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Abstract: In the present article, an improved estimator (s2
yk

) over usual unbiased estimator of population variance (s2
y) is proposed by

using known coefficient of variation (Cy) of the study variable y. Asymptotic expression for its biasand mean square error (MSE) have
been obtained. For more practical utility the study of proposed estimator under estimated optimum value of k has also been carried
out. A comparative study has been made between the proposed estimator and the conventional estimator. Numerical illustration is also
given in support of the present study.
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1 Introduction

The problem of estimating population variance arises in many practical situations like agricultural, biological and
medical studies [Bland and Altman (1986)] [3]. The problem has been well dealt in literature in simple random
sampling. This problem is considered by Wakimoto (1971) [20] in stratified sampling. Variance estimation in PPS and
general sampling design was also considered by Das and Tripathi(1977) [6], Liu (1974) [13], Chaudhury (1978) [5],
Mukhopadhyay (1978) [14], Swain and Mishra(1994) [18]. Estimation of population variance under super-population
models has been carried out by Mukhopadhyay (1982) [15], Padmawar and Mukhopadyay (1981) [16]. Taking
advantage of high correlation between study and auxiliary variables, Isaki (1983) [10] proposed ratio and regression type
estimators of population variance. Biradar and Singh (1998) [2], Agrawal and Panda (1999) [1] explored their discussion
under prediction approach. The assumption of a known coefficient of variation is actually common in many agricultural,
biological and industrial applications. If the situation arises that the population mean is proportional to the population
standard deviation, then knowing the proportionality constant is equivalent to knowing the population coefficient of
variation. For a more thorough discussion of this concept wesuggest Gleser and Healy(1976) [8]. For estimation of finite
population variance we assume that the finite population consists of N identifiable units(U1,U2,U3, .......,UN) taking the
values(Y1,Y2,Y3, .......,YN) on study variable y. Let

Ȳ = 1
N ∑N

i=1Yi, σ y
2 = 1

N ∑N
i=1(Yi − Ȳ)2

and

Cy =
σy

Ȳ

be the population mean, variance and coefficient of variation of y respectively. Similarly

µr =
1
N ∑N

i=1(Yi − Ȳ)r,

β1 =
µ2

3
µ3

2
, γ1 =

µ3

µ
3
2

2
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µ4
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2
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µ2

2
−3

∗ Corresponding author e-mail:dipikascholar@gmail.com

c© 2017 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/jsapl/040102


12 S. Misra et al.: An improved estimator of ...

Let,

ȳ = 1
n ∑n

i=1 yi, s2
y =

1
n−1 ∑n

i=1(yi − ȳ)2

be the sample mean and variance of y based on a sample s =(1,2,..,n) taken from U by simple random sampling.

The proposed estimator, using known coefficient of variation of study variable y for the estimation of population
varianceσ2

y is

s2
yk
= s2

y

(

ȳ2C2
y

s2
y

)k

(1)

where k is the characterizing scalar to be chosen suitably.

2 Bias and mean square error of Proposed Estimator

For the sake of simplicity we are assuming that the population size N is large as compared to sample size n so that finite
population correction (fpc) is ignored.

Let, ȳ = Ȳ (1+ e0), s2
y = σ2

y (1+ e1), E(e0) = E(e1) = 0, E(e2
0) =

C2
y

n , E(e2
1) =

γ2y+2
n E(e0e1) =

γ1yCy
n From (1) we have

s2
yk
= s2

y

(

ȳ2C2
y

s2
y

)

Now expressing proposed estimator in terms of ei’s

s2
yk
= σ2

y (1+ e1)
(

Ȳ 2(1+ e0)
2
)

(

C2
y

σ2
y (1+e1)

)k

= σ2
y [1+2ke0− (k−1)e1+ k(2k−1)e2

0−2k(k−1)e0e1+
k(k−1)

2 e2
1+ ..........]

(s2
yk
−σ2

y ) = σ2
y [2ke0− (k−1)e1+ k(2k−1)e2

0−2k(k−1)e0e1+
k(k−1)

2
e2

1+ ........] (2)

On taking expectation on both the sides of(2) and using first order of approximation, we get the bias of proposed
estimators2

y as

Bias(s2
yk
) = (s2

yk
−σ2

y ) =
σ2

y

n
[2k(k−1)C2

y −4k(k−1)γ1Cy + k(k−1)(γ2y+2)] (3)

Again, squaring(2) both sides and taking expectation, we have the mean square error of s2
yk

up to first order of
approximation to be

MSE(s2
yk
) = E(s2

yk
−σ2

y )
2

= σ4
y [4kE(e2

0)+ (k−1)2E(e2
1)−4k(k−1)E(e0e1)]

=
σ4

y

n
(γ2y+2)+

σ4
y

n
[k2(4C2

y −4γ1yCy + γ2y+2)+2k(2γ1yCy − γ2y−2)] (4)

The optimum value of k which minimizes the mean square error of s2
yk

in (4) is given by

k0 =
−(2γ1yCy − γ2y −2)

(4C2
y −4γ1yCy + γ2y +2)

(5)

The minimum value of mean square error of proposed estimators2
yk

for k0 is given by

MSE(s2
yk
)min =

σ4
y

n
(γ2y +2)−

σ4
y

n

(

(2γ1yCy − γ2y −2)2

4C2
y −4γ1yCy + γ2y +2

)

(6)
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3 Estimator with Estimated optimum Value of k

