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Abstract: In this paper, iterative methods of order three and four constructed based on quadratic spline function for 

solving nonlinear equations.  Several numerical examples are given to illustrate the efficiency and performance of the 

iterative methods; the methods are also compared with some other known iterative methods. 
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1  Introduction 

Solving nonlinear equations is one of the most important problems in numerical analysis. To solve 

nonlinear equations, iterative methods such as Newton’s method are usually used. Newton’s method for 

computing a simple zero  of a nonlinear equation 0)( xf  has been modified in a different of ways [1-

10]. Taghvafard [11], proposed two iterative methods both of order three by sing cubic spline function.  

In this paper, by suing quadratic spline function, third and fourth order convergence iteration 

formulas proposed, which can be used as an alternative to Newton method or in cases where Newton 

method is not successful. Newton’s well-known method to find   iteratively is defined as follows: 
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Equation (1) converges quadratically in some neighborhood of . [7] 

 Some modifications of Newton’s method have been developed in [8], by considering different 

quadrature formulas for the computation of the integral arising from Newton’s theorem: 
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2 Iterative methods and convergence analysis 

In this section, we derive iterative methods as follows:  

Let nx is the initial approximation to the exact root . We use (1.1) to find another approximation 

ny  to  : 
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Now, approximate )(xf  by using quadratic spline function on two points nx  and ny  as follows: 

 )()()(
)(2

)( 21
nnnn

nn

nn xfmxxxx
xy

mm
xf 




  ,     (2.2) 

Mathematical  Sciences Letters                       
 
                                                                                                                An International Journal   
© 2012 NSP 

 
       @ 2013 NSP 

       Natural Sciences Publishing Cor. 

mailto:rostamkarim64@uni-sci.org


38                                          Rostam K. Saeed: Two iterative methods for solving nonlinear equations… 

 

where 
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By using Taylor series expansion for )( nyf  about nx of order two we write: 
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Differentiate (2.2) with respect to x,  replace x by t, then substitute it in (1.2) we get: 
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Suppose 1nx  is another approximation to  , we put  

 0)( 1 nxf ,          (2.6) 

and since nm is arbitrary, we let 

 )( nn xfm  .          (2.7) 

In equation (2.5) replace x  by 1nx , compute the integral and using equations (1.1), (2.3), (2.4), (2.6) and 

(2.7) yields: 
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Then, 
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From equation (2.9) we suggest the following one step iteration method of third order for solving 

nonlinear equation .0)( xf  

Algorithm 1: 

INPUT initial approximation 0x ; tolerance ; maximum number of iterations N . 

OUTPUT approximate solution 1nx  or message of failure. 

Step 1: Set n=0 and 1i . 

Step 2: While i N  do steps 3-5. 

Step 3: calculate   
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Step 4: If  nn xx 1 ; then OUTPUT ( 1nx ); stop. 

Step 5: Set 1,1  iinn  and go to Step 2. 

Step 6: OUTPUT ('Method failed after N  iterations, N =’ N ); stop. 

We derive another new third order iterative method as follows: In equation (1.2) replace x by 1nx , and 

evaluate the integral using (2.3), (2.4), (2.6) and choose 
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and 
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 we get the linear equation with respect to 1nx  
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Now, from equation (2.13) we suggest another one step iteration method of third order for solving 

nonlinear equation .0)( xf  

Algorithm 2: 

INPUT initial approximation 0x ; tolerance ; maximum number of iterations N . 

OUTPUT approximate solution 1nx  or message of failure. 

Step 1: Set n=0 and 1i . 

Step 2: While i N  do steps 3-5. 

Step 3: calculate   
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Step 4: If  nn xx 1 ; then OUTPUT ( 1nx ); stop. 

Step 5: Set 1,1  iinn  and go to Step 2. 

Step 6: OUTPUT ('Method failed after N  iterations, N =’ N ); stop. 

We derive two new fourth-order iterative methods as follows: Approximate )( nyf by using Taylor series 

expansion about nx of order three we get: 
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Repeat all iterations for deriving equation (2.9) but only replace equation (2.4) by (2.15) we get: 
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Using Taylor series expansion, we get  
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Now, by substitute (2.17) in (2.16) we suggest one step iteration method of fourth-order for solving 

nonlinear equation .0)( xf  
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Algorithm 3: 

INPUT initial approximation 0x ; tolerance ; maximum number of iterations N . 

OUTPUT approximate solution 1nx  or message of failure. 

Step 1: Set n=0 and 1i . 

Step 2: While i N  do steps 3-5. 

