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Abstract: The O-BLUEs defined by Moussa-Hamouda and Leone(1974) are considered and the effect of an outlying observation
in these estimates are studied for a regression model. Then these estimates are used in developing two outlier test procedures. The
results are highlighted with an example. The power of these procedures are studied and the power values for the same example are also
tabulated.
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1 Introduction

Consider a general linear modely = X′β +e, wherey is a column vector of observations of orderk, X is a known matrix
of orderp× k, is the column vector of effects which is of orderp ande is the error vector of orderk, which is assumed to
be distributed as multivariate normal with mean vector0 and dispersion matrixI i.e.N(0, I).

Most technique towards the identification of outliers in experimental design can categorized in three groups- residual
based, nonparametric and robust. Use of the residuals to detect multiple outliers in a two-way design may lead to
unsatisfactory results. Most of the early work in identification of outlier has been developed on the examination of
residuals e.g. Danial (1960)[1], Stenfansky (1971)[2], Goldsmith & boddy (1973)[3], John and Prescott (1975)[4] and
usually they are successful to identify at most one or two outliers, But residual based methods are not much reliable as
the residuals have some serious short comings. Barnett and Lewis (1994)[5] point out that outliers not only affect their
own residuals but have a carry over effect on others. Therefore the existing residual based methods have become
unreliable for detecting more than one outlier e.g. Gentleman and wilk(1975a)[6] first propose a formal test for
thepresence of multiple outliers. some of the work on testing of outliers in linear model based on residuals are
Gentleman and Wilk ( 1975b)[7], John and Draper (1978)[8], Draper and John (1980)[9], Joshi (1972)[10], Joshi and
Lalitha (1986)[11],Ellenberg (1976)[12] etc. Hamounda and Leone (1974)[13] have considered a regression model and
for estimating the parameters of the model,they have used O-BLUE (Ordered - Best Linear Unbaised estimators), which
they have indicated to be better estimators than the one based on residuals. Here we study the effect of outliers in the
estimation procedure, i.e. O-BLUE defined in this paper , so that this information can be used for developing an outlier
detection test.

2 O-BLUE and the effect of outliers in them

A simple regression model is a form of a Gauss-Markov linear model. The explicit form of the model is

Yi j = α +β (xi − x̄)+ ei j (1)

wherei = 1,2, ...,k and j = 1,2, ...,ni, xi is an independent or input variable assumed to be fixed. The error termsei j are
independent and identically distributed random variablesfrom a continuous symmetric distribution with mean 0 and
varianceσ2.
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Now the O-BLUE defined by Hamouda and Leone (1974), with ordered observations in a distribution, depending only
on location and scale parameter and equal values ofni, i.e.n1 = n2 = ...= nk = n, is as follows:
Arrange the observationsYi j ’s an ascending order of magnitude, i.e.Yi(1) ≤ Yi(2) ≤ ...≤ Yi(n) for eachi. Further let

Zi( j) = Yi( j)−α −β (xi − x̄)/σ (2)

i.e. theZi( j) is a standardized residual about the regression line. ThenZi( j) is the jth order statistic of a random sample of
sizen from a standardized symmetric distributionF with mean zero and variance one.
Defining the first and second moments of the order statistic as

E(Zi( j)) = ci j andCov(Zi( j),Zi( j′)) = ω j j′

the O-BLUE ofα,β andσ are

α̂0 =
1′Ω−1

k(1′Ω−11)

k

∑
i=1

Yi, (3)

β̂0 =
1′Ω−1

(1′Ω−11)
k
∑

i=1
(xi − x̄)

k

∑
i=1

(xi − x̄)Yi (4)

and

σ̂ =
c′Ω−1

k(c′Ω−1c)

k

∑
i=1

Yi; (5)

where 1′ =(1,1, ...,1), Y′
i =(Yi(1),Yi(2), ...,Yi(n)), Ω= Cov(Z i), Z′

i= (Zi(1),Zi(2), , ...,Zi(n)) and c′= E(Z′
i). Also let

Y = (Y1,Y2, ...,Yk) be ann× k matrix of all Y vectors. We have

k

∑
i=1

Y i =



























k
∑

i=1
Yi(1)

k
∑

i=1
Yi(2)

.

.

