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Abstract: The O-BLUEs defined by Moussa-Hamouda and Leone(1974) argideyed and the effect of an outlying observation
in these estimates are studied for a regression model. Tieme Eestimates are used in developing two outlier test guoes. The
results are highlighted with an example. The power of thesequlures are studied and the power values for the same kxamaglso
tabulated.
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1 Introduction

Consider a general linear modek X’8 + e, wherey is a column vector of observations of ordeX is a known matrix
of orderp x k, is the column vector of effects which is of ordeande is the error vector of ordds, which is assumed to
be distributed as multivariate normal with mean ve€tand dispersion matriki.e. N(O, ).

Most technique towards the identification of outliers in esimental design can categorized in three groups- residual
based, nonparametric and robust. Use of the residuals &xtdetultiple outliers in a two-way design may lead to
unsatisfactory results. Most of the early work in identifica of outlier has been developed on the examination of
residuals e.g. Danial (196Q][ Stenfansky (1971}, Goldsmith & boddy (1973¥], John and Prescott (1978)[and
usually they are successful to identify at most one or twdierst But residual based methods are not much reliable as
the residuals have some serious short comings. Barnett enis I(1994)b] point out that outliers not only affect their
own residuals but have a carry over effect on others. Thexetoe existing residual based methods have become
unreliable for detecting more than one outlier e.g. Gendlerand wilk(1975a}j] first propose a formal test for
thepresence of multiple outliers. some of the work on tgstf outliers in linear model based on residuals are
Gentleman and Wilk ( 19756, John and Draper (1978, Draper and John (198®), Joshi (1972)L0], Joshi and
Lalitha (1986)[L1],Ellenberg (1976)12 etc. Hamounda and Leone (19743 have considered a regression model and
for estimating the parameters of the model,they have usBd @ (Ordered - Best Linear Unbaised estimators), which
they have indicated to be better estimators than the onellmseesiduals. Here we study the effect of outliers in the
estimation procedure, i.e. O-BLUE defined in this paper hst this information can be used for developing an outlier
detection test.

2 O-BLUE and the effect of outliers in them

A simple regression model is a form of a Gauss-Markov lineadeh The explicit form of the model is
Yij = o+ B (% —X) +&;j 1)

wherei =1,2,....kandj = 1,2,...,n;, X is an independent or input variable assumed to be fixed. Tbetermse; are

independent and identically distributed random varialiles a continuous symmetric distribution with mean 0 and
H 2

varianceo*.
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Now the O-BLUE defined by Hamouda and Leone (1974), with @debservations in a distribution, depending only

on location and scale parameter and equal valueg 0é.n; = ny = ... = ng = n, is as follows:
Arrange the observation§’s an ascending order of magnitude, ¥gy) < Yo < ... <Yy, for eachi. Further let
Zj) =Y —a—-Bx—x/0 )

i.e. thez;(;) is a standardized residual about the regression line. Zhgns the j'" order statistic of a random sample of
sizen from a standardized symmetric distributiBrwith mean zero and variance one.
Defining the first and second moments of the order statistic as

E(ZI(J)) = Cij andCov(Zi(j),Zi(j,)) = (,()”/
the O-BLUE ofa, 8 ando are

R 1/9—1 k
aozmi;Yﬁ (3
R rA—1 k
fom —2 > (0¥ (4)
Q1) 5 (6=
i=1
and
. cQt ko
RPN v

where 1/ :(1,1,...,1), YI/ :(Yi(l)7Yi(2)7"'7Yi(n))1 Q= COV(Zi), ZI/: (Zi(l),Zi(z),,...,Zi(n)) and c'= E(Zf) Also let
Y =(Y1,Y2,...,Yk) be ann x k matrix of all Y vectors. We have

s Y,
2,y
: Y,
K v izl '
2,
¥
2o
The variances of these estimators are
R o2
Var(ao) - m
“ og?
Var (o) = c
(rQ-11) 3 (xi—x?
i=1
. o2
Var(O'o) - m (6)

and all covariances are zero.