An alternative procedure for calculating mean square errorwhen values ofγ1y andγ2y or their good guessed values are
not available is to replace these values involved in the optimum k by their estimateŝγ1y andγ̂2y based on sample values
and get the estimated optimum value of k denoted byk̂ as

k̂ =−
(2γ̂1yCy − γ̂2y −2)

(4C2
y −4γ̂1yCy + γ̂2y +2)

(7)

Where,γ̂1y =
µ̂3

µ̂
3
2

2

andγ̂2y =
µ̂4
µ̂2

2
−3 with µ̂3 =

1
n ∑n

i=1(yi − ȳ), µ̂2 = s2
y =

1
n ∑n

i=1(yi − ȳ)2, µ̂4 =
1
n ∑n

i=1(yi − ȳ)4

Thus, replacing k by estimated optimum value of k in the estimators2
yk

in (1),we get for wider practical utility of the

estimator based on the estimated optimum valuek̂ is given as

s2
yk̂
= sy2(ȳ2Cy

2

s2
y
)k̂ (8)

To find the bias and mean square error ofs2
yk̂

, let

µ̂3 = µ3(1+ e2), µ̂4 = µ4(1+ e3)
Along with

ȳ = Ȳ (1+ e0),s2
y = σ2

y (1+ e1)

k̂ =−

2
µ3(1+e2)
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3
2
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3
2
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2 −1

=
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3
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3
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3
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+
2γ1yCy − γ2y−2

4C2
y −4γ1yCy + γ2y+2

{

(γ2y+3)(e3 −2e1−2e1e3+3e2
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3
2e1−3/2e1e2+
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(9)

Substituting ¯y = Ȳ (1+ e0), s2
y = σ2

y (1+ e1) andk̂ from (9) in (2), we have

(

s2
yk̂
−σ2

y

)

= σ2
y

[

e1−
2γ1yCy − γ2y −2

4C2
y −4γ1yCy + γ2y+2

{

2e0− e1− e2
0+2e0e1−

e2
1

2
+ ........

}

]

(10)

Taking expectation of (10) and ignoring terms ofei
′s greater than power two, we can easily check that the bias ofs2

yk
is

of O(1
n ) , hence the bias ofs2

yk
negligible for large value of n, that is the estimators2

yk
is approximately unbiased estimator

of population variance.
Now squaring and taking expectation of(10), we have

MSE(s2
yk̂
) = σ4

y [e1−
2γ1yCy−γ2y−2

(4C2
y−4γ1yCy+γ2y+2)

2e0− e1]
2

=
σ4

y

n
(γ2y +2)−

σ4
y

n

{

(2σ1yCy − γ2y −2)2

(4C2
y −4γ1yCy + γ2y+2)

}

(11)
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Which is same as mean square error for the optimum value of k that is estimators2
yk

based on estimated value of
optimum k also has same mean square error as that of the estimator s2

yk
based on optimum k.

4 Theoretical Efficiency Comparison

We compare the proposed estimators2
yk

with respect to usual unbiased estimator of population variancesy
2 and the

condition for which the proposed estimator will efficient isgiven by

MSE(s2
yk
)−MSE(s2

y)< 0

2γ1yCy < γ2y +2 (12)

5 Numerical Illustration

For numerical illustration, we consider the two data as

(1) Data given in Cochran(1977, pg34) dealing with the weekly expenditure of family on food(y) of 33 low-income
families, the required values are calculated from data are

n = 33, ȳ = 27.49,σ2
y = 99.613033,Cy = 0.363036,γ1y = 1.4651,γ2y = 2.7146

Using above values, we have

MSE(s2
y) = 1417.63112 (13)

MSE
(

s2
yk

)

min
= 1065.13127 (14)

The percent relative efficiency (PRE) of the proposed estimator over the usual unbiased estimator for population
variance is 133%.
(2) Generated population from normal distribution by usingsimulation technique through R software. The Description of
this data is as followsY = N(5,10),n = 5000, ȳ = 4.95,σ2

y = 99.38,Cy = 2.014,γ1y = 0.039,γ2y =−0.041
Using above values, we have

MSE(s2
y) = 3.87 (15)

MSE(s2
yk
)min = 3.52 (16)

The percent relative efficiency (PRE) of the proposed estimator over the usual unbiased estimator for population
variance is 109%. Hence from both the data set we can concludethat proposed estimator is better the usual unbiased
estimator for population variance.

6 Concluding Remarks

(a) From (6) it is observed that the proposed estimator will perform better than usual unbiased estimator of population
variance.
(b) The estimators2

yk
with optimum valuek0 and the estimator based on estimated optimumk̂ have same mean square

error given by

MSE(s2
yk̂
) = MSE(sy

2)min =
σy4

n (γ2y+2)−
σ4

y
n

(2γ1yCy−γ2y−2)2

(4C2
y−4γ1yCy+γ2y+2)

(c) For normal population (,i.e.forγ1y = 0 andβ2y = 3),the optimum value of k from(5),reduces to

k = 1
1+2Cy2

For which mean square error of proposed estimator becomes
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MSE(s2
yk
) =

σ4
y

n
(2C2

y )

(1+C2
y )

showing that the proposed estimator is more efficient than usual unbiased estimator in normal parent population also.
(d) If for any dataset (12) holds then proposed estimator will be better than the usual unbiased estimator of population
variance.
(e) From numerical illustration (1) it is observed that proposed estimator is 133% more efficient than the usual unbiased
estimator for population variance.
(f) From simulation data analysis it is observed that proposed estimator is 109% more efficient than the usual unbiased
estimator for population variance.
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