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Abstract: In this paper, a new analytical method called the Natural Homotopy Perturbation Method (NHPM) for solving linear and
the nonlinear fractional partial differential equation isintroduced. The proposed analytical method is an elegant combination of a well-
known method, Homotopy Perturbation Method (HPM) and the Natural Transform Method (NTM). In this new analytical method, the
fractional derivative is computed in Caputo sense and the nonlinear terms are calculated using He’s polynomials. Exactsolution of
linear and nonlinear fractional partial differential equations are successfully obtained using the new analytical method, and the result is
compared with the result of the existing methods.

Keywords: Natural homotopy perturbation method, He’s polynomials, Mittag-Leffler function, linear and nonlinear fractional partial
differential equations.

1 Introduction

In recent years, there is a rapid development in the concept of fractional calculus and its applications [1,2,3,4]. The
fractional calculus which deals with derivatives and integrals of arbitrary orders [5] plays a vital role in many field of
applied science and engineering. The linear and nonlinear fractional partial differential equations have wide applications
in fluid mechanics, acoustic, electromagnetism, signal processing, analytical chemistry, biology and many other areas of
physical science and engineering [6]. In last few decades, many analytical and numerical methods has been developed
and successfully applied to solve linear and nonlinear fractional partial differential equations such as, Adomian
Decomposition Method [7,8,9,10,11], G’/G-Expansion Method [12], Homotopy Analysis Method [13], Jacobi Spectral
Collocation Method [14], Laplace Decomposition Method [15], and New Spectral Algorithm [16]. Moreover, Homotopy
Perturbation Method [17,18], Yang– Laplace Transform [19], Local Fractional Variational Iteration Method [20,21],
Cylindrical-Coordinate Method [22], Modified Laplace Decomposition Method [15], Spectral Legendre-Gauss-Lobatto
Collocation Method [23,24], Homotopy Perturbation Sumudu Transform Method [25,26], and Fractional Complex
Transform Method [27] are applied to linear and nonlinear fractional partial differential equations.
However, despite the potential of the numerical methods, they can not be considered as universal methods for solving
linear and nonlinear fractional partial differential equations because of many deficiencies and some computational
difficulties such as unnecessary linearization, discretization of variables, transformation or taking some restrictive
assumptions.
In this paper, a new analytical method called the Natural Homotopy Perturbation Method (NHPM) for solving linear and
nonlinear fractional partial differential equations without the above-mentioned deficiencies is introduced. The
constructive analytical method is applied directly to linear and nonlinear fractional partial differential equations. The
proposed analytical method gives a series solution which converges rapidly to an exact or approximate solution with
elegant computational terms. In this new analytical method, the nonlinear terms are computed using He’s Polynomials
[28,29,30]. Exact solution of linear and nonlinear fractional partial differential equation are successfully obtained using
the new analytical method. Thus, the proposed analytical method is a powerful mathematical method for solving linear
and nonlinear fractional partial differential equations and is a refinement of the existing methods.
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2 Natural transform

In this section, the basic definition and properties of the Natural transform are presented.
Definition: The Natural Transform of the functionv(t) for t ∈ (0,∞) is defined over the set of functions,

A=

{

v(t) : ∃ M, τ1, τ2 > 0, |v(t)|< Me
|t|
τ j , i f t ∈ (−1) j × [0,∞)

}

,

by the following integral:

N
+ [v(t)] =V(s,u) =

1
u

∫ ∞

0
e
−st
u v(t)dt; s > 0, u> 0. (1)

Heresandu are the Natural transform variables [31,32].
The basic properties of the Natural transform method are given below.

Property 1: If V (s,u) is the Natural transform and F(s) is the Laplace transform of the function f(t)∈A, thenN+ [ f (t)] =
V(s,u) = 1

u

∫ ∞
0 e−

st
u f (t)dt = 1

uF
(

s
u

)

.

Property 2: If V (s,u) is the Natural transform and G(u) is the Sumudu transform of the function v(t)∈A, thenN+ [v(t)] =
V(s,u) = 1

s

∫ ∞
0 e−t v

(

ut
s

)

dt = 1
sG
(

u
s

)

.

Property 3: If N+ [v(t)] =V(s,u), thenN+ [v(αt)] = 1
α V(s,u).