.
k
∑

i=1
Yi(n)



























The variances of these estimators are

Var(α̂0) =
σ2

k(1′Ω−11)

Var(β̂0) =
σ2

(1′Ω−11)
k
∑

i=1
(xi − x̄)2

Var(σ̂0) =
σ2

(c′Ω−1c)
(6)

and all covariances are zero.

Now to study the effect of outliers on these estimators, we introduce a shift (either positive or negative) in the
location parameter of any component of one of the observation. If a negative shift in smallest component and a positive
shift in largest component is introduced, this may not disturb the order of the observations. But if the shift is in any other
component, or a positive shift in the smallest component, ora negative shift in the largest component, then this shift will
affect the order of the observation and calculation of all O-BLUEs of the parameters.
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Suppose we introduce a shifta in thebth observationb = (1,2, ...,k) , i.e. if a positive shifta(> 0) is introduced in the
location parameter ofrth component ofbth observation, then the changed order of the observation, in the matrixY is

Y =





















































y11 y21 . . yb1 . . yk1
y12 y22 . . yb2 . . yk2
. . . . . . . .
. . . . . . . .
. . . . . . . .

y1(r−1) y2(r−1) . . yb(r−1) . . yk(r−1)
y1r y2r . . ybr+a = ybr′ . . ykr
. . . . . . . .
. . . . . . . .
. . . . . . . .

y1(s−1) y2(s−1) . . yb(s−1)′ . . yk(s−1)
y1s y2s . . ybs . . ysr
. . . . . . . .
. . . . . . . .
. . . . . . . .

y1n y2n . . ybn . . ykn





















































and

a=



















0
.
.
a
.
.
0



















(7)

Then

k

∑
i=1

Y i =



















































































k
∑

i=1
yi1

k
∑

i=1
yi2

.

.

.
k
∑

i=1
yi(r−1)

k
∑

i=1,i6=b
yi(r) + ybr′

.

.

.
k
∑

i=1,i6=b
yi(s−1)+ yb(s−1)′

k
∑

i=1
yis

.

.

.
k
∑

i=1
yin



















































































or
k

∑
i=1

Y i +a=





























































































k
∑

i=1
yi1

k
∑

i=1
yi2

.

.

.
k
∑

i=1
yi(r−1)

k
∑

i=1,i6=b
yi(r) + ybr′

k
∑

i=1,i6=b
yi(r+1) + yb(r+1)′

.

.

.
k
∑

i=1,i6=b
yi(s−1)+ yb(s−1)′

k
∑

i=1
yis

.

.

.
k
∑

i=1
yin





























































































(8)
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Then
k
∑

i=1
Y i +a can be written as





















































































k
∑

i=1
yi1

k
∑

i=1
yi2

.

.

.
k
∑

i=1,i6=b
yir

k
∑

i=1,i6=b
yi(r+1)

.

.

.
k
∑

i=1,i6=b
yi(s-1)

k
∑

i=1,i6=b
yis

.

.

.
k
∑

i=1
yin





















































































+

















































0
0
.
.
.

ybr′

yb(r+1)′

.

.

.
yb(s−1)′

0
.
.
0

















































(9)

Hence the O-BLUE ofα ′

0 is

α̂0
′
=

1′Ω−1

k(1′Ω−11)
(

k

∑
i=1

Yi + a), (10)

where(
k
∑

i=1
Yi + a) is as in (9).

Thus (10) gives the estimate ofα, when a shift was introduced in one of the components of the observation vectorYb.
Hence, to make an assessment about the deviation caused by this shift in the estimate ofα, we obtain the difference
between the estimator obtained in (10) and that obtained in (3) as follows:

α̂0
′
− α̂0 =

1′Ω−1

k(1′Ω−11)

















































0
0
.
.
.

ybr′ − ybr
yb(r+1)′ − yb(r+1)

.

.

