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Abstract: In this paper, we consider a quata;[) reinsurance model in discrete times with assumption tretnckequenc& =
{Xn}n>1, premium sequencé = {Yn }n>1 are sequence of independent and identically distributedara variables. Furthermore, the
sequenceX = {Xn}n>1,Y = {Yn}n>1 are assumed to be independent. By martingale method wencditaie inequalities for ruin
probability of the insurance company, ruin probability & treinsurance company and joint ruin probability. Finatlyne numerical
illustrations are given.
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1 Introduction

Ruin probability is a main area in risk theory. Appeared i3 9 the doctoral dissertation of Lundberg B2 This
topic, also of interest to many authors, appeared in theareseof many mathematicians, see3, 11,13,14,16] where
upper bounds were estimated for ruin probability havingogential form.

Martingale approach is used to estimate the ruin probghidit such models as: i) the classical risk models, ii) the
models of claim sizes and premiums with sequences of m-digpemandom variables, iii) the modes of interest rates
which can be found in the papet,p,18,19,7,8].

Besides finding methods to show the ruin probability, thénharg also build risk models to reflect the insurance
business increasingly more realistic. One of the modelsist®reinsurance, presented in the works, 8H0[9].

In this paper, we investigate a Quota reinsurance modesirelie time that we shall call it Quotéa, 3) reinsurance
or Quota {a, 3) share contract. It is a contract where the share proporfitineopremium is different from that of the
claim, defined as follows:

The quota {a, 8) reinsurance or quota(a, 3) share contract is a contract between the insurance compartphea
reinsurer to share premiuh= {Y; };>1 with a fixed proportioror € [0,1]. WhereY; is the premium at the end of the
period,i =1,2,... (paid by insured to the insurance company) and losses (slaes)X = {X; }i>1 with a fixed proportion
B € [0,1]. WhereX; is the loss at the end of the period,i = 1,2,...( claimed by the insured).

PremiumY;: aY; kept by the cedan{l — a)Y; transfered to the reinsurer.

Claim lossX;: BX; paid by the cedantl — 3)X; paid by the reinsurer.

a,B € [0,1] are calleddivision ratios
When the surplus process of the insurance company is a segjaérandom variablefJ, },>1 defined by:

U=utaS YB3 X, a1

whereu denote the insurance company’s initial capital.
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(Ui < 0)} is calledprobability of ruin within finite time tdenoted byp¥ (u,t) :

PD(ut) = IP’[LIJ (U < 0)], (1.2)

i=1

(U < 0)] is probability of ultimate ruin denoted byy(Y (u) and defined as:

o
Xt

P (u) = ]P’{O (Ui < o)]. (1.3)

Similarly, we define the surplus process of the reinsuranoapany, the probability of ruin within finite timeand the
probability ultimate ruin, respectively, bVn}n>1, Y@ (v,t), g3 (v):

Vh=v+(1-a in Zx (1.9)

]PLL;Jl Vi <0 } (1.5)
[91 \/I <0 } (1.6)

wherev denote the reinsurance company’s initial capital.
Evidently: lim YD (u,t) =g (u); lim YA (v,t) = PP (v).

In the classic model, se@,[L0] wherea, 3 are considered equal. In this paper we investigate gerthtirdel with
a andf are any constant if9, 1] satisfying condition.9).

Recently, some authors have studied the joint ruin prolbgbil insurance and reinsurance companies, $86€9[20].
We define the finite timéand ultimate joint ruin probabilities, respectively, yu,v,t), ¢ (u,v):

t

qJ(u,v,t):]P’{iL:Jl {(Ui <0)(V <o)” (1.7)

vy -#{U]v=0m=0)]} 8)
i=1
and we havcta_!imp(u,v,t) = Y(u,v).
In this paper, we consider premium calculation principlsdzhon the expected value principle. Hence, we have:

E(X1) <E(Y1)
BE(Xy) < aE(Yy) {E(xl) <E(V)

(1-B)E(X) < (1—a)E(Y1)

This condition allows us to calculate 3.

In the next, we shall work with the models.{) and (L.4) under the following assumptions:

Assumption 1.1.Initial capitalsu > 0,v > 0.