Property 4: If N+ [v(t)] =V(s,u), thenN+ [v′(t)] = s
uV(s,u)− v(0)

u .

Property 5: If N+ [v(t)] =V(s,u), thenN+ [v′′(t)] = s2

u2V(s,u)− s
u2 v(0)− v′(0)

u .

Remark: The Natural transform is a linear operator. That is, ifα andβ are non–zero constants, then
N
+ [α f (t)±β g(t)] = αN

+ [ f (t)]±βN+ [g(t)] = αF+(s,u)±βG+(s,u).
Moreover,F+(s,u) andG+(s,u) are the Natural transforms off (t) andg(t), respectively [31].

Table 1. List of some special Natural transforms

Functional Form Natural transform Form
1 1

s
t u

s2

eat 1
s−au

tn−1

(n−1)! ,n= 1,2, ... un−1

sn

sin(t) u
s2+u2

3 Basic Definitions of Fractional Calculus

In this section, the basic definitions of fractional calculus are presented.
Definition 1: A function f (x), x> 0 is said to be in the spaceCm

α , m∈ N
⋃{0}, if f (m) ∈ Cα .

Definition 2: A real function f (x), x> 0 is said to be in the apaceCα α ∈ R if there exist a real numberp (> α) such
that f (x) = xp f1(x) where f1(x) ∈ C[0,∞). ClearlyCα ⊂ Cβ if β ≤ α.

Definition 3: The left sided Riemann-Liouville fractional integral operator of orderµ > 0, of a functionf (t) ∈Cα , and
α ≥−1 is define as [10,33].

D−µ
t f (t) =

1
Γ (µ)

∫ t

0

f (τ)
(t − τ)1−µ dτ, µ > 0, t > 0, (2)

D0 f (t) = f (t). (3)

Definition 4: The (left sided) Caputo fractional derivativef , f ε Cm
−1 , mε N

⋃{0}, is defined as [4,5].

Dµ
t f (t) =

{

Dµ−m
t

[

∂ m f (t)
∂ tm

]

, m−1< µ < m, m∈ N,

∂ m f (t)
∂ tm , µ = m.

(4)

Note that [6,10,4,5]:

D−µtγ =
Γ (γ +1)

Γ (γ + µ +1)
tγ+µ

, µ > 0, γ >−1, t > 0. (5)
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D−µDµ
t f (t) = f (t)−

m−1

∑
k=0

v(k)(0+)
tk

k!
, m−1< µ ≤ m, m∈ N. (6)

Definition 5: The Natural transform of the Caputo fractional derivative is defined as:

N
+ [Dα

t v(t)] =
sα

uα V(s,u)−
m−1

∑
k=0

sα−(k+1)

uα−k v(k)(0+), (7)

(m−1< α ≤ m).
Definition 6: Mittag-Leffler functionEα with α > 0 is defined by the following series representation, valid inthe whole
complex plane [5]:

Eα(z) =
∞

∑
k=0

zk

Γ (αk+1)
, α > 0, z∈ C. (8)

4 Analysis of the Method

In this section, the basic idea of the Natural Homotopy Perturbation Method is clearly illustrated by the standard nonlinear
fractional partial differential equation of the form:

Dα
t v(x, t)+M(v(x, t))+F(v(x, t)) = g(x, t), (9)

subject to the initial condition
v(x,0) = f (x). (10)

where F(v(x, t)) represent the nonlinear terms,Dα
t = ∂ α

∂ tα is the Caputo fractional derivative of the functionv(t),
M(v(x, t)) is the linear differential operator, andg(x, t) is a source term.

Applying the Natural transform to Eq. (9) subject to the given initial condition we get:

V(x,s,u) =
1
s

f (x)+
uα

sα N
+ [g(x, t)]− uα

sα N
+ [M(v(x, t))+F(v(x, t))] . (11)

Taking the inverse Natural transform of Eq. (11), we have:

v(x, t) = G(x, t)−N
−1
[

uα

sα N
+ [M(v(x, t))+F(v(x, t))]

]

, (12)

whereG(x, t) is a term arising from the source term and the prescribed initial condition.

