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Abstract: Inthis paper, we study the-th upper record values from modified Makeham distributicth@erive some simple recurrence
relations satisfied by single and product moments. Thesgiars are deduced for moments of record values. Furthaditonal
expectation and recurrence relation for single momentsised to characterize this distribution.

Keywords: Order statisticsk—th record values, upper records, single moments, produchents, recurrence relations, modified
Makeham distribution, characterization.

1 Introduction

A random variableX is said to have a modified Makeham distribution if its proligbdensity function(pdf) is of the form

B x B-1 X X

F) = — (;) mp((;)ﬁ)ap(l—ap(;>ﬁ>

a

x>0,a, >0 1)
and the distribution functiord(f) is of the form

X

— B
F(x) =exp(l—exp( — , x>0, a, >0, 2
w=eo1-es( "))
whereF (X) = 1— F (x).
Itis easily observed that
B x A1 _
00=—(=) [R+(IFEIFX. @3)

a a
The relation in (3) will be used to derive some simple requreerelations for the moments kf-th upper record values from the
modified Makeham distribution.
This distribution has been widely used to describe humartatityrand to fit actuarial data. For more details on thisrdistion one
can find in Kosznik-Biernacka 1f1,12,13]).
Let {Xn, n> 1} be a sequence of independent and identically distrib{itdgirandom variables witd f F(x) andpdf f(x). Thej— th
order statistics 0Ky, X, ..., Xn is denoted byX|.,. For a fixedk > 1 we define the sequenéblrﬁk), n> 1} of k—th upper record times
of {Xn, n> 1} as follows:

uM =1
%% . Kk
U,Ql =min{j > U,ﬁ ) Xkl > Xun(k>:un(k>+k—1}'

Fork=1andn=12,..., we write U,ﬁ” = Un. Then{Un,n > 1} is the sequence of record times P, n > 1}. The sequence

{Yn(">, n> 1}, WhereYrEk> = XU(k) is called the sequence kf-th upper record values dfX,, n > 1}. For convenience, we shall also
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takeYO(k> = 0. Note that fok = 1 we havé\(n(l> = Xu,,n > 1, which are the record values K,, n > 1} (Ahsanullah 1]).
Then thepdf of Y,gk> and the jointpd f of Yr%k) andYr$k> are as follows:

kn
fo0(X) = —— [—INF(X)" L [FOIT f(x), n>1, 4)
" r ()
kn _ f(x)
Fyto vt (X¥) = ———— [=InF ()™t —
’ rnl(n—m) F(x)
x[INF(x) — InF (y)]" ™ Fy) k1 f(y), x<y, 1<m<nn>2 ©)

(Dziubdziela and KopocinskB], Grudzieh f].

The various developments on record values and relatedstapécextensively studied in the literature. See for exan@ledzien and
Szynal B], Pawlas and Szynal1f, 15]), Ragab and Ahsanullali @], Khan and Zia 10], Khan et al. p], Ahsanullah and Nevzoro2]
and Khan and Khar8] among others.

2 Relations for single moments

Theorem 2.1. Fix a positive integek > 1,forn>1,n>kandj=0,1,...,

] i+B i+B i+B
EMY) = ———{nE(VK) T —(n—KEMX) T —kEME) ) ©)
aP(j+B)
Proof. Forn>1andj=0,1,..., we have from (3) and (4)
i BK' e _ _
ECR) = —— [P InF ()" HF ()
afrn’/o

BK"

afrn
Integrating by parts, taking! "1 as the part to be integrated and rest of the integrand foereiftiation and then simplifying the
resulting expression, we obtain the result given in Thea2eln
Corollary 2.1. The recurrence relation for single moments of upper recafdes from the modified Makeham distribution has the
form

[ X (o] F o o

) B ) ) )
EX,) = {nEP) — (- DECGP) —EC )1 (7)
aP(j+B)

3 Relationsfor product moments

Theorem 3.1. Form>1,m>kandi, j=0,1,2,...,
B 040 = — )]l )
" abiep) -
mB . . .
o {E[Y )P B[R ()i, ®)
crﬁ(i +B)
and for I< m<n-2andi, j=0,1,2,...,
E[(Y) ()] = o {EIM) P )T — BN )P )1y
aP(i+B) " B "
mpB . . . .
e {E[Y ) (V) I E (V) B (v T, 9)
aﬁ(i +B)
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Proof. From (5) for =< m<n-1andi, j=0,1,2,...,

R L
B[ ()] = ——— [y mdy, (10)
rnr(n—m)”0
where f0
R X
1) = [ X000 LI (y) +1nF ()™ ™
° F

Integratingl (y) by parts and using (3), we obtain
B(n—m-1) f(x)

I(y) = B.i/yxi#f[—InF_(X)]mfl[_mF_(y) FINERI ™2 dx
af(i+B) 0 e
B(m-1) ., B i ) f
_(m)/nyB[—InF(X)]m2[_|nF(y) +InF (X)}nfmflgdx
aP(i+p)’° F(%)
B(n-—m-1) ,, ) . ) f
+(nm)/ny+B[_|nF(X)}m[_|nF(y)+|n|:(x)}nmz_(x)dx
af(i+p) /0 -
B _ - ) _ f
_mi/yxwﬁ[—lnF(X)]m—l[_mF (y) +|n|:(x)}nfmflﬁdx’
oy o F(x)

Substituting this expression into (10) and simplifyingleidds to (9). Proceeding in a similar manner for the aasem+1 , the
recurrence relation given in (8) can easily be established.