.
yb(s−1)′ − yb(s−1)

0
.
.
0

















































α̂0
′
− α̂0 =

1′Ω−1

k(1′Ω−11)
d

whered is the vector of differences between the shifted observation and the original observation.
Thus while calculatingα̂0, if we wish an accuracy ofε, then we should have the deviation ofα̂0

′(α̂0 in the presence of an
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outlier)fromα̂0 less thanε.

|α̂0
′− α̂0| ≤ ε ⇒ |d| ≤ |

1′Ω−1

k(1′Ω−11)
|ε (11)

Similarly, in the estimation of̂β0, when there is a shift,

β̂0
′
=

1′Ω−1

(1′Ω−11)
k
∑

i=1
(xi − x̄)2

k

∑
i=1

(xi − x̄)(Yi + a),

β̂0
′
= β̂0+

1′Ω−1

(1′Ω−11)
k
∑

i=1
(xi − x̄)2

k

∑
i=1

(xi − x̄)a,

Hence, the shift introduced does not affect the estimate ofβ i.e. the estimatorβ̂0 is unaffected by the presence of any
outlier.
Now the expression for the estimatorσ̂0, when a shifta is introduced is

σ̂0
′ =

c∗
′Ω−1

k(c∗′Ω−1c∗)

k

∑
i=1

(Yi + a) (12)

σ̂0
′ =

c∗
′Ω−1

k(c∗′Ω−1c∗)

k

∑
i=1

Yi +
c∗

′Ω−1

k(c∗′Ω−1c∗)
a

wherea∗ andΩ−1 are as defined in (7) and (9) respectively and

c∗ = E(Zi + a∗) = c+ a∗, wherea∗ = a
σ

Hence to make an assessment about the deviation, we obtain the difference between the estimator obtained in (12) and
that obtained in (5) as follows:

σ̂0
′− σ̂0 =

















































0
0
.
.
.

ybr′ − ybr
yb(r+1)′ − yb(r+1)

.

.

.
yb(s−1)′ − yb(s−1)

0
.
.
0

















































or σ̂0
′− σ̂0 =

c∗
′Ω−1

k(c∗′Ω−1c∗)
d

Thus while calculatingσ̂0
′, if we wish an accuracy ofε, then we should have the deviation ofσ̂0

′ from σ̂0less thanε,

i.e.|σ̂0
′− σ̂0| ≤ ε.

⇒ |
c∗

′Ω−1

k(c∗′Ω−1c∗)
d| ≤ ε

⇒ |d| ≤ |
c∗

′Ω−1

k(c∗′Ω−1c∗)
|−1ε

Note that the above arguments will hold if any component of one of the observation is shifted and the shifted amount does
not change the order of the observationYi( j). Due to this, it is difficult to define an outlier detection procedure, if some
of the observations in the middle are shifted . We can only discuss that how much variation is created by shifted amount
from the original value. However, for end observations, an outlier detection procedure is discussed below next section.
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3 Outliers tests for end observations

We propose to define outlier detection procedure based on (1)the desired accuracy of the estimate, and (2) the usual
significance level, i.e. using the likelihood ratio test. For this, we consider the O-BLUE defined for a simple regression
model.
In practice, while dealing with real data, neither the valueof a nor the component which is deviated from the original
value may be known. In such case thejth component (which is supposed to have deviated) ofith vectorYi can be identified
as the one for which the amount of deviation is given by

a = max(a1,an) (13)

whereai = max(|Yil − Ȳl|, |Yin − Ȳn|), i = 1,2, ...,k.

andȲj =
1

n−1

n
∑

l( 6= j)=1
Yil , j = 1 or n

3.1 Test based on the desired accuracy of the estimate

A test procedure based on the shifted valuea can be defined as follows:
If an accuracy ofε is sought in the estimation of the parametersα andσ , then declare thejth component of theith vector
to be an outlier if either

a > max















|

k
n
∑

i=1

n
∑
j=1

ω i j

n
∑

i=1
ω i j

|ε, |
k

n
∑

i=1

n
∑
j=1

c∗i c∗jω i j

n
∑

i=1

c∗i ω i j|ε















, (14)

wherea is as defined in (13).

3.2 Data Analysis

We consider the example used on observations by Hamouda and Leone (1974), which is as follows: A research program to
investigate the relationship between reaction condition and yield in the low pressure polymerization of ethylene included
200 laboratory polymerizations. Here we consider only the concentration of ethylene (Et) in moles/cc as the input and the
polymer yield (G) in grams per batch as output. The reaction time is fixed at 30 minutes. The regression equation used to
estimate the theoretical kinetic model is

log(G) = α ′+β ′log(Et)

LetYi j = log(G) andxi =
[log(Et)+2.2040]

0.301 . In this example there are 4 observation vectors each with 5 components i.ek = 4
andn = 5. For this example the O-BLUE obtained by Hamouda and Leone (1974) for the parameters arêα0 = 1.9227,
β̂0 = 0.20866 andσ̂0 = 0.14908.
Here,

