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Abstract: In this paper, we consider a quota-(α,β ) reinsurance model in discrete times with assumption that claim sequenceX =
{Xn}n≥1, premium sequenceY = {Yn}n≥1 are sequence of independent and identically distributed random variables. Furthermore, the
sequencesX = {Xn}n≥1,Y = {Yn}n≥1 are assumed to be independent. By martingale method we obtain some inequalities for ruin
probability of the insurance company, ruin probability of the reinsurance company and joint ruin probability. Finallysome numerical
illustrations are given.
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1 Introduction

Ruin probability is a main area in risk theory. Appeared in 1903 in the doctoral dissertation of Lundberg ,F [12].This
topic, also of interest to many authors, appeared in the research of many mathematicians, see [1,3,11,13,14,16] where
upper bounds were estimated for ruin probability having exponential form.

Martingale approach is used to estimate the ruin probability for such models as: i) the classical risk models, ii) the
models of claim sizes and premiums with sequences of m-dependent random variables, iii) the modes of interest rates
which can be found in the paper [4,5,18,19,7,8].

Besides finding methods to show the ruin probability, the authors also build risk models to reflect the insurance
business increasingly more realistic. One of the models is Quota reinsurance, presented in the works, see [2,10,9].

In this paper, we investigate a Quota reinsurance model in discrete time that we shall call it Quota -(α,β ) reinsurance
or Quota -(α,β ) share contract. It is a contract where the share proportion of the premium is different from that of the
claim, defined as follows:

The quota -(α,β ) reinsurance or quota -(α,β ) share contract is a contract between the insurance company and the
reinsurer to share premiumY = {Yi}i≥1 with a fixed proportionα ∈ [0,1]. WhereYi is the premium at the end of thei−
period,i = 1,2, ... ( paid by insured to the insurance company) and losses (claimsizes)X = {Xi}i≥1 with a fixed proportion
β ∈ [0,1]. WhereXi is the loss at the end of thei− period,i = 1,2, ...( claimed by the insured).

PremiumYi : αYi kept by the cedant;(1−α)Yi transfered to the reinsurer.
Claim lossXi : βXi paid by the cedant;(1−β )Xi paid by the reinsurer.

α,β ∈ [0,1] are calleddivision ratios.
When the surplus process of the insurance company is a sequence of random variables{Un}n≥1 defined by:

Un = u+α
n

∑
i=1

Yi −β
n

∑
i=1

Xi , (1.1)

whereu denote the insurance company’s initial capital.
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P

[

t
⋃

i=1

(

Ui ≤ 0
)

]

is calledprobability of ruin within finite time t, denoted byψ(1)(u, t) :

ψ(1)(u, t) = P

[ t
⋃

i=1

(

Ui ≤ 0
)

]

, (1.2)

P

[

∞
⋃

i=1

(

Ui ≤ 0
)

]

is probability of ultimate ruin, denoted byψ(1)(u) and defined as:

ψ(1)(u) = P

[ ∞
⋃

i=1

(

Ui ≤ 0
)

]

. (1.3)

Similarly, we define the surplus process of the reinsurance company, the probability of ruin within finite timet and the
probability ultimate ruin, respectively, by{Vn}n≥1,ψ(2)(v, t),ψ(2)(v):

Vn = v+(1−α)
n

∑
i=1

Yi − (1−β )
n

∑
i=1

Xi , (1.4)

ψ(2)(v, t) = P

[ t
⋃

i=1

(

Vi ≤ 0
)

]

, (1.5)

ψ(2)(v) = P

[ ∞
⋃

i=1

(

Vi ≤ 0
)

]

, (1.6)

wherev denote the reinsurance company’s initial capital.
Evidently: lim

t→∞
ψ(1)(u, t) = ψ(1)(u); lim

t→∞
ψ(2)(v, t) = ψ(2)(v).

In the classic model, see [2,10] whereα,β are considered equal. In this paper we investigate genralized model with
α andβ are any constant in[0,1] satisfying condition (1.9).