Assumption 1.2.Let a, 3 € [0,1] satisfy condition {.9).

Assumption 1.3.Let X = (X;),., andY = (Y;) ., be two sequences of independent and identically distrib(ited),
nonnegative random variables defined on the same prolyaipiice(Q,.7 ,P). Furthermore(X;)._, and(Y;)  ,are
assumed to be independents. B B

The paper is organized as follows: In section 2, first we shemina2.1about existence and uniqueness of an adjustment

coefficient, Lemma2.2 is used to prove Z, = exﬂ&)}ml to be supermatingale, Lemn2a3 is maximal inequality

for nonnegative supermartingale. Theor2rwill present probability inequality of the insurance compaSimilarly to

Section 2, Section 3 is dedicated to show probability inéityuaf the reinsurance company and to derive some proligbili

inequalities for the joint ruin probability. Finally, a nuarical example is given to illustratg™® (u), @ (v), P(u,v) in

Section 4.

1.9
BEX1<U<B]E (<1>> (1.9)
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2 Probability inequalities for ruin probability of the insu rance company

Firstly, we present three lemmas, which are necessary équithof of our main result in Theorerf.().

Lemma 2.1. Suppose that

aE(Y1) > BE(X1) andP[(BX1 — aY1) > 0] >0, (2.1)
then there exists a positive constagt:R0 which is the unique root of the equation
E{expR(BX1—a Y1)]} =1 (2.2)
For all 0 < R; < Ry, we have
E{exp[Rl(Bxl —-a Yl)] } <1 (2.3)

Proof. Consider the functiog(R) = E{exp[R(BX1— a Y1)| } — 1 forR€ [0, ).
We have
9(0) =0,
g'(R) =E{(BX — aYi)expR(BXi — a Y1) },

By assumption of Lemma.1theng'(0) = E(BX; — aY;) < 0. Thus, the functiom(R) is decreasing at 0. Further, any
turning point of the function is a minimum since

g'(R) = E{(Bxl - aYl)Zexp[R(Bxl —aYy)] } > 0.

By P(BX;— aY; > 0) > 0, we can find some constadit > 0 such tha?(8X; —aY, > d1) > 0.
We use the property that satisfyingzfis random variables satisfyirgy> 0 thenZ > Z.15 with anyA € .7

9(R) > E{exp[R(BXl —aYy)] -1(BX10!Y1>61)} -1

> E[expR 1) Lipx,-avi>e)] — 1
= exp(R3)-E[1(px,-avy>5)] — 1
=expR&o).P(BX —aYy> ) —1 (2.4)

The right- hand ofZ.4) — o whenR — . ThusRIim 9(R) = co.
—00

Consequently, there exists a unique positive root of thetgu 2.2), denoted byRp.
Since g(R) is a convex function withR € [0, «) andg(0) = 0,g(Ry) = 0. If 0 < Ry < Ry theng(R1) < 0 which is equivalent
to

E{exp[Rl(Bxl —a Yl)] } <1

The Lemma2.1has been proven.

Lemma 2.2. (see, p] page 201) In the probabilistic spadg2,.7,P), let U = (U1,Uy,....Un),V = (V1,V2,...,Vy) be
random vectors, independent of each other, and f be a Bdwelstion onR™ x R" where|Ef(U,V)| < . Ifuc R™, the
function g is defined by

(2.5)

_JEf(uV) if[Ef(uV)/ <o
(W= {0 other

then g is Borel's function o™ with g(U) = E[f(U,V)|o(U)], whereg(U) is o— algebra generated by vector U. In
other words, under the assumption we can comflitgU,V)|o(U)] as if U was a constant vector.

Lemma 2.3. (see, [L7] page 493) Let Y= (Yn,7n) >0 be a nonnegative supermartingale. Then forkatt- 0

)\P{maxYk>)\} < EYy, (2.6)
k<n
/\]P’{squkzx\} < EY;. (2.7)
k>n
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The following theorem will give upper bounds for the ruin padility of the insurance company.
We put:

&:Biim —aivi. (2.8)

Theorem 2.1. We consider modé€L.1) such that:

i) The assumptions 1.1-1.3 are satisfied;

ii) The conditions of Lemmg.1) are also satisfied.
Then:

a) {Zn = exp(Rlsn)}n>1 is a supermartingale;

b) The ruin probability of the insurance company within grtimey/™® (u,t) < exg—Ryu);
c) The ultimate ruin probability of the insurance compapty) (u) < expg—Ryu).

