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Abstract: In this paper, iterative methods of order three and four constructed based on quadratic spline function for
solving nonlinear equations. Several numerical examples are given to illustrate the efficiency and performance of the
iterative methods; the methods are also compared with some other known iterative methods.
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1 Introduction

Solving nonlinear equations is one of the most important problems in numerical analysis. To solve
nonlinear equations, iterative methods such as Newton’s method are usually used. Newton’s method for
computing a simple zero « of a nonlinear equation f (x) =0 has been modified in a different of ways [1-

10]. Taghvafard [11], proposed two iterative methods both of order three by sing cubic spline function.

In this paper, by suing quadratic spline function, third and fourth order convergence iteration
formulas proposed, which can be used as an alternative to Newton method or in cases where Newton
method is not successful. Newton’s well-known method to find « iteratively is defined as follows:

f(x.)
X4 =X ——7"= 1.1
n+1 n f ,(Xn) ( )
Equation (1) converges quadratically in some neighborhood of « . [7]
Some modifications of Newton’s method have been developed in [8], by considering different
quadrature formulas for the computation of the integral arising from Newton’s theorem:

f(X) = f(x)+ j fr(t)dt. (1.2)

2 Iterative methods and convergence analysis

In this section, we derive iterative methods as follows:
Let X, is the initial approximation to the exact root« . We use (1.1) to find another approximation

y, to a:

Yo =X, _M : (21)
f'(x,)
Now, approximate f(X) by using quadratic spline function on two points x, and Y, as follows:
Fx)m st =My 32y (x—x,)m, + F(x,), 22)

2(Y, —X,)
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where

f(y)— F(x)
Yo =%,

By using Taylor series expansion for f (y,) about X, of order two we write:

(9= 1000+ (5 =) 1100 + 25 o), @)
Differentiate (2.2) with respect to x, replace x by t, then substitute it in (1.2) we get:

m.,=-m +2

n+1

, M, isarbitrary and n>1. (2.3)

F00 = £x)+ [ (m, + o =M%y (25)
X, I

Suppose X,,, is another approximation to « , we put

f (X1) ~ 0, (2.6)
and since m, is arbitrary, we let

m, = f'(X,). (2.7)
In equation (2.5) replace X by X,,,, compute the integral and using equations (1.1), (2.3), (2.4), (2.6) and
(2.7) yields:

f”(2xn) X2+ (F/(%) = F7(X) X)X ., + %”)X’?— f'(x,)x,+ f(x,)=0. (2.8)
Then,

0 - f'(xn>J1—2f"(,X“)f2(X“)
Xpis = %o LY 29)
(%)
where
\/1_ 28706) FOG)  26706)" 706) FO6) =28 /0%)° + £106)° 1706,) 21 (%07 + 70,) £ (x,)°
f'(x,)? 2F'(x,)°

From equation (2.9) we suggest the following one step iteration method of third order for solving
nonlinear equation f(x)=0.

Algorithm 1:

INPUT initial approximation X, ; tolerance & ; maximum number of iterations N .
OUTPUT approximate solution X ,, or message of failure.

Step 1: Setn=0and i =1.
Step 2: While 1 < N do steps 3-5.
Step 3: calculate

oy - 2F/(x,) () + F/(x,)7 F7(x)F(x)?+ f"(x,)? f(x) (2.10)
2f'(x.)°

Step 4: If |X,,,; — X,| < &; then OUTPUT (X,,, ); stop.

Step 5: Set n=n+1, i =i+1 and go to Step 2.

Step 6: OUTPUT ('Method failed after N iterations, N =" N ); stop.

We derive another new third order iterative method as follows: In equation (1.2) replace xbyX,,;, and
evaluate the integral using (2.3), (2.4), (2.6) and choose
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_ f(yn)_ f(Xn)
Yo =X, 1

(2.11)

and
fOa)  FO0)* F"(%)
f'(x)  2f'(x)’

we get the linear equation with respect to X

Y, =X, — , (named Chebyshev method [9]) (2.12)

' ' f”(xn)f(xn)xn f”(xn)f(xn)xml f”(X )2 f(X )2X
f(x,)—F'(x)x + F'(X) X, + — n n/ Tn
( n) ( n) n ( n) n-+ 2f,(xn) 2f,(xn) + 4f’(xn)3
=0- (2.13)

- 00 () X
4f'(x,)°
Now, from equation (2.13) we suggest another one step iteration method of third order for solving
nonlinear equation f (x)=0.

Algorithm 2:

INPUT initial approximation X, ; tolerance & ; maximum number of iterations N .
OUTPUT approximate solution X ,, or message of failure.

