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Abstract: In the present paper, we introduce a new class of meromorphbltivalent functions on the punctured unit digk :=
{ze C:0< |7 < 1}. We obtain some geometric properties like coefficient irdityy linear combination, extreme points, growth and
distortion theoremsé neighborhoods, partial sum, weighted mean, arithmetiarmand radii of starlikeness and convexity for the
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1 Introduction and Definition where x« denote the usual Hadamard product (or
) convolution) of analytic functions.
Let 3, be the class of functions of the form: A function f of the form @) is said to be in the class

1 @ > p(8) of meromorphicp-valently starlike functions of
f@=2+ S aZ P (peN:={123..-}) (1) orderdinU*ifand onlyif
k=1

!
which are analytic ang-valent in the punctured unit disk O {— fo((j)] >0 (zeU*0<d<p; peN),
z
={zeC:0< |7 <1} =T\ {0},
) o and is in the class of meromorphically convex of order
wherelU = {ze C: |7] < 1} is the open unit disk.

. X denoted by; (9) if and only if
Consider a subclas$,, of functions of the form:

1 & B zf"(2) . _
f(z):§+l(zlak2kp (a > 0). ) D{1+ 72 >0 (zeU0<d<p peN).
For functionsf € 7, given by @) andg € 7, given by El-Ashwah B] defined the linear operator as
1 m 1 2 /1+ak\™ Xp
g(z):EJerkzk‘p (zeUbk>0), () b (Avl)f(2)=5+kz1 ) &

k=1 =

we definef g by (A >0,1 >0,me Ng:=NU{0},ze U"). (5)
By specializing the parameteds | and p, we obtain the
(f*9)(2) :ZPICL’;ZPQ(Z) following operators studied earlier by various researsher
z For
Z ab P = (g« f)(2) (zeU") e p=A =1, the operator{"(1,1) = .# (m,) has been

4 studied in B, 7];
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e A =1 =1, the operator"(1,1) = 7" has been 2 Coefficient Inequality
studied in p,10,12;

In the following theorem, we obtain the necessary and

e p=1=A=1,the operator/"(1,1) = #Mhas been  sufficient conditions for a functiorf € .7, to be in the
studied in [L3]; class#" V(V,B)
e p=1 =1, the operator#™(A,1) = 7™ has been Theorgr‘r) 2. 1..Let f e <.7p be given by 2). Then
studied in [l]. f e 2, ,(v.B)ifand only if
Set " (a+ p
k— k—p)+pBv
%A|z_ip+z<'”k) A0 (® g(lﬂk) @, (k= P)lk=p)+Bviac
<Bp(1-y)(1+v)
Corresponding to the functiogf(A,1;2), let us define the (0<y<1l0<B<la>-p0<v<lpeN).
function @l (A,1;2), the generalized multiplicative 9)

inverse ofgg'(A,1;2) given by the relation ) )
The result is sharp for the function

A l2) % A2 = oatens (a>—pzeU). _
@p'( ) * Gpa ( ) = P(1-2)TP ( p ) f(z)zz—]b+ — l?o?&)) y)(1+v) &P (k>1).
(I+)\k) My (k p)[k—p+BVv]
Note that ifa = —p+ 1,thencpp ()\ [;2) is the inverse of (10)

@'(A,1;2) with respect to the Hadamard prodectUsing  Proof. Assume that the inequality) holds true and let
this function we define the following family of transforms |z| = 1. Then from 8) we have
Jgf‘a (A,1) defined by

|22 (AN T@) + 2 H I (A1) — P
mAN@) =g z)*f() —B v AT (AN T(@) +y(1+v)p—p|
- 2 (a+pk/ | . s (L m(a+p)k<k7p)2akzk‘
zp+kzl (1)k (Y akzk ;<|+Ak> (D
(a>—p,1 >0,A>0meNg;ze U"), 7 —B|p(L=y)(1+v)- Z( ) ) wJ)f)k(k*P)akzk‘
where f € 7 is in the form @) and (8), denotes the < i( ) I (k— p){(k—p) + BVlac
Pochhammer symbol given by k=1