Now to study the effect of outliers on these estimators, weduce a shift (either positive or negative) in the
location parameter of any component of one of the obsemvalfi@ negative shift in smallest component and a positive
shift in largest component is introduced, this may not disthe order of the observations. But if the shift is in anyasth
component, or a positive shift in the smallest componera, megative shift in the largest component, then this shift wi
affect the order of the observation and calculation of aBIOJEs of the parameters.
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Suppose we introduce a shifin theb™™ observatiorb = (1,2, ...,K) , i.e. if a positive shifia(> 0) is introduced in the

location parameter of" component ob" observation, then the changed order of the observatiohgimiatrixY is

and
0
a=|a
0
Then
k
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k
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i=1
k
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k
Then ¥ Y;+acan be written as

i=1

Hence the O-BLUE oty is

N Q-1 K
GO k(l’Q_ll) (I=E |+a),

where( % Yi+a)isasin).
i=1

k
>y
i=1

k
> V2
i=1

i
i=1i4b

Yor
Yo(r+1)

Yb(s—1)

9)

(10)

1=
Thus (L0) gives the estimate af, when a shift was introduced in one of the components of tleemation vectol,.
Hence, to make an assessment about the deviation caused shiftin the estimate ofr, we obtain the difference

between the estimator obtained t0f and that obtained irdj as follows:

do —do=

ro-?

k1Q 11

0
0

Yor' — Yor

Yo(r+1) — Yb(r+1)

Yo(s—1) — Yo(s—1)

0

! A

do —do=

101
k1Q 1)~

d

whered is the vector of differences between the shifted obsematial the original observation.
Thus while calculatingf, if we wish an accuracy of, then we should have the deviationd@f (do in the presence of an
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outlier)fromdg less thare.

, Q-1
1o — do| < < | =
Similarly, in the estimation oﬁo, when there is a shift,
~ 1/Q—1 k
Bo = - > (x =% +a)
(1Q21) 5 (4 —%2
i=1
~ . 1/_(271 k
BO = BO+ K Zl(xi _)z)av

(10711 3 (4 -%?'
i=1
Hence, the shift introduced does not affect the estimat@ oé. the estimatoﬁo is unaffected by the presence of any
outlier.
Now the expression for the estimatdy, when a shifais introduced is

, Q1 k
6 =————S (Y +a 12
0 k(C*,'QilC*) |Zl(_l ) ( )
'0-1 k '0-1

c* Q
——— 3V Yj+—a
k(c*/oflc*) i;—' k(C*'Qflc*)

wherea* andQ 1 are as defined ir7j and ©) respectively and

Q
~ c*
0y =

c*=E(Z +a*) =c+a’, wherea" = £

Hence to make an assessment about the deviation, we obtadliffdrence between the estimator obtainedli®) @nd
that obtained ing) as follows:

0
0
Yor’ — Yor
. Yo(r+1) — Yo(r+1) . a1
UO—UO: . OI’GO—GOZWQ
Yo(s—1) — Yb(s-1)
0
0

Thus while calculatingiy’, if we wish an accuracy of, then we should have the deviationdy from dyless thare,
i.e|dy —do| <e.

C*/Q—l

—— - —d/<¢

k(C* Q C*)

*/_Q—l
k(c*’Qflc*)
Note that the above arguments will hold if any component &f ofithe observation is shifted and the shifted amount does
not change the order of the observatifyj). Due to this, it is difficult to define an outlier detection pealure, if some

of the observations in the middle are shifted . We can onlgudis that how much variation is created by shifted amount
from the original value. However, for end observations, atlier detection procedure is discussed below next section

= |

-1
= |d <| |
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3 Outliers tests for end observations

We propose to define outlier detection procedure based oth€ljlesired accuracy of the estimate, and (2) the usual
significance level, i.e. using the likelihood ratio testr Bus, we consider the O-BLUE defined for a simple regression
model.