Proof. It follows immediately from result of Lemm2.1that there exists a constaRt (0 < Ry < Rp), such that:
E{exp{Rl(Bxl — GYl)]} <1 (2.9)

We have

n+1 n+1
E[Zn1]Z1, 2, ... Z0] = E{exp[Ru(B _lei —a 'ZlYi)] 21,25, ....,Zn}
i= i=

= E{Znexp[Ru(BXn+1— aYni1)]1Z1. 22, ..., Zn}
= ZnE{exp[Ru(BXni1— 0Yni1)](Z1, 22, .., Zn}. (2.10)

We now apply the Lemma.2for the case

f(U,V) = exp[Ru(BXni1— aYni1)],
U= (Xg,., %0, Y1, ..., Yn),
V= (xn+17Yn+l)a

whereU,V are mutually independent.
Corresponding to the value

(Xl :X17"'3Xn =Xn7Y1 :ylv"'aYn ZYn)a

U= (X, ---sXn, Y1, ---,¥n),

we consider

g(u) = ]E{GXP[Rl(BXn+1 —aYni1)) } = ]E{GXP[Rl(Bxl —aYi)] },
by assumption

]E{exp[Rl(Bxl — aYlﬂ } <1,
consequently
gU) = ]E{exp[Rl(BXn+1 — 0 Yny1) [ Xe, . X, Y, ~-~,Yn} <1l

In the other hand
gu) = E{exp[Rl(BXnH — aYnHﬂ |Z1,2Z5, ...,Zn} <1 (2.11)

Combining .10 and .17 imply that

E(Zn+1]21,25,...,Zn) < Zyforalln > 1. (2.12)
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S0{Zy}n>1 = {exXpR1Sh) }n>1 is non- negative supermartingale.

In addition,
POut) =P LLZJl(Sn > u)] =P [1'1]%(5‘) > u} = ]P{ max [expRiS()] > ex;iRlu)}. (2.13)
Applying Lemma2.3for non- negative supermatingd&n}n>1 = {eXpR1S) }n>1, we have:
YD(ut) < {exp(—Ruu).E(Z1) } = {exp—Ruu).E(exp[Ri(B% — aY1)]) } < exp—Ruu). (2.14)
By lettingt — o in (2.14). Thus,
lim g (u,t) < lim (exp(—Ruw)) & ¢ (u) < exp—Ryu). (2.15)

This completes the proof.

Remark 2.1:

—Our result seems to be new even is the case of clasical modslavk- 3;
-With 0 < Ry < Rp then the right-hand side 02(14 and .15 are the smallest whely = Ry .

Similar to the Section 2, we derive inequality for ruin prbiigy of the reinsurance company in the Section 3 following

3 Probability inequalities for ruin probability of the rein surance company
We put:

n

S = (1—B)i>ﬁ -3y (3.1)

We need Lemma&.1for the proof of Theoren3.1below.
Lemma 3.1. Under the conditions

(1—a)E(Y1) > (1—B)E(X1) andP{[(1— B)X1— (1— a)Y1] > 0} >0, (3.2)
then there exists a positive constagt:R0 which is the unique root of the equation
E{expR((1-B)X1— (1—0a)Y1)]} =1. (3.3)

For all 0 < R, < Ry, we have
E{expR:((1-B)X1—(1—a)Y1)]} <1 (3.4

The proof of Lemma.1lis similar as Lemma.1
Now we state theorem below for the case of reinsurance compan
Theorem 3.1. We consider modé€lL.4) such that:

i) The assumptions 1.1-1.3 are satisfied,;

i) The conditions of Lemm¢gB.1) are also satisfied.
Then:

a) {Z, = exp(R:S)) } ..., is a supermartingale;

b) The ruin probability of the reinsurance company withiritéiime ¢/? (v;t) < exg—Rav);

¢) The ultimate ruin probability of the reinsurance company) (v) < exp(—Rov).
The proof of Theoren3.1is similar to that of Theorer.1
Remark 3.1