One can also note that Theorem 2.1 can be deduced from Th&otdmy puttingj = O.

Corallary 3.1. The recurrence relation for single moments of upper recatdes from the modified Makeham distribution has the
form

) ) ) ) mgB ) ) ) )
(ECGPX ) —ECGP X )+ ——— (B X))~ ECGPX ) (11)

E( im J):
Xon%n ab(i+pB) ab(i+pB)

4 Characterizations

Theorem 4.1. Fix a positive integek > 1 and letj be a non-negative integer. A necessary and sufficient donddr a random variable
X to be distributed withpd f given by (1) is that

e = e ™) )P ke )y (12)

aP(j+p)

forn=12,..., n>k.
Proof. The necessary part follows from (6). On the other hand if @weirence relation (12) is satisfied, then on rearrangiageims
in (12) and using (4), we have

kn o B B ﬁkn+l o B B
BT =10 = S e A0 T — / XITB[—InF ()] L [F (%)) 2 £ (x)dx
rn’/o af(j+p)rn’o
o /wx”ﬁ[—InF_(x)]”’z[F_(x)}k’lf(x)dx
aP(j+B)r(n-1)7°
kn+l o
+HB—/ XITB[—InF ()]"[F (%)< (x)dx
af(j+B)r(n+1)70
nBk" - _ _
S / X B [ InE ()" E ()KL (x)dx (13)
aP(j+pB)rn’o
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Integrating the first and third integral on the right handesid(13) by parts, we get

kn r00 _ _ Bkn r00 — —
— | X [=InF ()] F )L () dx = —/ XITB=L_1nF ()] 2 [F (x)]Kdx
rn’/o aPrn’/o

B -
| nF 0] (ax

afrn
which reduces to
K' o _ B _
— [ X [—InF(x)}”’l[F(x)]k’l{ f(x)— —xP L1+ (—InF(x))]F(x)} =0 (14)
rn’o af
Applying now a generalization of the WMtz-Szsz Theorem (see for example Hwang and Ld}) fo (14), we find that

B x B-1 _
f)==(=) [L+(InFE)IFX)

a - a

which proves that
X
— B

F(x) =exp(1l—exp( — , x>0, a, >0.

(1-e(-)")
Remark 4.1. If k=1 we obtain the following characterization of the modifiedkdlaam distribution

20t = () - (0 DEDGP) £, n=12.
af(j+B)

Corallary 4.1. Under the assumptions of Theorem 4.1 wijith: O the following relation

n—k k aﬁ
K \B N K B
E(Yah) :(7)E(Yr$ N+ e )+ —, n=12..
n n n

characterize the modified Makeham distribution.
Theorem 4.2. Let X be a non-negative random variable having an absolutelyreanisd f F(x) with F(0) = 0 and 0< F(x) < 1 for
allx> 0, then

K \noi
EE () | (%) =¥ =exp(1 ¥/’ ) (— )" n>k T=m m+1 (15)
k+1
if and only if
0 ~ep(1-e(-)°). x20.a.p>0
F(X):exp 1_®(p - ) XZ ) a7 > )
a
where

E(y) = exp(1—¥/D").
Proof. We have from (4) and (5)

EE(W) | () =x = /‘wexpu—e(y/“”)
r(n—m)’*
_ L\ N =RV
X[INF() —InF )" ™2 (== )" ——dy, (16)
F(x) F(X)
By setting
F(y) exp(1—eW/a)F)
u= —— =
F(x) exp(1—eX/a)F)
from (2) in (16), we have
Kn-m :
E[E(W) | () =x = exp(1—e™/)”) / K™y (17)
[ (n—m) 0
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We have Gradshteyn and Ryzhi#] [

-1 I_[l

/ (=In)H IV "tdx= —, p>0, v>o. (18)
0 yH

On using (18) in (17), we have the result given in (15).

To prove sufficient part, we have

knfm

——— [ exp(— ) InF () — InF ()" ™ HF ()] )y = [F00] gm0, (19)
r(n—m)~’X

where
k n—m
Gnim(X) = exp(1— /@) ()T
k+1

Differentiating (19) both the sides with respecitpwe get

K=Mf (x) . _ _
[ ep(1— ) InF ()~ InF )" 2
FX)Ir (n—m—1)“%

x [F () (y)dy = gy [F (01K = K gym()[F ()] (%)

or
~K Gnjmi 1 0ITF (%)< (%) = Gy (IIF ()T — K Goym([F (%)< 2 (x).
Therefore,
f(x) Gpym(¥) BxP-telXa)®
S - , (20)
F(X) k[gn|m+l(x) - gn|m(x)} aﬁ
where
Bxﬁ*1e<x|a>a k nem
oy (X) = — exp 1_eXa)fy(____
T ()
1 B k n—-m
Onim+1(¥) — Gnjm(X) = —exp(1— /") (— ) T,
k k+1

Now integrating both the sides in (20) with respeckteetween0,y) , the sufficiency part is proved.
Remark 4.2. If k=1, we get the following characterization of upper recordiealfor modified Makeham distribution

1 -
E[E(Xu,) | (X)) =X :e<p(1_e(x/f’>ﬁ)<£) l, l=m, m+1.

5 Conclusion

In this study some recurrence relations for single and proshwments ok—th record values from the modified Makeham distribution
have been established and some particular cases are algesdid. Further, conditional expectation and recurrezleéion for single
moments ok—th record values have been utilized to obtain the charaatgrresults of the modified Makeham distribution.
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