Y1 =











1.5774
1.6232
1.6263
1.7450
1.7902











,Y2 =











1.4698
1.6901
1.9647
1.9956
1.9986











,Y3 =











1.8881
1.9020
2.0549
2.1058
2.2329











&Y4 =











2.0310
2.1283
2.1405
2.1983
2.2913











For these vectors,c′ andΩ−1 were found to be

c =
(

−1.16296−0.49502 0 0.49502 1.16296
)

and

Ω−1 =











0.848720 0.519080 −0.052162−0.515950−0.415780
0.519081 0.111022 −0.150125−0.150162−0.515950
−0.052162−0.150125−0.132590−0.150125−0.052162
−0.515950−0.150162−0.150125 0.111022 0.051908
−0.415780−0.515950−0.052162 0.0519081 0.848720










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Now in one of the components of one of the vectors a shift is introduced. Suppose the first component of the vectorY1 is
shifted to the left by a magnitude of 11.8903 i.e. when the vectorY1 has a shifted value, we have

c =
(

−10.3129 1.6232 1.6263 1.7450 1.7902
)

With this change in the observation, the O-BLUE ofα0 in the presence of an outlying observation is given byα̂ ′
0 =

10.1404. The O-BLUE ofβ0 is unaffected by the presence of any outlier i.e.β̂ 1
0 = β̂0 = 0.20866 and finally the O-BLUE

of σ0 in the presence of an outlier is found to beσ̂ ′
0. From this it can be noticed that O-BLUE are highly sensitivefor

outlying observations, as with just one component of one vector has affected the estimates ofα andσ to a great extent.
Now for the outlier test procedure, suppose we wish an accuracy of ε = 0.01 Then we wishα̂0

′− α̂0 and similarlyσ̂0
′− σ̂0.

If this is violated, then we expect some outlying observations. Hence to estimate the deviation of the outlying observation,
we use (13). Thus it was found

a = max(|−12.00911|, |3.11981|)= 12.00911.

This corresponds to the first component of the first vector i.e. i = 1 and j = 1. Now, to test whether this shift is significant

or not, we may have to calculate|
k

n
∑

i=1

n
∑

j=1
ω i j

n
∑

i=1
ω i j

|ε = α1 and|
k

n
∑

i=1

n
∑

j=1
c∗i c∗j ω

i j

n
∑

i=1

c∗i ω i j|ε = σ1, as per (14) for comparison with the

estimated value ofa. Thus the calculated values ofα1 andα2 are 0.01476 and 0.14334 respectively. Hence it can be seen
thata is greater thanmax{α1,σ1}; therefore the first component of the first vector is declaredas an outlying observation.

3.3 Likelihood ratio procedure for outlier detection

In this procedure we state the null hypothesisH0 as there is no outlier in the data and the alternative hypothesisH1 as one
of the components i.e.jth component of one of the observation vector i.e.ith vector is shifted by an amounta. For this the
likelihood functions underH0 and underH1 have to be determined. Here againi = 1,2, ..,k and j = 1,2, ...,n. UnderH0,

E(Yh) =











Yh1
.
.
.

Yhn











=











µh1
.
.
.

µhn











= µh =











α +β (xh − x̄)
α +β (xh − x̄)
α +β (xh − x̄)
α +β (xh − x̄)
α +β (xh − x̄)











,h 6= i

UnderH1, E(Yi j) = µi +a wherea=



























0
.
.
.
a
.
.
.
0



























→ j th component, i.e.E(Yi j) = µi j + a = α +β (xi − x̄)+ a. In this, we make

use ofα̂ ′
0 andβ̂ ′

0, the O-BLUE ofα andβ when an outlier is present, for the values ofα andβ . If Yi, i = 1, ,kare distributed
each as normally with meanµi and covariance matrixΣ then underH0,

L0 =
k

∏
h=1

1

(2π) n
2 |Σ |

1
2

e−
1
2 (yh−µh)

′Σ−1(yh−µh)

=
1

(2π)
nk
2 |Σ |

k
2

e
− 1

2

k
∑

h=1
(yh−µh)

′Σ−1(yh−µh)
(15)

L1 =
k

∏
h=1,(h 6=i)

1

(2π) n
2 |Σ |

1
2

e−
1
2 (yh−µh)

′Σ−1(yh−µh)e−
1
2 (yi−µi−a)′Σ−1(yi−µi−a)
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=
1

(2π)
nk
2 |Σ |

k
2

e
− 1

2

[

k
∑

h=1,(h 6=i)
(yh−µh)

′Σ−1(yh−µh)+(Yi−µi−a)′Σ−1(Yi−µi−a)

]

Now,
(Yi − µi − a)′Σ−1(Yi − µi− a)

= (Yi − µi)
′Σ−1(Yi − µi)− a′Σ−1(Yi − µi)− (Yi − µi)

′Σ−1a+ a′Σ−1a.

