex set with respecn(@, .), but

and invex sets may not be convex functions and conve>¥he converse is not necessarily true, SEg16].
sets. Inspired and motivated by the research going on in
this field, we introduce and investigate a new class of
convex functions, which is called the geometrically log-
preinvex functions. _For some recent in\_/estigations, 8ee [ Definition 4.[9] A function f on the invex setix K, —R
1819. We establish the relationship between theseijs said to be preinvex with respectid.,.), if there exists
classes and derive some new results. As special cases, oB&ifunctionn(.,.) such that

can obtain some new and correct versions of known

results. Results obtained in this paper present a refinemerft@+t1(b,a)) < (1—t)f(a) +tf(b),va,bc Ky,t € [0,1].
and improvement of previously known results. If n(b,a) = b—a, then invex set reduces to convex set,

Definition 1.[1] The set K is said to be a convex set, if ~ €€ Pl. We now recall the concepts of the geometrically
convex sets and geometrically convex functions, $e [

For the sake of simplicity, we always assume that
[a,a+ n(b,a)], unless otherwise specified.

tat+ (1-t)beK, Va,beK,te[0,1]. and the references their.
Definition 2.[2] Let K be the convex set. Then the function Definition 5.[21] Let I) C (0,). The set}} is said to be
f defined on K is said to be convex function, if geometrically invex set, if

f(ta+ (1—t)b) <tf(a)+ (1—t)f(b),VabeK,te[0,1. a(a+n(ba)r el vaa+n(ba)el,tel0,1].
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Definition 6.[21] A function f: 1, = [a,a+n(b,a)] is said
to be geometrically preinvex og lif inequality.

ProofSince f is geometrically log-preinvex function on
I, thus
n»

f(a(a+n(ba)*) f@@'(a+n(ba))) <

<tf(a)+ (1—-t)f(b),Ya,a+n(b,a) < ly.

[f(b)]'[f ()]
Va,a+n(b,a) € l,,t € [0,1].

If we takelog on both sides, we have

Inf (& (a+n(b,a) )
< In([f @) [F(b)]"), Va,a+ n(b.a) € Iy.
< (1—-t)Inf(a)+tinf(b)

for all a,a+n(b,a) €1, andt € [0,1].
inequality &y < x* +y*+ 8, we have that

Using the

8f(a"'(a+n(b,a))")[f (@) [f(D)]'
< f4(@*(a+n(b.a))") +[f(@)*[f(b)]**Y +8.
Integrating the above inequality oveon [0, 1], we get the
inequality

[tk t(@+ n(b.a)) (1@ (F b))t

Definition 7.A function f: 1, = [a,a+ n(b,a)] is said to
be geometrically log-preinvex op lif inequality.

f(a(a+n(b,a)*Y) < [f(@)]'[f(b)], )
< (1-t)f(a) +tf(b) g/ f4(alt(a+ n(b,a)))dt
< maxf(a), f(b)} 0

1-9dt 8.

1
+ [ @[ (o)
Thus geometrically log-preinvex reduces to GA-preinvex

function and then it reduces to quasi log-preinvexSincef is increasing and continuous, we have
function, but converse is not true. We remark that if

n(b,a) = b—a, thenl, reduces tol and consequently

definition (1.7) is exactly the definition (1.4). This shows

geometrically-convex functions

geometrically-preinvex functions, but the converse |s not

true.
We define the logrithemic mea(a,b) of two positive
numbersa, b by

meaif b#a
t(ab) = (1)
b, if b=a
We also define
b)—
M= (Ina—In(a+n (b, a% ) Z

N:

2 Main results

Theorem 1Let f: 1, — (0,0) be an increasing and a
geometrically log-preinvex function np,l and

a,a+ n(b,a) € 1, with n(b,a) > 0. Then following
inequality holds:

8(f(b) —f(a)) a+n(b2) f®) 4
(Ina—In(a+n(b,a)))(nf(b) —Inf(a)) / >

1 -a+n(b.a) f4(X)
= Ina— In(a+n(b,a))/a X dx

+(fz( );fz(b)) (f(a)-;f(b)) (lmtg:lfn(?gb)) s

8/ f(al(a+ n(b,a)) ‘dt/ [ (a)) [ (bt

/ f4 @l t(a+ n(b,a)))dt

+/O [f (a)]*

Then, we obtain

8(f(b)—f(a)) ra+1(ba) f®) 4
(ina—In(a+n(b,a)))(inf(b) — Inf(a)) /a x

- 1 -a+n(b,a) f4(x)d
~ Ina— In(a+n(b,a))/a X

() () et

This completes the proof.O

b)]*1Vdt+8.

X

Theorem 2Let f,g: 1, — (0,) be an increasing and
geometrically log-preinvex functions onj, | and
a,a+n(b,a) € I, with n(b,a) > 0. Then
L(g(@).9(b) /a+"<bva> LIC
(Ina—In(a+n(b,a))) Ja X
L(f(a), f(b)) /a+n<ba>@dx
In(a+n(b a))) X

(Ina—
a+n(b.a)

~ (Ina— (a n(b,a))) Ja
(b)g(b) — (a)g(a
(

(b)g(b)) —In(f(a)g(a))

N f
In(f
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ProofSince f and g are geometrically log-preinvex
functions, we have that

f@@'(a+n(ba)) <

[f(@) [f(b)]
gl@‘(a+n(ba)) < t

[a(@)]* ‘[a(b)]

Now, using

ac+ bd > bc+ ad,

we get the inequality
f(a*"'(a+n(b,a))")[g(@)]* *[g(b)]'
+g(a " (a+n(b,a)")[f(@)]'[f(b)]* " >0
f(a*(a+n(b,a)")g(@ ‘(a+n(b,a)")
+o@ g [f @] [f (b)) > 0.

Take the integral of ithe above nequality over t{ori],we
have

I, = /01 f(al_t(a_|_ n(b, a))t)[g(a)]l_t [g(b)]‘dt

the elementary
(a,b,c,d) e Rand(a < b,c < d),

+/019(al’t(a+f7(b,a))t)[f(a)]l’t[f(b)]tdt

l2 = /01 f(a(a+n(b,a))g@ ‘(a+n(b,a)))dt

+ [T @@

Integratingly,

)f(a)]dt

= /01 f(a" ! (a+n(b.a)))g(@)]" [a(b)]'dt

+ [o@ @ noa) it @ byt

> [Mat@snma)a [ @

inequality,

Now integrating,

l2 = /01 f(a"'(a+n(b,a))")g@ " (a+n(b,a))")dt

1
+ [ If@gta)* (b f ()
0

. L atn(ba) f(x)g(x)
" Ina—In(a+ n(b=a))/f" Y
1/ f(b)g(b) "
+f(a)91(a)/O (f(a)g(a)) o
. L at+n(ba) f(x)g(x)
~ Ina—In(a+ n(baa))/’“ e

f(b)g(b) - f(a)g(a)
(Inf(b)g(b) —Inf(a)g(a))

_ 1 [ 10500,
~ Ina—In(a+n(b,a)) Ja x2

+L(f(a)g(a), f(b)g(b)))

+

1 a#n(ba) f(x)g(x

B Ina—ln(a+n(b,a))/a X2 dx
, J(@)g(@) + f(b)g(b)
2

Sincel; <1,

M/a+n(b7a) @dx—kN/aﬂ](bﬁ) @dx

1 a:n(b3) 1(x)g(x
= |na—|n(a+n(|o,a))/a %
f(ajg(a) + f(b)g(b)

dx

+

+/ gl@t(a+nb dt/ 2
g(b) — Theorem3Let f:1; — (0,0) be an increasing and

e e ) el b wrion on o

X/a %d 1 a+n(ba) f(x)