Recently, some authors have studied the joint ruin probability of insurance and reinsurance companies, see [15,9,20].
We define the finite timet and ultimate joint ruin probabilities, respectively, byψ(u,v, t),ψ(u,v):

ψ(u,v, t) = P

{ t
⋃

i=1

[

(

Ui ≤ 0
)(

Vi ≤ 0
)

]}

(1.7)

ψ(u,v) = P

{ ∞
⋃

i=1

[

(

Ui ≤ 0
)(

Vi ≤ 0
)

]}

(1.8)

and we have lim
t→∞

ψ(u,v, t) = ψ(u,v).

In this paper, we consider premium calculation principle based on the expected value principle. Hence, we have:










E(X1)< E(Y1)

βE(X1)< αE(Y1)

(1−β )E(X1)< (1−α)E(Y1)

⇔

{

E(X1)< E(Y1)

β E(X1)
E(Y1)

< α < β E(X1)
E(Y1)

+1− E(X1)
E(Y1)

(1.9)

This condition allows us to calculateα,β .
In the next, we shall work with the models (1.1) and (1.4) under the following assumptions:

Assumption 1.1.Initial capitalsu> 0,v> 0.
Assumption 1.2.Let α,β ∈ [0,1] satisfy condition (1.9).
Assumption 1.3.Let X =

(

Xi
)

i≥1 andY =
(

Yi
)

i≥1 be two sequences of independent and identically distributed (i.i.d),

nonnegative random variables defined on the same probability space,
(

Ω ,F ,P
)

. Furthermore,
(

Xi
)

i≥1 and
(

Yi
)

i≥1are
assumed to be independents.

The paper is organized as follows: In section 2, first we show Lemma2.1about existence and uniqueness of an adjustment
coefficient, Lemma2.2 is used to prove

{

Zn = exp(Sn)
}

n≥1 to be supermatingale, Lemma2.3 is maximal inequality
for nonnegative supermartingale. Theorem2.1will present probability inequality of the insurance company. Similarly to
Section 2, Section 3 is dedicated to show probability inequality of the reinsurance company and to derive some probability
inequalities for the joint ruin probability. Finally, a numerical example is given to illustrateψ(1)(u),ψ(2)(v),ψ(u,v) in
Section 4.
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2 Probability inequalities for ruin probability of the insu rance company

Firstly, we present three lemmas, which are necessary for the proof of our main result in Theorem (2.1).

Lemma 2.1. Suppose that
αE(Y1)> βE(X1) andP

[

(βX1−αY1)> 0
]

> 0, (2.1)

then there exists a positive constant R0 > 0 which is the unique root of the equation

E
{

exp
[

R(βX1−α Y1)
]}

= 1. (2.2)

For all 0< R1 ≤ R0, we have
E
{

exp
[

R1(βX1−α Y1)
]}

≤ 1. (2.3)

Proof. Consider the functiong(R) = E
{

exp
[

R(βX1−α Y1)
]}

−1 for R∈ [0,∞).
We have

g(0) = 0,

g′(R) = E
{

(βX1−αY1)exp
[

R(βX1−α Y1)
]}

,

By assumption of Lemma2.1 theng′(0) = E(βX1−αY1) < 0. Thus, the functiong(R) is decreasing at 0. Further, any
turning point of the function is a minimum since

g”(R) = E

{

(βX1−αY1)
2exp

[

R(βX1−αY1)
]

}

> 0.

By P(βX1−αY1 > 0)> 0, we can find some constantδ1 > 0 such thatP(βX1−αY1 > δ1)> 0.
We use the property that satisfying ifZ is random variables satisfyingZ ≥ 0 thenZ ≥ Z.1A with anyA∈ F

g(R)≥ E

{

exp
[

R(βX1−αY1)
]

.1(β X1−αY1>δ1)

}

−1

≥ E
[

exp(R.δ1).1(β X1−αY1>δ1)

]

−1

= exp(R.δ1).E
[

1(β X1−αY1>δ1)

]

−1

= exp(R.δ1).P
(

βX1−αY1 > δ1
)

−1 (2.4)

The right- hand of (2.4) → ∞ whenR→ ∞. Thus lim
R→∞

g(R) = ∞.