In practice, while dealing with real data, neither the vabfi@ nor the component which is deviated from the original
value may be known. In such case fffecomponent (which is supposed to have deviated} ofctorY; can be identified

as the one for which the amount of deviation is given by

a=max(a,an) (13)
wherea; = max(|Y; —Yi|,[Yin—Yal),i = 1,2, ....k.

— n
andY; = ”%lu#jz)le”’J =1orn

3.1 Test based on the desired accuracy of the estimate

A test procedure based on the shifted vagn be defined as follows:

If an accuracy of is sought in the estimation of the parameterando, then declare th¢" component of thé" vector
to be an outlier if either

k§ E Wi k3 § ciciw'l
. . 1 1)

i=1j=1 i=1j=1
€|

a>max{ | cawlle s, (14)

h
i=1

n
2 W
=

wherea is as defined inX3).

3.2 Data Analysis

We consider the example used on observations by Hamoudaeanml(1974), which is as follows: A research program to
investigate the relationship between reaction conditiwhydeld in the low pressure polymerization of ethylene uggld
200 laboratory polymerizations. Here we consider only tecentration of ethylend=f) in moles/cc as the input and the
polymer yield G) in grams per batch as output. The reaction time is fixed atiBOit@s. The regression equation used to
estimate the theoretical kinetic model is

log(G) = o’ + B'log(Et)

LetYij =log(G) andx; = M@}%. In this example there are 4 observation vectors each witniponentsi.& = 4
andn = 5. For this example the O-BLUE obtained by Hamouda and Leb8&4) for the parameters atg = 1.9227,
Bo = 0.20866 andip = 0.14908.

Here,
1.577 1.469 1.888 2.031
1.6232 1.6901 1.9020 2.1283
Yr=| 1.6263],Yo= | 1.9647| ,Y3=| 2.0549| &Y, = | 2.1405
1.7450 1.9956 2.1058 2.1983
1.790 1.998 2.2329 2.291

For these vectors,andQ ! were found to be

c=(—1.16296—-0.49502 0 049502 116299

and
0.848720 0519080 —0.052162—-0.515950-0.41578
0.519081 0111022 —0.150125-0.150162—0.515950
Q1= | -0052162—-0.150125-0.132590—0.150125—0.052162
—0.515950-0.150162—-0.150125 0111022 0051908
—0.415780—0.515950—-0.052162 00519081 0848720
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Now in one of the components of one of the vectors a shift imthiced. Suppose the first component of the vettos
shifted to the left by a magnitude of BB03 i.e. when the vectdf has a shifted value, we have

= (—10.3129 16232 16263 17450 17902

With this change in the observation, the O-BLUE af in the presence of an outlylng observation is givenddy=
10.1404. The O-BLUE of3; is unaffected by the presence of any outher,Bé ﬁo 0.20866 and finally the O-BLUE

of gy in the presence of an outlier is found to bgz From this it can be noticed that O-BLUE are highly sensifive
outlying observations, as with just one component of on¢ordtas affected the estimatesamfindo to a great extent.
Now for the outlier test procedure, suppose we wish an acguriE = 0.01 Then we wisldy' — do and similarlydy’ — do.
If this is violated, then we expect some outlying observaidience to estimate the deviation of the outlying obsemat
we use 13). Thus it was found

a=max(| — 12.00911,(3.11981) = 12.00911

This corresponds to the first component of the first vectortel andj = 1. Now, to test whether this shift is significant
kggwij kz ZCCJ(;.)'J
i=1j=1 i=1j= 1

or not, we may have to calculate—|s =qay and| c w'l|e = a1, as per 14) for comparison with the
Z

i=1
estimated value dd. Thus the calculated values of anda, are 001476 and (L4334 respectively. Hence it can be seen
thata is greater thamax{ a1, 01 }; therefore the first component of the first vector is decla®en outlying observation.