f(b) - f(a) Ina—ln(a+n(b,a))/a x X
Tlina—In(a+n(b,a)(nf(a+n(ba) —Inf(@) (f(b)+f(a))(f(b) - f(a))
a+n(ba) g(x) 2(Inf(b) —Inf(a))
X/a X O 2(a) + f(a)f (b) + f2(b)
3
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f(b)—f(a) a+nba) f(x)
= Inf(b)—lnf(a)/a —x X Takelz
f2(a) ot .
+m = / f(alt(a+n(b.a))[f (@) [ (b)]'dt
f(b)f(a) — f?(b) f(b) +/ t(1-1)f(a)f(b)
Inf2(a) —Inf2(b) ~ Inf(b)—Inf(a)
f2(b) — f(b)f(a) +/ f(a1 a+n(b,a)h)((1-t)f(a)+tf(b))dt
2 2
~ Inf2(b) fl?af) (a) | f(b) — f(a) /a+n< VX, 7@
=t Y
e RERIEL TR
a+n(ba 2 _
o [ ('” ath ba)) '”X> f(x)dx +|nf2(a) Inf2(b)  Inf(b)—Inf(a)
T 12(b) — f(b)f (a) f(a)
in(@+ n(b.a)) —Ina)? Ini%mfz(l <|n(a+n<txa ~ina)?
></Wi(bﬁ)Inx;lnaf(x)dx ></a ( > f(x
Proof;incef is geometrically log-preinvex function on  + f(b) /a+n 24 Inx Inaf(x)dx
Iy, we have that (In(a+n(b,a)) —Ina)?
fa ' (a+n(b,a))") < [f(@]"'[f(b)]' < (1-t)f(a)+tf(b) Iy > I, implies that
for all a,a+ n(b,a) € 15, andt € [0,1]. Using the 1 /a+n(b7a)@dx
elementary inequality,xy + yz + zx < X% + y? + 2, Ina—In(a+n(b,a)) /a X
(x,y,z€ R), we observe that (f(b)+ f(a))(f(b) - f(a))
Inf(b)—Inf(a))
P o) 2 )
+[f (@Y [f (b)) +t2f2(b) + ELS (a)3f(b)+f =
+(1-t)?f3(a) +2t(1 - t)f(a)f(b) . _fb—f@ a+n<ba>f(x)d
> f(a ' (a+n(b,a))")[f (@) '[f(b)] - |nf(b)—|nf(a)/a X
+[f( )] B ((1-t)f(a) +tf(b)) n f2(a)
+f@ " (a+n(b,a)t)((1-t)f(a)+tf(b) Inf(b) —Inf(a)

f(b)f(a) — F2(b)

2 _ 2
Integrating the above inequality oveon [0, 1], we deduce Inf (?z(b)lnf (b)
that

TInfb)—Inf(a)
|1—/ f a+n (b a)) )dt fz(b)— f(b)f(a)
Inf2(b) —Inf2(a)
+/ b)]2dt f(a)
In(a+n(b,a)) —Ina
+/ t2§2 dt+/ (1—t)%f%(a)dt ( ai,,bg( In)lH— t))a)) I\ 2
X ( n ) f(x)dx
+/ 2A(1-t)f a
. f(b)
| /“”“’a)mdx (in(a+n(b,a)) —Ina)?
17 na— In(a+n(b,a)) a X a+n(a) |nx — Ina
(f(b) + f@)(f(b) — f(a)) < X [(dx
2(Inf(b) —Inf(a))
f2(a) + f(a)f(b) + f2(b) Theorem 4Let f: [a,a+n(b,a)] C (0,e0) — (0,0) be a
3 . geometrically log-preinvex function ofa,a+ n(b,a)].
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Then for any p> 0, we have ProofTo prove theorem, we observe that if is
1 a+n(b.a) geometrically log-preinvex, then we have
/ X3-1£P(x)dx
a