—Bp(1-y)(1+v) <0,

(B)k= (B+k) 1 (k=0) by virtue of ©). Hence, by the principle of maximum

T(B)  |BB+L..(B+k—1) (keN).  modulus,f € By (¥, B)-

Conversely, lef € 2, (v, ). Then
Using the operatoy i, (A, 1) we define the subclass &4,

as f0||OWS Zp+2(]m < ) )) Zp+1(]gg<)\7|>f(z>)17 p
v (A (A D1(2) +v(1+Vv)p—p

St ()" e (k- p> 2

(k

TP @) -V ()"

Definition 1.1. A function f € .7, given by @) is said to
be in the clas%;’j;(y,ﬁ) if it satisfies the inequality

p)akzk

P2 (I A NT@)" + 2P (AT (AN (@)~ p?
vzPHL( s, (AN E(2) +y(1+Vv)p—p

Sincel(z) < |7 for all z, we have

P s
p(1 V)(1+V)*V2k:1(|+'Ak) a+p K (k—p)axz
(0<y<10<B<la>-p0<v<l,
peN;zeU). 8) We can choose the value afon the real axis so that
P27 (A1) f(2)” andZPt(A, (A1) f(2)) are real.
The object of the present paper is to obtain some basitet z— 1~ through real values. Therefore, frorhlj,
geometric properties of the function cla@/\ ID(V,B) we obtain

such as coefficient inequality, linear combination, exeeem

points, growth and distortion theoren&neighborhoods Shg <I+)\k)m (Or(Jlr)E)k(k_ p)2ay

and partial sums, arithmetic mean, weighted mean, | (a+ » < B,
closure and radii of starlikeness and convexity. P(L—y)(1+V) =V, (m) S (k= pag
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which implies that and
< (I \"(a+pk °°< ! )’“(a+p)kk ‘
_ _ — —p)+Bvib
kzl(lwk) (k= Pk p+ Bvjay S () ke Pl P pvib
<Bp(l-y)(1+v), <Bp(l-y)(1+v). (15
which proves the inequalitydy. To showh € %f’;(y,ﬁ), by virtue of Theorem 2.1 it is
Sharpness follows if we take sufficient to show that
1 1-y)(1+v . © I \" (a+
(@)= g+ e A2 5 (i) C P plke i
(rbe) " %525 (k— p)lk— p+BV] & ‘

The proof of Theorem 2.1 is thus completéed.

As an application of Theorem 2.1, we obtain the

following:
Corollary 2.2. Letf ¢ %fj;(y,ﬁ). Then

a Bp(1-y)(1+V)
" () SR k- p)k—p-+ BV

(0<y<1,0<B<la>-p 0<v<1l peN).

3 Linear combination

Let the functionsf,g € J, be given by 2) and @)
respectively. For @ t < 1, define the functioh(z) by

h(z) =(1—t) (2 +t9(2)

+ z 1—t)ag+th]Z P
- -p
- Ly k;ckzk : (12)
where for simplicity, we write
ck = (1—t)ayx+thy. (13)

Clearlyc, > 0.

Theorem 3.1.The clasﬁj’:; (v, B) is closed under convex
linear combination.

Proof. To prove the class#)" "(y,B) is convex, i.e. to
show for f,g € % (y,B) = he 93 (y,B) where

h(z) is defined as:(2) whose coeff|C|ent |s given byl B).
Sincef,ge %y "(y, B), hence by application of Theorem
2.1 we have
i < | )m (a+pk
L\ +AK (1)

(k—p)[(k—p) + Bv]ax

<Bp(l- (14)

y)(1+v)

Now making use of14) and (L5) in (16) give

- I \" (o +p)
k;(lﬂk) @y < Pllk=p)+ vl
1.0 L \"(a+pk, B
- t)kZ1<|+)\k) @, K Plk=p)+Bviac
- I \"(a+pk
H ;(HM) @ K Pk=p)+Bvibe
<(1-1)[Bp(1—y)(L+ V)] +tBp(l—y)(1+V)
=Bp(1-y)(1+v)

Hence the result follows.]