Step 1: Setn=0and i =1.
Step 2: While 1 < N do steps 3-5.
Step 3: calculate
3
Xn+1 = Xn ndl (X ) f(X ) 21 (214)
2/ (x )2 £ (x ) F(x,)—4F(x)" +f"(x) f(x,)

Step 4: If |X,,, — X,| < &; then OUTPUT (X
Step 5: Set n=n+1, i =i+1 and go to Step 2.
Step 6: OUTPUT (‘Method failed after N iterations, N => N ); stop.
We derive two new fourth-order iterative methods as follows: Approximate f (Y, )by using Taylor series

); stop.

n+1

expansion about X, of order three we get:

9= 1000+ (5 =) 11060 + o2 gy O gy @.15)
Repeat all iterations for deriving equation (2.9) but only replace equation (2.4) by (2.15) we get:
31:! 2 9f’ 4_18fr Zf!! f 6fm f' f 2
ooy o 30 =9 0) 181 ()" 700 ) +6 £700) PO O )
F7(x) F(%,) =3 (x,) F"(x,)
Using Taylor series expansion, we get
JOT/(%,) =18 (x,)” £7(x,) f (x,)+6 () F'0) F(x,) =3F(x)2=3"(x,) T (x,)

OO0 3P706) FO0)°, 00 P00 FO6)”  3F706)*f (%)’
(%) 2'(x,)’ f'(x)’ 2f'(x)"
Now, by substitute (2.17) in (2.16) we suggest one step iteration method of fourth-order for solving
nonlinear equation f(x)=0.

(2.17)
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Algorithm 3:

INPUT initial approximation X, ; tolerance & ; maximum number of iterations N .
OUTPUT approximate solution X, or message of failure.
Step 1: Setn=0and i =1.

Step 2: While 1 < N do steps 3-5.
Step 3: calculate

. =y 30 () =3O IO F(6))° 2706)° ()’

B () 1 06) = 2F06) (%) F (x,) 2f!
Step 4: If |x,,, — X,| < &; then OUTPUT (X, ); stop.
Step 5: Set n=n+1, i =i+1 and go to Step 2.
Step 6: OUTPUT ('Method failed after N iterations, N => N ); stop.
To derive another fourth-order method: Approximate f (x) by using Hermite interpolation polynomial [7]
on the two points X andy,, we get:

f(x) = H(x) = f(x,)hx (xX)+ f(y,)hy,(x)+ f'(x,)Rx,(x) + f'(y,) Ry, (X), (2.19)
where

W(X) = (X=X, )(X=¥,),

i, 00 = | 1- W0 )}(X‘VHJ,

+2"00) /(%) f (x,)° (2.18)
(x)'1 | |

%) f(x,)

W,(X) Xn_yn
w(y,) x—x, |
hy. (X) = " "
Y, (X) = _ "Wy )( )}[yn—XnJ
Rxn(x)=<x—xn)( X‘VHJ ,
Xn_ n
and
Ry, (X) = (X yn)( - j . (2.20)

Approximate f'(y,) by sung Taylor expansion of the first order about x, we get:

Fr(yn) = £/(%) +(¥n = %) £7(X%,) (2.21)
Now, substitute (2.4) and (2.21) in equation (2.19), yields:

FO ~ (%) @+hx, () + F(y,)hy, () + £/(x,) (¥, =X, + Rx, (X) + Ry, (X)) +

ek, xRy, () 1705,

In equation (1.2), replace X by X.,, X, byYy,, and find the integral. Then, use the above equation to
obtain:

(yn — Xn+1)(2 f ’(Xn) —2f ”(Xn) Xn + f ”(Xn) yn + f ”(Xn) Xn+l
2

f(y,)— =0. (2.22)

Now, from equation (2.22) we suggest one step iteration method of fourth-order for solving nonlinear
equation f(x)=0.
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Algorithm 4:

INPUT initial approximation X, ; tolerance & ; maximum number of iterations N .
OUTPUT approximate solution X ,, or message of failure.
Step 1: Setn=0and i =1.

Step 2: While 1 < N do steps 3-5.
Step 3: calculate

iy N 18 Fi(y \2 £ 31"(x) F"(%) F (x,)°
\/91‘ (6)" =18 F70x,)" (%) F(x,) + £10x) f(x)

4 - . (2.23)
3t/(x ) f"(x,) £(x.)

Step 4: If |X,,,; — X,| < &; then OUTPUT (X,,,); stop.
Step 5: Set n=n+1, i =i+1 and go to Step 2.