Step 3: calculate   
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Step 4: If  nn xx 1 ; then OUTPUT ( 1nx ); stop. 

Step 5: Set 1,1  iinn  and go to Step 2. 

Step 6: OUTPUT ('Method failed after N  iterations, N =’ N ); stop. 

To derive another fourth-order method: Approximate )(xf  by using Hermite interpolation polynomial [7] 

on the two points nx and ny , we get: 
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Approximate )( nyf   by sung Taylor expansion of the first order about nx  we get: 
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Now, substitute (2.4) and (2.21) in equation (2.19), yields:  
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In equation (1.2), replace x  by 1nx , nx by ny , and find the integral. Then, use the above equation to 

obtain: 
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Now, from equation (2.22) we suggest one step iteration method of fourth-order for solving nonlinear 

equation .0)( xf  
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Algorithm 4: 

INPUT initial approximation 0x ; tolerance ; maximum number of iterations N . 

OUTPUT approximate solution 1nx  or message of failure. 

Step 1: Set n=0 and 1i . 

Step 2: While i N  do steps 3-5. 

Step 3: calculate   
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Step 4: If  nn xx 1 ; then OUTPUT ( 1nx ); stop. 

Step 5: Set 1,1  iinn  and go to Step 2. 

Step 6: OUTPUT ('Method failed after N  iterations, N =’ N ); stop. 

We consider the convergence analysis proposed in this paper by the following theorem.  

Theorem 1: Let I be a simple zero of sufficiently differentiable function RIf : for an open 

interval .I If 0x is sufficiently close to , then the methods defined by (2.10) and (2.14) are of third-order, 

and satisfies the error equation  
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furthermore,  the methods defined by (2.18)  and (2.23) are of fourth order, and satisfies the error equations 

 ),()
72

( 54

2

2

3243

2

2

4

2
1 nnn eOe

c

cccccc
e 


            (2.25) 

and 

 ),()3( 54

3241 nnn eOeccce               (2.26) 

 where  nn xe and ).(!/)()(  fkfc k

k
  

Proof: Let   be a simple zero of f .  Since f is sufficiently differentiable, by expanding )( nxf about , 

we get: 
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Then  
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Differentiating (2.28) three times with respect to nx we get: 
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Using (2.28)-(2.31) in (2.10) and (2.14) respectively, we get the following error equations 
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On the other hand, using (2.28)-(2.31) in (2.18) and (2.23) respectively, we get: 
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This means the methods defined by (2.10) and (2.14) are at least cubically convergent, and the methods 

defined by (2.18) and (2.23) are at least fourth-order convergence. 

 

3 Numerical examples 

 We now present some examples to illustrate the efficiency of our developed methods in this paper 

which are given by the Algorithms 1-4. We compare the Newton’s (NM) method, Golbabai and Javidi 

method (GJM [4]), Abbasbandy methods (AM [1]), Noor and Noor method (NNM[9]) Chun and Ham 

method (CYM[2] ), Javidi method Algorithm2.2 (JM [6]) and Saeed and Aziz  method (SAM [10]). All 

computations are carried out with double arithmetic precision. Displayed in Table 1 are the number of 

iterations (N) required such that 1N Nx x    and 1( )Nf x   where
1510 . 

We use the following functions, some of which are the same as in [1, 2, 4, 6, 9, 10]  
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Table 1: Comparisons between the methods depending on the number of iterations (N) 

 

 

f(x) 

N (Number of iterations) 

0x  NM GJM AM NNM CYM JM SAM Alg.1 Alg.2 Alg.3 Alg.4 

f1 
-1 3 5 4 6 div. 6 1 5 5 18 3 

1 7 4 5 5 div. 7 4 7 5 5 7 

f2 
0 4 3 3 4 div. 4 2 4 3 3 3 

-1 5 3 3 5 div. 5 3 5 3 3 4 

f3 
0.2 5 3 3 5 3 5 3 5 4 2 4 

1 6 4 4 6 3 5 3 5 5 3 6 

f4 
-1 6 3 4 7 3 11 4 7 5 4 4 

2 5 3 3 5 3 4 3 6 3 3 4 

f5 
2 5 4 4 5 3 5 3 6 4 4 4 

0.5 6 3 5 7 3 6 4 7 5 6 4 

f6 
1.5 5 3 4 6 div. 7 3 7 4 2 4 

1 8 4 15 18 div. div. div. 74 div. 7 div. 

 

4  Conclusion 

 We can conclude that the new presented algorithms in this paper perform in most cases better than 

the methods which we have taken for comparison depending on the number of iterations. 
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