Now we apply the Homotopy Perturbation Method.

v(x, t) =
∞

∑
n=0

pnvn(x, t). (13)

The nonlinear termsF(v(x, t)) is decomposed as:

F(v(x, t)) =
∞

∑
n=0

pnHn(v), (14)

whereHn(v) is the He’s polynomial and be computed using the following formula:

Hn(v1,v2, · · · ,vn) =
1
n!

∂ n

∂ pn

[

F

(

n

∑
j=0

p jv j

)]

p=0

,n= 0,1,2, · · · (15)
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Substituting Eq. (13) and Eq. (14) into Eq. (12), we get:

∞

∑
n=0

pnvn(x, t) = G(x, t)− p

(

N
−1

[

uα

sα N
+

[

∞

∑
n=0

pnM(v(x, t))+
∞

∑
n=0

pnHn(v)

]])

. (16)

Using the coefficient of the likes powers of p in Eq.(16), the following approximations are obtained:

p0 : v0(x, t) = G(x, t),

p1 : v1(x, t) =−N
−1
[

uα

sα N
+ [M(v(x, t))+H0(v)]

]

,

p2 : v2(x, t) =−N
−1
[

uα

sα N
+ [M(v(x, t))+H1(v)]

]

,

p3 : v3(x, t) =−N
−1
[

uα

sα N
+ [M(v(x, t))+H2(v)]

]

,

...,

and so on.
Hence, the series solution of Eq. (9) is given by:

v(x, t) = lim
N→∞

N

∑
n=0

vn(x, t). (17)

5 Applications

In this section, the application of the Natural Homotopy Perturbation Method to linear and nonlinear fractional partial
differential equations are clearly demonstrated to show its simplicity and high accuracy.

Example 1Consider the following linear fractional partial differential equation of the form:

Dα
t v−2vxx−2vyy = 0, −∞ < x,y< ∞, t > 0, (18)

subject to the initial condition

v(x,y,0) = sin(x)sin(y), vt(x,y,0) = 0, α ε (1,2). (19)

Applying the Natural transform to Eq. (18) subject to the given initial condition, we get:

V(x,y,s,u) =
sin(x)sin(y)

s
+

uα

sα N
+ [2vxx+2vyy] . (20)

Taking the inverse Natural transform of Eq. (20), we get:

v(x,y, t) = sin(x)sin(y)+N
−1
[

uα

sα N
+ [2vxx+2vyy]

]

. (21)

Now we apply the Homotopy Perturbation Method.

v(x,y, t) =
∞

∑
n=0

pnvn(x,y, t). (22)

Then Eq. (21) will become:

∞

∑
n=0

pnvn(x,y, t) = sin(x)sin(y)+ p

(

N
−1

[

uα

sα N
+

[

2
∞

∑
n=0

pnvnxx+2
∞

∑
n=0

pnvnyy

]])

. (23)
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Using the coefficients of the like powers of p in Eq.(23), the following approximations are obtained:

p0 : v0(x,y, t) = sin(x)sin(y),

p1 : v1(x,y, t) =N
−1
[

uα

sα N
+ [2v0xx+2v0yy]

]

=−sin(x)sin(y)
(4tα)

Γ (α +1)
,

p2 : v2(x,y, t) =N
−1
[

uα

sα N
+ [2v1xx+2v1yy]

]

= sin(x)sin(y)
(4tα)2

Γ (2α +1)
,

p3 : v3(x,y, t) =N
−1
[

uα

sα N
+ [2v2xx+2v2yy]

]

=−sin(x)sin(y)
(4tα)3

Γ (3α +1)
,

p4 : v4(x,y, t) =N
−1
[

uα

sα N
+ [2v3xx+2v3yy]

]

= sin(x)sin(y)
(4tα)4

Γ (4α +1)
,

...

and so on.
Then, the series solution of Eq. (18) is given by:

v(x,y, t) = lim
N→∞

N

∑
n=0

vn(x,y, t) (24)

= v0(x,y, t)+ v1(x,y, t)+ v2(x,y, t)+ v3(x,y, t)+ · · ·

= sin(x)sin(y)

(

1− (4tα)

Γ (α +1)
+

(4tα)2

Γ (2α +1)
− (4tα)3

Γ (3α +1)
+

(4tα)4

Γ (4α +1)
+ · · ·

)

= sin(x)sin(y)
∞

∑
m=0

(−4tα)m

Γ (mα +1)

= sin(x)sin(y)Eα(−4tα).