Consequently, there exists a unique positive root of the equation (2.2), denoted byR0.
Since,g(R) is a convex function withR∈ [0,∞) andg(0)= 0,g(R0) = 0. If 0<R1 ≤R0 theng(R1)≤ 0 which is equivalent
to

E
{

exp
[

R1(βX1−α Y1)
]}

≤ 1.

The Lemma2.1has been proven.

Lemma 2.2. (see, [6] page 201) In the probabilistic space(Ω ,F ,P), let U =
(

U1,U2, ...,Um
)

,V =
(

V1,V2, ...,Vn
)

be
random vectors, independent of each other, and f be a Borel’sfunction onRm×R

n where|E f (U,V)| ≤ ∞. If u∈R
m, the

function g is defined by

g(u) =

{

E f (u,V) if |E f (u,V)| ≤ ∞
0 other

(2.5)

then g is Borel’s function onRm with g(U) = E
[

f (U,V)|σ(U)
]

, whereσ(U) is σ− algebra generated by vector U. In
other words, under the assumption we can computeE

[

f (U,V)|σ(U)
]

as if U was a constant vector.

Lemma 2.3. (see, [17] page 493) Let Y= (Yn,Fn)n≥0 be a nonnegative supermartingale. Then for allλ > 0

λP
{

max
k≤n

Yk ≥ λ
}

≤ EY0, (2.6)

λP

{

sup
k≥n

Yk ≥ λ

}

≤ EYn. (2.7)
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The following theorem will give upper bounds for the ruin probability of the insurance company.
We put:

Sn = β
n

∑
i=1

Xi −α
n

∑
i=1

Yi . (2.8)

Theorem 2.1. We consider model(1.1) such that:
i) The assumptions 1.1-1.3 are satisfied;
ii) The conditions of Lemma(2.1) are also satisfied.

Then:
a)

{

Zn = exp(R1Sn)
}

n≥1 is a supermartingale;

b) The ruin probability of the insurance company within finite timeψ(1)(u, t)≤ exp(−R1u);
c) The ultimate ruin probability of the insurance companyψ(1)(u)≤ exp(−R1u).

Proof. It follows immediately from result of Lemma2.1that there exists a constantR1 (0< R1 ≤ R0), such that:

E
{

exp[R1(βX1−αY1)]
}

≤ 1. (2.9)

We have

E
[

Zn+1|Z1,Z2, ...,Zn
]

= E
{

exp
[

R1(β
n+1

∑
i=1

Xi −α
n+1

∑
i=1

Yi)
]

|Z1,Z2, ...,Zn
}

= E
{

Znexp
[

R1(βXn+1−αYn+1)
]

|Z1,Z2, ...,Zn
}

= ZnE
{

exp
[

R1(βXn+1−αYn+1)
]

|Z1,Z2, ...,Zn
}

. (2.10)

We now apply the Lemma2.2for the case

f (U,V) = exp
[

R1(βXn+1−αYn+1)
]

,

U = (X1, ...,Xn,Y1, ...,Yn),

V = (Xn+1,Yn+1),

whereU,V are mutually independent.
Corresponding to the value

(X1 = x1, ...,Xn = xn,Y1 = y1, ...,Yn = yn),

u= (x1, ...,xn,y1, ...,yn),

we consider

g(u) = E

{

exp
[

R1(βXn+1−αYn+1)
]

}

= E

{

exp
[

R1(βX1−αY1)
]

}

,

by assumption

E

{

exp
[

R1(βX1−αY1)
]

}

≤ 1,

consequently

g(U) = E

{

exp
[

R1(βXn+1−αYn+1)
]

|X1, ...,Xn,Y1, ...,Yn

}

≤ 1.