Let C = 1

(2π)
nk
2 |Σ |

k
2

, then

L1 =C.e
− 1

2

[

k
∑

h=1,h 6=1
(Yh−µh)

′Σ−1(Yh−µh)+(Yi−µi)
′Σ−1(Yi−µi)−a′Σ−1(Yi−µi)−(Yi−µi)

′Σ−1a+a′Σ−1a

]

=C.e
− 1

2

[

k
∑

h=1
(Yh−µh)

′Σ−1(Yh−µh)−a′Σ−1(Yi−µi)−(Yi−µi)
′Σ−1a+a′Σ−1a

]

(16)

From (15) and (16), we have

L1 = L0.e
− 1

2 [a
′Σ−1a−2a′Σ−1(Yi−µi)]

L1

L0
= e−

1
2 [a

′Σ−1a−2a′Σ−1(Yi−µi)]

Now in the likelihood ratio test the critical region is givenby

L1

L0
> k ⇒ e−

1
2 [a

′Σ−1a−2a′Σ−1(Yi−µi)] > K. (17)

Taking logarithm on both sides of (17)

−
1
2

[

a′Σ−1a−2a′Σ−1(Yi − µi)
]

> log(K)

⇒ (Yi − µi)>
1
2
(a′Σ−1)−1(2log(K)+ a′Σ−1a)

⇒ (Yi − µi)> K1 whereK1 =
1
2(a

′Σ−1)−1(2log(K)+ a′Σ−1a)

⇒ (Yi − µi)
′Σ−1(Yi − µi)> K′

1Σ−1K1 (18)

where(Yi −µi)
′Σ−1(Yi −µi) is distributed as aχ2 variate withn degrees of freedom underH0. Hence, theα level critical

region is given by

νi = (Yi − µi)
′Σ−1(Yi − µi)> χ2

n (α) (19)

χ2
n (α) being the 100α percent tail of aχ2 distribution. Hence if for a given set of observations (19) holds then theith

vector is an outlier and to identify thejth component of such a vector, we make use of (13). Here, in our case we have
Σ = σ I . Hence (19) becomes

νi =
1

σ2 (Yi − µi)
′(Yi − µi)> χ2

n (α)

or

νi =
1

σ2

n

∑
j=1

(Yi j − µi j)
2 > χ2

n (α), i = 1,2, ...,k. (20)

Hence to perform this test, if we make use of the O-BLUE ofα̂ ′ and σ̂ ′ for the value ofσ and for the estimation of
µi, i = 1,2, ...,k, then the determination of the critical region will be erroneous, as the outlying observation affects both
α̂ ′ andσ̂ ′ in the calculation of the estimate ofµi, i = 1,2, ...,k. Hence, we take a censored sample for these estimations,
as it is shown by Hamouda and Leone (1974) that the estimates obtained from censored samples are very close to the
uncensored estimates. Now to decide as to which component has to be deleted to obtain a censored sample , we make use
of (14) and delete that component, which corresponds to the calculation of maximum ofa. The same component has to be
deleted from all the observations and we estimate all the parameters, which are further used for estimatingµi, i = 1,2, ...,k
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4 Data Analysis

We shall consider the same example as was discussed in previous procedure. On the basis of maximum ofa, the first
component of all the observations are deleted and a censoredsample of size 4 each with 4 components are formed.
From this the estimates ofα,β andσ were found to beα̂ ′′ = 1.9286,β̂ ′′ = 0.20078 andσ̂ ′′ = 0.17703 . Now from
these the estimates ofµi, i = 1,2, ...,k areµ1 j = 1.6274,µ2 j = 1.8282,µ3 j = 2.0290 andµ4 j = 2.2298, j = 1, ..,5. Using
these estimates the values ofνi, i = 1,2, ...,k areν1 = 36.4667,ν2 = 7.1222,ν3 = 2.6844, andν4 = 1.9962. Also the
tabulated value ofχ2

5 is 11.070 at 5% level of significance. Hence, except for the first value all are less than the tabulated
value, thereby indicating that the first observation to be the one which is contaminated. Again, since the maximum ofa
corresponds to the first component of the first vector, that component can be declared as the outlying component.