Whenα = 1, we obtained the following result:

v(x,y, t) = lim
N→∞

N

∑
n=0

vn(x,y, t) (25)

= v0(x,y, t)+ v1(x,y, t)+ v2(x,y, t)+ v3(x,y, t)+ · · ·

= sin(x)sin(y)

(

1− (4t)
1!

+
(4t)2

2!
− (4t)3

3!
+

(4t)4

4!
+ · · ·

)

= sin(x)sin(y)e−4t
,

which is the exact solution of Eq. (18).
The exact solution is in close agreement with the result obtained by (HPSTM) [26].
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Example 2Consider the following nonlinear fractional partial differential equation of the form:

Dα
t v−6vvx+ vxxx= 0, (26)

subject to the initial condition

v(x,0) =
1
6
(x−1). (27)

Applying the Natural transform on both sides of Eq. (26), we get:

V(x,s,u) =
1
6s

(x−1)+
uα

sα N
+ [6vvx− vxxx] (28)

Taking the inverse Natural transform of Eq.(28), we get:

v(x, t) =
1
6
(x−1)+N

−1
[

uα

sα N
+ [6vvx− vxxx]

]

. (29)

Now we apply the Homotopy Perturbation Method.

v(x, t) =
∞

∑
n=0

pnvn(x, t). (30)

Then, Eq. (29), will become:

∞

∑
n=0

pnvn(x, t) =
1
6
(x−1)+ p

(

N
−1

[

uα

sα N
+

[

6
∞

∑
n=0

pnHn(v)−
∞

∑
n=0

pnvnxxx(x, t)

]])

, (31)

where Hn(v) is a He’s Polynomial which represent the nonlinear term, vvx.

Some few components of the He’s Polynomials are given below:

H0(v) = v0v0x,

H1(v) = v1v0x+ v0v1x,

H2(v) = v0xv2+ v1xv1+ v2xv0,

H3(v) = v0xv3+ v1xv2+ v2xv1+ v3xv0,

...,

and so on.
Using the coefficient of the like powers of p, in Eq.(31), we obtained the following approximations:

p0 : v0(x, t) =
1
6
(x−1),

p1 : v1(x, t) = N
−1
[

uα

sα N
+ [6H0(v)− v0xxx]

]

= N
−1
[u

s
N
+ [6v0v0x− v0xxx]

]

=
(x−1)

6

(

tα

Γ (α +1)

)

,

p2 : v2(x, t) = N
−1
[u

s
N
+ [6H1(v)− v1xxx]

]

= N
−1
[u

s
N
+ [6(v1v0x+ v0v1x)− v1xxx]

]

=
(x−1)

6

(

t2α

Γ (2α +1)

)

,
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p3 : v3(x, t) = N
−1
[u

s
N
+ [6H2(v)− v2xxx]

]

= N
−1
[u

s
N
+ [6(v0xv2+ v1xv1+ v2xv0)− v2xxx]

]

=
(x−1)

6

(

t3α

Γ (3α +1)

)

,

...,

and so on.
Therefore, the series solution of Eq. (26) is given by:

v(x, t) = lim
N→∞

N

∑
n=0

vn(x, t)

= v0(x, t)+ v1(x, t)+ v2(x, t)+ v3(x, t)+ · · ·

=
(x−1)

6

(

1+
tα

Γ (α +1)
+

t2α

Γ (2α +1)
+

t3α

Γ (3α +1)
+ · · ·

)

=
(x−1)

6

∞

∑
m=0

(tα)m

Γ (mα +1)

=
(x−1)

6
Eα(t

α).

Whenα = 1, we obtained the exact solution of Eq.(26) as:

v(x, t) =
1
6

(

x−1
1− t

)

, |t|< 1. (32)

The exact solution is in close agreement with the result obtained by (ADM) [11] and (NDM) [34].