In the other hand

g(U) = E

{

exp
[

R1(βXn+1−αYn+1)
]

|Z1,Z2, ...,Zn

}

≤ 1. (2.11)

Combining (2.10) and (2.11) imply that

E(Zn+1|Z1,Z2, ...,Zn)≤ Zn for all n≥ 1. (2.12)
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So{Zn}n≥1 = {exp(R1Sn)}n≥1 is non- negative supermartingale.
In addition,

ψ(1)(u, t) = P

[ t
⋃

n=1

(Sn ≥ u)

]

= P

[

max
1≤k≤t

(Sk)≥ u

]

= P

{

max
1≤k≤t

[

exp(R1Sk)
]

≥ exp(R1u)

}

. (2.13)

Applying Lemma2.3for non- negative supermatingale{Zn}n≥1 = {exp(R1Sn)}n≥1, we have:

ψ(1)(u, t)≤
{

exp(−R1u).E(Z1)
}

=
{

exp(−R1u).E
(

exp
[

R1(βX1−αY1)
])}

≤ exp(−R1u). (2.14)

By letting t → ∞ in (2.14). Thus,

lim
t→∞

ψ(1)(u, t)≤ lim
t→∞

(exp(−R1u))⇔ ψ(1)(u)≤ exp(−R1u). (2.15)

This completes the proof.

Remark 2.1:
–Our result seems to be new even is the case of clasical model whenα = β ;
–With 0< R1 ≤ R0 then the right-hand side of (2.14) and (2.15) are the smallest whenR1 = R0 .

Similar to the Section 2, we derive inequality for ruin probability of the reinsurance company in the Section 3 following.

3 Probability inequalities for ruin probability of the rein surance company

We put:

S′n = (1−β )
n

∑
i=1

Xi − (1−α)
n

∑
i=1

Yi . (3.1)

We need Lemma3.1for the proof of Theorem3.1below.

Lemma 3.1. Under the conditions

(1−α)E(Y1)> (1−β )E(X1) andP
{

[(1−β )X1− (1−α)Y1]> 0
}

> 0, (3.2)

then there exists a positive constant R′
0 > 0 which is the unique root of the equation

E
{

exp
[

R
(

(1−β )X1− (1−α)Y1
)]}

= 1. (3.3)

For all 0< R2 ≤ R′
0, we have

E
{

exp
[

R2
(

(1−β )X1− (1−α)Y1
)]}

≤ 1. (3.4)

The proof of Lemma3.1is similar as Lemma2.1.
Now we state theorem below for the case of reinsurance company.

Theorem 3.1. We consider model(1.4) such that:
i) The assumptions 1.1-1.3 are satisfied;
ii) The conditions of Lemma(3.1) are also satisfied.

Then:
a)

{

Z′
n = exp(R2S′n)

}

n≥1 is a supermartingale;

b) The ruin probability of the reinsurance company within finite timeψ(2)(v, t)≤ exp(−R2v);
c) The ultimate ruin probability of the reinsurance companyψ(2)(v)≤ exp(−R2v).

The proof of Theorem3.1is similar to that of Theorem2.1.
Remark 3.1

With assumptions of Theorem2.1, Theorem3.1we have the probability inequality for ultimate joint ruin probability.
Indeed:

ψ(u,v) = P

( ∞
⋃

i=1

(Ui ≤ 0)∪
∞
⋃

i=1

(Vi ≤ 0)

)

≤ P

( ∞
⋃

i=1

(Ui ≤ 0)

)

+P

( ∞
⋃

i=1

(Vi ≤ 0)

)

≤ exp(−R1u)+exp(−R2v). (3.5)

The inequality (3.5) is corollary of Theorem2.1and Theorem3.1.
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4 Numerical illustrations

In this Section, we provide two numerical illustration examples for the probability inequality of
ψ(1)(u),ψ(2)(v) andψ(u,v), with α = 0.4900,β = 0.5000.
Example 4.1