With assumptions of Theorethl, TheorenB.1we have the probability inequality for ultimate joint ruingbability.
Indeed:

i=1

<P U <o0 P Vi<O0
“#(u=0) (<o)
< exp(—Ruu) +exp—Rov). (3.5)

The inequality 8.5) is corollary of Theoren2.1and Theoren3.1

vy -#(Ju<ouUJn <o)
i=1
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4 Numerical illustrations

In this Section, we provide two numerical illustration exdes for the probability inequality of
YD (u), g3 (v) and(u,v), with a = 0.490Q 8 = 0.5000.
Example 4.1

Let Y = {Ya}n=0 be a sequence of independent and identically distributedama variables, withy; having a
distribution:

Y1 1 4

P | 0.5500 | 0.4500

Let X = {Xn}n=0 be a sequence of independent and identically distributedora variables, withX; having
distribution:

X1 2 3

P | 0.7000| 0.3000

WhenBX; — aY; having distribution:

BX1—aYy | 0.5100| 1.0100 | -0.9600 | -0.4600

P 0.3850| 0.1650| 0.3150 | 0.1350

To (2.2) we have the equation :

exp(r 0.5100) * 0.3850+ exp(r * 1.0100) x 0.1650+ exp(—r * 0.9600) * 0.3150
+exp(—r *0.4600) x 0.1350= 1. (4.1)

By Maple the equatior4(1) has a rooRy = 0.0051.
Similarly, we have distribution ofl — 3)X; — (1 - a)Y;

(1—B)X —(1—a)Yy | 0.4900 | 0.9900 | -1.0400 | -0.5400

P 0.3850| 0.1650 | 0.3150 | 0.1350

To the equation3.3) gives the equation:

exp(r x0.4900) x 0.3850+ exp(r x 0.9900) x 0.1650+ exp—r * 1.0400) * 0.3150
+exp(—r x0.5400 * 0.1350= 1. (4.2)

By Maple we findR;, = 0.1548 is roof of the equatior(2).
The following table shows upper boungi§! (u), @ (v), y(u,v) for a range of value of, v:
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Table 1: Upper bounds ofy(Y) (u), ¢(? (v) andy(u,v) with X; andY; are discrete random variables.

(u,v) YO | ¥V | Yuy

u=30;v=30 0.8581 | 0.0096 | 0.8677

u=1550,y=50 | 0.0004 | 0.0004 | 0.0008

u=70;,v=70 0.6998 | 0.0000 | 0.6998

Example 4.2

LetY ={Ya}n-0 be asequence of independent and identically distributedbra variables, witlY; is constant = 1.1.
X = {Xn}n=0 be a sequence of independent and identically distributedora variables, withX; has the exponential

distribution:
_ JAexp—Ax) ifx>0
T = {0 otherx <0 (4.3)
whereA = 1. f(X) is density function o;
To condition of @.2), we have equation
+oo
/ exp[r(0.5000« — 0.4900% 1.1000 — x]dx = 1
0
< exp—r*0.5390 — 1+ r x0.5000= 0. (4.4)
Use of Maple software, we find a solutiéy = 0.5927 of @.4).
Similarly, to condition of 8.3), we have equqgtion
+o00
/ exp[r (0.5000¢— 0.5100+ 1.1000) — x]dx = 1
0
< exp—r*0.5610 — 1+ r % 0.5000= 0. (4.5)

and findRy = 0.4185.
When upper boundg™ (u), @ (v), y(u,v) for a range of value of, v.

Table 2: Upper bounds ofyV) (u), ¢/? (v) andy(u,v) with Y; = c andX; is continuous random variable.

(u,v) O | YW | Yy

u=38;v=_=8 0.0087 | 0.0352 | 0.0439

u=10;v=141326 | 0.0027 | 0.0027 | 0.0054

u=15v=15 0.0001 | 0.0019 | 0.0020

5 Conclusions

This paper constructed upper bounds ) (u,t), @ (u), @ (v,t), andyw®(v) in model (.1) and (.4 by the
martingale method. Our main results in this paper not olmw@Theoren®.1and Theoren3.1 but also give numerical
examples to illustrate for TheoreZaland Theoren3.1
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