5 Performance of the test

For the performance calculation, we have to obtain the probability

η = Pr
{

(Yi − µi − a)′Σ−1(Yi − µi− a)≥ χ2
n

}

here we haveΣ = σ2I . Hence

1
σ2 (Yi − µi − a)′(Yi − µi− a) =

(Yi − µi − a)′Σ−1(Yi − µi − a) =
1

σ2

{

(Yi − µi)
′(Yi − µi)− a′(Yi − µi)− (Yi − µi)

′a+ a′a
}

=
1

σ2

{

n

∑
k=1

(Yik − µik)
2−2a(Yi j − µi j)+ a2

}

Now, if a = 2a(Yi j − µi j), then

1
σ2 (Yi − µi− a)′(Yi − µi − a) = νi −

1
σ2

{

a2− aa}= νi.

Henceη = P
{

νi ≥ χ2
n (α)

}

= α. Let b = 1
σ2

{

a2−2(Yi j − µi j)a
}

. Then,

η = Pr
{

νi + b ≥ χ2
n (α)

}

= Pr
{

νi ≥ χ2
n (α)− b

}

Now if b > 0, thenη > α; otherwise it will be less thanα. Hence, for the test to be effective, we should have a positive
value ofb i.e.

a2 > 2(Yi j − µi j)a ⇒ a > 2(Yi j − µi j).

The performance of the test for the above example was done with different values of a .The performance of the test for
positive shift is given in table 1 and performance of the testfor negative shiftis given in table 2.
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Table 1: Performance of the test for positive shift

Parameter Estimate Standard Lower Upper
Error Credible Credible

Limit Limit
0.001 -0.03231 0.00295 11.06753 0.05005
0.025 -0.03231 0.10081 10.96967 0.05198
0.05 -0.03231 0.25786 10.81262 0.05522
0.075 -0.03231 0.471162 10.59932 0.059929
0.1 -0.03231 0.740703 10.32978 0.066412
0.2 -0.03231 2.381299 8.689184 0.122122
0.3 -0.03231 4.921789 6.148694 0.292018
0.4 -0.03231 8.362173 2.70831 0.744847
0.5 -0.03231 12.70245 0 1
1 -0.03231 47.90224 0 1

1.25 -0.03231 73.93864 0 1
1.5 -0.03231 105.5994 0 1
2 -0.03231 185.7939 0 1

2.5 -0.03231 288.4857 0 1
3 -0.03231 413.6748 0 1

3.5 -0.03231 561.3614 0 1

Table 2: Performance of the test for negative shift

Parameter Estimate Standard Lower Upper
Error Credible Credible

Limit Limit
-3.5 -0.03231 541.0085 0 1
-3.0 -0.03231 396.2295 0 1
-2.5 -0.03231 273.9479 0 1
-2.0 -0.03231 174.1636 0 1
-1.5 -0.03231 96.87671 0 1
-1.25 -0.03231 66.66975 0 1
-1.0 -0.03231 42.08713 0 1
-0.5 -0.03231 9.794893 1.275589 0.937423
-0.4 -0.03231 6.036127 5.034355 0.411702
-0.3 -0.03231 3.177255 7.893228 0.162219
-0.2 -0.03231 1.218276 9.852206 0.079533
-0.1 -0.03231 0.159191 10.91129 0.053167

-0.075 -0.03231 0.035028 11.03545 0.050682
-0.05 -0.03231 -0.03289 11.10337 0.049368
-0.025 -0.03231 -0.04457 11.11505 0.049146
-0.001 -0.03231 -0.00286 11.07335 0.049945

From the above tables, it can be seen that the test is effective for all the shiftsa as long asa > 2(Yi j − µi j), and the
power value goes less than the significance levelα for a = −0.001,−0.025 and−0.05 i.e. when this inequality does not
hold. In fact, in these cases the observation goes closer andcloser to the ideal value i.e.µi j, because of the shift and hence
it is no longer an outlying observation.
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