Let Y = {Yn}n>0 be a sequence of independent and identically distributed random variables, withY1 having a
distribution:

Y1 1 4

P 0.5500 0.4500

Let X = {Xn}n>0 be a sequence of independent and identically distributed random variables, withX1 having
distribution:

X1 2 3

P 0.7000 0.3000

WhenβX1−αY1 having distribution:

βX1−αY1 0.5100 1.0100 -0.9600 -0.4600

P 0.3850 0.1650 0.3150 0.1350

To (2.2) we have the equation :

exp(r ∗0.5100)∗0.3850+exp(r ∗1.0100)∗0.1650+exp(−r ∗0.9600)∗0.3150

+exp(−r ∗0.4600)∗0.1350= 1. (4.1)

By Maple the equation (4.1) has a roofR0 = 0.0051.
Similarly, we have distribution of(1−β )X1− (1−α)Y1

(1−β )X1− (1−α)Y1 0.4900 0.9900 -1.0400 -0.5400

P 0.3850 0.1650 0.3150 0.1350

To the equation (3.3) gives the equation:

exp(r ∗0.4900)∗0.3850+exp(r ∗0.9900)∗0.1650+exp(−r ∗1.0400)∗0.3150

+exp(−r ∗0.5400)∗0.1350= 1. (4.2)

By Maple we findR′
0 = 0.1548 is roof of the equation (4.2).

The following table shows upper boundsψ(1)(u),ψ(2)(v),ψ(u,v) for a range of value ofu,v:

c© 2016 NSP
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Table 1: Upper bounds ofψ(1)(u),ψ(2)(v) andψ(u,v) with X1 andY1 are discrete random variables.

(u,v) ψ(1)(u) ψ(2)(v) ψ(u,v)

u= 30;v= 30 0.8581 0.0096 0.8677

u= 1550;v = 50 0.0004 0.0004 0.0008

u= 70;v= 70 0.6998 0.0000 0.6998

Example 4.2
LetY= {Yn}n>0 be a sequence of independent and identically distributed random variables, withY1 is constantc= 1.1.

X = {Xn}n>0 be a sequence of independent and identically distributed random variables, withX1 has the exponential
distribution:

f (x) =

{

λexp(−λx) if x> 0
0 otherx≤ 0

(4.3)

whereλ = 1. f (x) is density function ofX1
To condition of (2.2), we have equation

+∞
∫

0

exp
[

r(0.5000x−0.4900∗1.1000)−x
]

dx= 1

⇔ exp(−r ∗0.5390)−1+ r ∗0.5000= 0. (4.4)

Use of Maple software, we find a solutionR0 = 0.5927 of (4.4).
Similarly, to condition of (3.3), we have equqtion

+∞
∫

0

exp
[

r(0.5000x−0.5100∗1.1000)−x
]

dx= 1

⇔ exp(−r ∗0.5610)−1+ r ∗0.5000= 0. (4.5)

and findR′
0 = 0.4185.

When upper boundsψ(1)(u),ψ(2)(v),ψ(u,v) for a range of value ofu,v.

Table 2: Upper bounds ofψ(1)(u),ψ(2)(v) andψ(u,v) with Y1 = c andX1 is continuous random variable.

(u,v) ψ(1)(u) ψ(2)(v) ψ(u,v)

u= 8;v= 8 0.0087 0.0352 0.0439

u= 10;v= 14.1326 0.0027 0.0027 0.0054

u= 15;v= 15 0.0001 0.0019 0.0020

5 Conclusions

This paper constructed upper bounds forψ(1)(u, t),ψ(1)(u),ψ(2)(v, t), andψ(2)(v) in model (1.1) and (1.4) by the
martingale method. Our main results in this paper not olny prove Theorem2.1and Theorem3.1but also give numerical
examples to illustrate for Theorem2.1and Theorem3.1.
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