Ina—In(a+n(b,a)) f(va(a+n(b.a)))

(a+n(b,a))fP(b) —afP(a) - B
= In(a+ n(b.a))fP(b) _InafP(a) <\/f@ atnba))f@@snba)ty

<V f(@)f(b),
Proof.C(InS|der L for all t € [0,1]. If we take the power g > 0O in above
fP(alt(a+n(b,a))) < fP[(@)* ! [fP(b)]! equation, we get

f?P(\/a(a+n(b,a)))
< fP@*(a+n(b,a)") fP(@ (a+n(b,a)*™"
< fP(a)fP(b)

fP(@‘(a+n(b.a)")(@ ‘(a+n(b,a)")

< [fP@][P(b)] (@ (a+n(b.a))")

< [afP(a))* Y(a+ n(b,a)) fP(b)])! By multiplying with (a'”'(a + n(b,a))) > 0 for
g € R\{0} and integrating overon [0, 1] we get
Integrate from G- 1 fzp( a(a+n(b,a))) /Ol(al“(a+ n(b, a))‘)th
1
Jy P arnaia et nb.a) < [M17@ @t noa))1P@ @ (b2

x (@ (a+n(b,a))")%dt

< [farP@(las n(b.a) o) 1
< t°(a)fP(b) /0 (@ (a+n(b,a))")

1/ (a+n(b,a)fP(b)\'
gafp(a)/o ( afr@ )dt . . |
Forq## 0,1, substitute values in above expression, we get

_ (a+n(b,a))fP(b) —afP(a) B
~ In(a+n(b,a) fP(b) ~InafP(a) 128( a<a+n<b,a>>>q|§:—Eﬂﬂb&?&);)
Now tak 1 a+n(ba)

" s - " <m0

| Pt n (b)) (@ (a+n(ba)) )t fp(a(aﬂ,(b,a)))ﬂ_ldx

X

_ ! / 0N a1 dx aP — (a+n(b,a))d

na—ina-+n(ba))Ja = @O G qina+ nb,a)

which implies
Forg=1, we have

1 /a+r)(b,a) q—lfp( d )
X X)dx a—(a+n(ba
Ina—In(a+n(b,a)) /a £2P( a(a+n(b’a)))Ina—l(n(aZ%(b);))
(a+n(b,a))fP(b) —afP(a) _ 1 /a+l7(b.,a) fp(x)fp(a(a+n(b7a)))dx
~ In(a+n(b,a))fP(b) —InafP(a) ~ In(a+n(b,a)) —Ina Ja X
< fp(a)fp(b) a— (a+’7(b7a))
Theorem 5Let [a,a+ n(b,a)] C (0,0) — (0,) be a - Ina—In(a+n(b,a))
geometrically log-preinvex function ofa,a+ n(b,a)].
Then, for any p- 0, we have which is equivalent to
f2p b
( a(a-H]( >a))) ( o pr( a(a+r](b,a)))
a(a+n(ba
) 1 /a+n(b,a) fp(x)fp(f) dx <r /aﬂ(b’a) fp(x)fp(ia(aJrn(b’a)))dx
~ In(a+n(b,a) —Ina Ja X ~ —n(b,a) Ja X
< (@) 1P(b) < P@)fP(b)
(@© 2016 NSP
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Using the fact that)(b,a) = —n(b,a) (skew-symmetric),

we get
f2°(v/a(a+n(b,a)))
atn( ba a(a+n(b,a))
Smaah (e
< fP(a)fP(b)
If g=0, then
f2P(va(a+n(b,a)))

) /01 fP(a"'(a+n(b,a))") fP(a (a+n(b,a)* )dt
< tP@fP(b),

which is equivalent to
f2°(/a(a+n(b.a)))
b,
-a+n(b,a) fP(x)fP (w)