3.3 Likelihood ratio procedure for outlier detection

In this procedure we state the null hypothé4jsas there is no outlier in the data and the alternative hysighkiz as one
of the components i.g™" component of one of the observation vectorit'evector is shifted by an amouat For this the
likelihood functions undeky and undeH; have to be determined. Here again 1,2,...kandj = 1,2, ....n. UnderHg,

Yht Hn1 a+B(x—X)
. . a+B(Xy—X)
Eh) = = =pth= | a+PBx—X) |, h#i
. . a+ By —X)
Yhn Hhn a+B(X —X)
0

UnderHy, E(Y;j) = i +awherea= | a | —j" component, i.eE(Yjj) = pij +a= a + B(x — X) +a. In this, we make

0
use oféay} andﬁ(’), the O-BLUE ofa andB when an outlier is present, for the valuesiodnd. If V;,i = 1, kare distributed
each as normally with megn and covariance matriX then undeHo,

K

=1 S YRR e TS

b (2m)2|]
1 b3 Ohe) = None)
2 h—Hh h h
N .
K 1 1 I5-1 1 51
Ly = |—| _ 1e—2(Yh—Uh)z (Yh—Hn) g=3 (Vi—Hi—8)' = (yi—Hi—a)
h=1,(h4i) (21)2|Z|2
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k

1 2 Y Oh—mn)Z =)+ (Yi—p—a) T (Y~ —a)
_ ke h=1.(hi)
- em¥z)t
Now,
(Y —Hi— ) (Y i —a)
== ) =YY - w) —aZ Y — ) — (Y — )’z ta+d s A
LetC= —3%—, then

k
Y (Ya—n) 27 =)+ (=) 27— ) —a =L (Y= ) = (Yi— i )’Z’laJra/Z’la}

313 O 2 02 ) () 3 Tz )
—Ce i1 (16)
From (15) and (L6), we have
Ly = Lo. ef%[a’Z’lafza’Z’l(Yifui)]
Li_ ez ta2asiv-w)
Lo
Now in the likelihood ratio test the critical region is givbg
::—>k:>e dlazta2d s -] 5 K (17)
0
Taking logarithm on both sides o 7)
1
-5 [@zta—2a =71 (Y, — )] > log(K)
= (%) > 5@z ) H(2og(K) +a )
= (Y — ki) > Ky whereKy = 3(a=~1)"1(2log(K) + &= 1a)
= (Y — ) =Y — ) > KiE Ky (18)

where(Y; — ui)/Z—l(Yi — W) is distributed as 2 variate withn degrees of freedom undelp. Hence, thex level critical
region is given by

vi=(%— ) Z Y - ) > x3(a) (19)

XZ2(a) being the 10@ percent tail of ax? distribution. Hence if for a given set of observation$)(holds then the'"

vector is an outlier and to identify th#" component of such a vector, we make useld®).(Here, in our case we have
> =o'. Hence 19) becomes

w= 06— )% — ) > X(e)

or

10 .
—22 —Wwij)? > x3(a),i=1,2,...k (20)

Hence to perform this test, if we make use of the O-BLUEx6fand 6’ for the value ofa and for the estimation of

i, i =12, ...k then the determination of the critical region will be errons, as the outlying observation affects both
a’ and @’ in the calculation of the estimate pf,i = 1,2,...,k. Hence, we take a censored sample for these estimations,
as it is shown by Hamouda and Leone (1974) that the estimatained from censored samples are very close to the
uncensored estimates. Now to decide as to which componsi e deleted to obtain a censored sample , we make use
of (14) and delete that component, which corresponds to the edionlof maximum of. The same component has to be
deleted from all the observations and we estimate all thempaters, which are further used for estimating = 1,2, ...,k
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4 Data Analysis

We shall consider the same example as was discussed in psgwiocedure. On the basis of maximumapthe first
component of all the observations are deleted and a censaregle of size 4 each with 4 components are formed.

From this the estimates af, 3 and o were found to bed” = 1.9286,3” = 0.20078 andd” = 0.17703 . Now from
these the estimates pof,i = 1,2,....karey;; = 1.6274,p; = 1.8282,3j = 2.0290 andusj = 2.2298 j = 1,..,5. Using
these estimates the valueswfi = 1,2,....,k arev; = 36.4667,v, = 7.1222 v3 = 2.6844 and v, = 1.9962. Also the
tabulated value 0)‘(52 is 11.070 at 5% level of significance. Hence, except for thet ¥imlue all are less than the tabulated
value, thereby indicating that the first observation to eedhe which is contaminated. Again, since the maximura of
corresponds to the first component of the first vector, thatpmment can be declared as the outlying component.