Step 6: OUTPUT ('Method failed after N iterations, N => N ); stop.
We consider the convergence analysis proposed in this paper by the following theorem.

X=X

n+1

Theorem 1: Let € | be a simple zero of sufficiently differentiable function f : 1 — R for an open
interval | . If X, is sufficiently close to «, then the methods defined by (2.10) and (2.14) are of third-order,
and satisfies the error equation

€., =—Ce +0(e), (2.24)

n

furthermore, the methods defined by (2.18) and (2.23) are of fourth order, and satisfies the error equations

4 2 2
_ (2c2 7c,C, +C,C, +C; )e;‘ N O(erf), (2.25)
CZ
and
€1 = (C, —3c,6) €, +O(ey), (2.26)

where e, = x —aand ¢, = f®(a)/kl f'(a).

Proof: Let & be a simple zero of f . Since f is sufficiently differentiable, by expanding f (X,)aboute ,
we get:

F(x) = f(a)+(x, —a) F/(x,) + S0 . 9" frix)+ Ko=) . A" (). (2.27)
Then . -

f(x,)= f'(@)le, +C,e° +Cel+cel +ce +--]. (2.28)
Differentiating (2.28) three times with respect to X, we get:

f'(x,) = f'(@)[L+2c,e, +3c,e” +4c,e’ +5c.er +6c,e° +-- ], (2.29)

f"(x,) = f'(@)[2c, +6c.e, +12c,e +20c.e’ +30c.e; +42¢,e> +--1, (2.30)

f"(x,) = f'(r)[6c, + 24c,e, +60c.e’ +120ce’ +210c,e; +336¢,e° +--. (2.31)

Using (2.28)-(2.31) in (2.10) and (2.14) respectively, we get the following error equations
€., =—C.e +(5¢; —3c,)e;

and
€., =—C.e +(2c; —3c,)e;.

On the other hand, using (2.28)-(2.31) in (2.18) and (2.23) respectively, we get:
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e,

. (2c;‘ —7c%kc, +¢,¢, +C2 et s [ 2(18c2 - 40cic, +14c,c8 +13¢2c% — 2¢,¢2 — 4¢,C,C, + ]
nel T n -

C, C;
and

e, =(c, —3c,c,)el +(9cic, —12¢c,c, — 63 +4c,)e’.
This means the methods defined by (2.10) and (2.14) are at least cubically convergent, and the methods
defined by (2.18) and (2.23) are at least fourth-order convergence.®

3 Numerical examples

We now present some examples to illustrate the efficiency of our developed methods in this paper
which are given by the Algorithms 1-4. We compare the Newton’s (NM) method, Golbabai and Javidi
method (GJM [4]), Abbasbandy methods (AM [1]), Noor and Noor method (NNM[9]) Chun and Ham
method (CYM]I2] ), Javidi method Algorithm2.2 (JM [6]) and Saeed and Aziz method (SAM [10]). All
computations are carried out with double arithmetic precision. Displayed in Table 1 are the number of

iterations (N) required such that |Xy,; — Xy | < £and | f (Xy,1)| < £wheree =107,
We use the following functions, some of which are the same as in [1, 2, 4, 6, 9, 10]

f(X) = x> +4x* +8x+8, f,(X)=x"—-e*-3x+2=0
f,(xX)=x*-(1-x)° =0, f,(X) =sin*(x) —x* +1=0
f.(x)=¢e"-3x*=0, f(X) =" +2%+2cos x—6

Table 1: Comparisons between the methods depending on the number of iterations (N)

N (Number of iterations)
f(x) | % NM GIM AM NNM CYM JM SAM Algl Alg2 Alg3 Alg4
¢ -1 3 5 4 6 div. 6 1 5 5 18 3
! 1 7 4 5 5 div. 7 4 7 5 5 7
¢ 0 4 3 3 4 div. 4 2 4 3 3 3
2 -1 5 3 3 5 div. 5 3 5 3 3 4
¢ 0.2 5 3 3 5 3 5 3 5 4 2 4
3 1 6 4 4 6 3 5 3 5 5 3 6
¢ -1 6 3 4 7 3 11 4 7 5 4 4
4 2 5 3 3 5 3 4 3 6 3 3 4
¢ 2 5 4 4 5 3 5 3 6 4 4 4
5 0.5 6 3 5 7 3 6 4 7 5 6 4
¢ 1.5 5 3 4 6 div. 7 3 7 4 2 4
6 1 8 4 15 18 div. div. div. 74  div. 7 div.

4 Conclusion

We can conclude that the new presented algorithms in this paper perform in most cases better than
the methods which we have taken for comparison depending on the number of iterations.
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