< ! / dx
~ In(a+n(b,a)) —Ina Ja X

Theorem6Let g: [a,a+ n(b,a)] C (0,») - R be a
geometrically log-preinvex function ofa,a+ n(b,a)].
Then, for any & [0, 1],we have

f(vala+n(b,a)))
< ([f(@Z (a+n(b,a) 2 )Y [f(@2 (a+n(b,a)?)
< /T(@f(b)

ProofConsider
g(va(a+ n(b a)))
< (1-t)g(@’z (a+n(ba)z)+tg@z (a+n(ba)?)
1 a+n(b,a) f(X)
Ina/ d

\ N

In(a+n(b,a)) — X
< %[g(a “(a+n(b,a)) + (1-t)g@a+n(b,a) +tg(a)
< 9@ +gb)
2

If fis geometrically log-preinvex function, then, fgr=
Inf, we have

Inf(\/a(a+n(b,a)))
< (1-t)Inf(a’ (a+n(b,a) %)
+tInf(a’ (a+n(b,a))?)

- 1 a+n(ba) Inf(x)d
- In(a+r7(b,a))—|na/ x %

[Inf(a"‘(a+n(b,a))

(1-t)Inf(a+n(b,a))+tinf(a)]
- Inf(a)+Inf(b)
- 2

<1
=2
+

which is equivalent to

a(a+n(b,a)))

Inf(
<In([f(@7)(a+n(b,a) 2 |*[f(a’7 (a+n(b.a)?)])
1 a+n(ba) |n ( )
In(a+r7(b,a))—|na/ X
< In(y/f(@)(@+n(b.a)t[fa+n(b.a)* [f(@)"

f(a)f(b))

dx

< In(

By taking exponential, we get the desired result

f(vala+n(b,a)))
< ([f@7 (a+n(b,a) 2 ) '[f(@Z (a+n(b,a)?)
< /f@f(b)

Theorem 7Let g: [a,a+ n(b,a)] C (0,») - R be a
geometrically log-preinvex function ofa,a+ n(b,a)].
Then

JT@f@rnba)
- 1 a+n(b.a) Inf(x)d
= ex'“((ln(a+ n(b,a))—lna)/ x X

1 | fL(atn(ba)(@tn(ba) f. (aa

(a+n(b,a))8{ farnba) (@ })

a

ProofConsider
g@+g@+n(b,a) 1
2 In(a+n(b,a)) —
a+n(b.a)

0<

Ina

< 3@+ nb.a)@+n(ba) g, @
x(In(a+n(b,a)) —Ina),

and

at+n(ba

0< In(a+n(;,a))—lna/a " >£;)dx
~g(\/ala+ (b))

< 2l (a+n(b.a)(@+n(ba)
—d. (a)al(In(a+ n(b,a)) —Ina)

(@© 2016 NSP
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If we takeg =
Inf( )+Inf(a+n(b,a))

Inf, then we get

atn(ba) Inf(x)
~{in a+r](b Q) - Ina)/a x %
}[ f! a+n (b,a))(a+n(b,a))
8 f(a+n(b,a))

_fi(a)a
f(a)

which is equivalent to
Inf(a)+Inf(a+n(b,a))

}(In(a+n(b a)) —Ina),

2
1 /a+’l<b7a> Inf(x)OIX
In(a+n(b,a)) —Ina/a X
1 f’ (a+n(b,a))
* é{ T <a>a]
fla+n(b.a) - =
In(a+n(b,a))’
a
orto
1

In(v/f(a)f(a+n(b,a)) < In(exp(

/aa+n(b,a) @dx))

L (atn(ba)(@tn(ba) f\ (a
(a+n(b a)) mea) @

f(at+n(b.a))
a

In(a+n(b,a)) —Ina

Taking the exponential of above equation

Vi@

1 atn(ba) Inf(x)
Se’"“((ln(a+:7(b,a))—|na)/a X OX

f(a+n(b,a))

1| F(atnba)@+n(ba) 1 (@a
a+n(b,a)\® fla+n(®.a)) @
X| ———— .
a
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