5 Performance of the test

For the performance calculation, we have to obtain the fitiha
n=Pr{(¥—p—ayZ*(¥—p-a)>x}

here we have = 0?l. Hence

00—t py - a) =

(0~ @)/ 00— =) = o { % — ) (% — ) — (% — ) — (¥ — ) +-la)}

:é{i(%k—ﬂik) —2a(Yij — pij) + 2}

=1

>

Now, if a = 2a(Y;j — 1j), then

%(Yi—ﬂi—a)/(Yi—Ui a)=Vi— {a a’} = v

Hencen =P{vi > x%(a)} = a. Letb= 2 {a? — 2(Y;; — p;j)a}. Then,

n=Pr{vi+b> x2(a)} =Pr{vi > x2(a)—b}
Now if b > 0, thenn > a; otherwise it will be less thaor. Hence, for the test to be effective, we should have a pesitiv
value ofbi.e.

a > 2(Yij — pij)a= a> 2(Yij — ).

The performance of the test for the above example was dotmedifierent values of a .The performance of the test for
positive shift is given in table 1 and performance of the teshegative shiftis given in table 2.
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Table 1: Performance of the test for positive shift

Parameter| Estimate| Standard| Lower Upper
Error Credible | Credible
Limit Limit
0.001 -0.03231| 0.00295 | 11.06753| 0.05005
0.025 -0.03231| 0.10081 | 10.96967| 0.05198
0.05 -0.03231| 0.25786 | 10.81262| 0.05522
0.075 -0.03231| 0.471162| 10.59932| 0.059929
0.1 -0.03231| 0.740703| 10.32978| 0.066412
0.2 -0.03231| 2.381299| 8.689184| 0.122122
0.3 -0.03231| 4.921789| 6.148694| 0.292018
0.4 -0.03231| 8.362173| 2.70831 | 0.744847
0.5 -0.03231| 12.70245 0 1
1 -0.03231 | 47.90224 0 1
1.25 -0.03231| 73.93864 0 1
1.5 -0.03231| 105.5994 0 1
2 -0.03231| 185.7939 0 1
25 -0.03231| 288.4857 0 1
3 -0.03231| 413.6748 0 1
3.5 -0.03231| 561.3614 0 1

Table 2: Performance of the test for negative shift

Parameter| Estimate| Standard| Lower Upper
Error Credible | Credible

Limit Limit
-35 -0.03231| 541.0085 0 1
-3.0 -0.03231| 396.2295 0 1
-2.5 -0.03231| 273.9479 0 1
-2.0 -0.03231| 174.1636 0 1
-1.5 -0.03231| 96.87671 0 1
-1.25 -0.03231| 66.66975 0 1
-1.0 -0.03231| 42.08713 0 1

-0.5 -0.03231| 9.794893| 1.275589| 0.937423
-0.4 -0.03231| 6.036127| 5.034355| 0.411702
-0.3 -0.03231| 3.177255| 7.893228| 0.162219
-0.2 -0.03231| 1.218276| 9.852206| 0.079533
-0.1 -0.03231| 0.159191| 10.91129| 0.053167
-0.075 | -0.03231| 0.035028| 11.03545| 0.050682
-0.05 -0.03231| -0.03289 | 11.10337| 0.049368
-0.025 | -0.03231| -0.04457 | 11.11505| 0.049146
-0.001 | -0.03231| -0.00286 | 11.07335| 0.049945

From the above tables, it can be seen that the test is effectivall the shiftsa as long asa > 2(Y;; — uij), and the
power value goes less than the significance levir a= —0.001 —0.025 and—0.05 i.e. when this inequality does not
hold. In fact, in these cases the observation goes closerlaser to the ideal value i.g;j, because of the shift and hence
it is no longer an outlying observation.
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