Example 3Consider the following nonlinear time-fractional Harry Dym equation of the form:

Dα
t v(x, t)− v3(x, t)Dxv(x, t) = 0, 0< α ≤ 1, (33)

subject to the initial condition

v(x,0) =

(

a− 3
√

b
2

x

)
2
3

. (34)

Applying the Natural transform to Eq.(33) subject to the given initial condition, we get:

V(x,s,u) =
1
s

(

a− 3
√

b
2

x

)
2
3

+
uα

sα N
+
[

v3(x, t)Dxv(x, t)
]

. (35)

Taking the inverse Natural transform of Eq.(35), we get:

v(x, t) =

(

a− 3
√

b
2

x

)
2
3

+N
−1
[

uα

sα N
+
[

v3(x, t)Dxv(x, t)
]

]

. (36)

Now we apply the Homotopy Perturbation Method.

v(x, t) =
∞

∑
n=0

pnvn(x, t). (37)

Then Eq.(36) will become:

∞

∑
n=0

pnvn(x, t) =

(

a− 3
√

b
2

x

) 2
3

+ p

(

N
−1

[

uα

sα N
+

[

∞

∑
n=0

pnHn(v)

]])

, (38)
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where Hn(v) is the He’s polynomials which represent the nonlinear term v3(x, t)Dxv(x, t).
Some few components of the He’s polynomials are given below:

H0(v) = v3
0Dxv0,

H1(v) = v3
0Dxv1+3v1v

2
0Dxv0,

H2(v) = v3
0Dxv2+3v1v

2
0Dxv1+

(

3v0v2
1+3v2

0v2
)

D3
xv0,

...,

and so on.
Using the coefficients of the like powers of p in Eq.(38), we obtained the following approximations:

p0 : v0(x, t) =

(

a− 3
√

b
2

x

)
2
3

,

p1 : v1(x, t) = N
−1
[

uα

sα N
+ [H0(v)]

]

= N
−1
[

uα

sα N
+
[

v3
0Dxv0

]

]

=−b
2
3

(

a− 3
√

b
2

x

)− 1
3 tα

Γ (α +1)
,

p2 : v2(x, t) = N
−1
[

uα

sα N
+ [H1(v)]

]

= N
−1
[

uα

sα N
+
[

v3
0Dxv1+3v1v

2
0Dxv0

]

]

=−b3

2

(

a− 3
√

b
2

x

)− 4
3 t2α

Γ (2α +1)
,

p3 : v3(x, t) = N
−1
[

uα

sα N
+ [H2(v)]

]

= N
−1
[

uα

sα N
+
[

v3
0Dxv2+3v1v

2
0Dxv1+

(

3v0v2
1+3v2

0v2
)

D3
xv0
]

]

= b
9
2

(

a− 3
√

b
2

x

)− 7
3 (15

2
Γ (2α +1)

2(Γ (α +1))2 −16

)

t3α

Γ (3α +1)
,

...,

and so on.
Then, the series solution of Eq.(33) is given by:

v(x, t) =
∞

∑
n=0

vn(x, t) (39)

= v0(x, t)+ v1(x, t)+ v2(x, t)+ v3(x, t)+ · · ·

=

(

a− 3
√

b
2

x

)
2
3

−b
2
3

(

a− 3
√

b
2

x

)− 1
3 tα

Γ (α +1)

− b3

2

(

a− 3
√

b
2

x

)− 4
3 t2α

Γ (2α +1)
+b

9
2

(

a− 3
√

b
2

x

)− 7
3 (15

2
Γ (2α +1)

2(Γ (α +1))2 −16

)

t3α

Γ (3α +1)
· · ·
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Whenα = 1, we obtained the exact solution of Eq.(33) as:

v(x, t) =

(

a− 3
√

b
2

(x+bt)

) 2
3

. (40)

The exact solution is in close agreement with the result obtained by (ADM) [25].

6 Conclusion

In this paper, Natural transform method (NTM) and Homotopy Perturbation Method (HPM) are successfully combined
to form a powerful analytical method called the Natural Homotopy Perturbation Method (NHPM) for solving linear and
nonlinear fractional partial differential equations. Thenew analytical method gives a series solution which converges
rapidly to an exact or approximate solution with elegant computational terms. In this new analytical method, the
fractional derivative are handle in Caputo sense and the nonlinear term are computed using He’s Polynomials. The new
analytical method is applied successfully and obtained an exact solution of linear and nonlinear fractional partial
differential equations. The simplicity and high accuracy of the new analytical method is clearly illustrated. Thus, the
Natural Homotopy Perturbation Method is a powerful analytical method for solving linear and nonlinear fractional
partial differential equations.
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