4 Extreme Points

The determination of the extreme points of a family of
multivalent function enable us to solve many extremal
problems.

Theorem4.1. Letf_p(z)=zPand

1 Bp(1-

)(1+Vv)
fip(d= o+ Y
2 ()

ek (k= p)lk—p+ V]

Thenf e %fj;(y,ﬁ) if and only if it can be expressed in

the form
Z) = Z dkfk_p(Z)
k=0

kidk -1

(17)

where

d¢>0 and

Proof. Suppose that

2) = k;dk fk_p(2)

ocd:1.

where

d«>0 and
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Then
f(2) =dof-p(d+ 5 dkfi p(2)
K=1
= d027p+ Z dk
K=

1 Bp(1-y)(1+v)

4 Zk*P

{Zp rh) 52 (k—p)lk—p+B]
o Ok | < Bp(1—y)(1+v) -

=y X4 A2 P
kZoZ kgl <|+'W) (a(+>p) (k=p)[k—p+pBv]
1 i _

= E +k:lQ(Zk p, (18)

where, for convenience we take

Bp(l—y)(1+v)dk
P (k— p)k— p-+ Bv]

R

By Theorem 2.1f ¢ %’;’j;(y,ﬁ) if and only if

(I+|)\k)m(( “(k—=p)[k—p+pV]

then
1 00
_ = -p
f(2) Zp+k;ak£<
_1l.9 Bp(1—y)(1+v) 4P
2 () S k- plk—p+BY]
1 [oe]
- = _ P
=5t 3 [hesld —2 Pl
1 0 [oe]
=—|1- dg | + dk fk_p(2)
Zp( kzl ) ; P
do
= E+gldkfk—p(z)
= > dfip(2)
K=o

Thus, the proof of Theorem 4.1 is completed.

5 Growth and distortion theorems

By making use of Theorem 2.1, we first prove the

Z —y)(1+v) &=1 following growth theorem for the function in the class
k= a,v
r f given .
l\(l)owg enby 08) Theorem 5.1.If (2) € %" (v, B), then for 0< |z < 1
(o M (@ B we have
s (re) (k=P p+pYl_ ) Bt Lt y
&1 Bp(1-y)(1+v) ECEE 177 P <[f(2)|
(q) (a+p)(1-p)l-p+BV]
o (b )" R (k= p)lk— p+ B
V .
= iy S () @ o pa e B
Bp(l-y)(1+v) o (19)
)@k ) [k— p+ By
(IHk) @ B mp)[ F:O e The result is sharp for the function
=) k=) dk—do _
kzl k;) f(z)=Z—1p+ N Apl—y)A+V) P
—1-dh<1 (i) (@+P@a=p)a-p+pv]
Conversely, assume thdte ;" (y, ). Then we show (20)
that f can be expressed in the form afy. Proof. Sincef(z) = %+ yj;aZ P, we have
Sincef ec%’““’(y,ﬁ) hence by Corollary 2.2 we have .
| @) = 1+zakzk*p
a < Bp(l-y)(1+v) zP
T 1) (@
(I+/\k) O (k p)k— p+BV] < 1 +zak|z|kp (ax > 0)
|Z|'°
Take
+|z-P 21
Y ‘<1 ok < o+l Zak (21)
“ Bp(l-y)(1+v) - By Theorem 2.1, we have
and o g Bp(L—y)(1+V)
do=1-Yd .
=172 e S ('—A) (a+p) (1= p)[L—p+pBY]
(@© 2016 NSP
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Thus from @1), we obtain Similarly,
1 1-y)(1 p - o
1@< s+ 7y pp=y)(A+v) 2P 1@ o 3 (- pada
(Fs) (@+p)2-p)1—p+Bv =N
(22) > P —|zI—P 1—
Similarly, we have ~ 7Pt i k;( P
@ p Bp(1—y)(1+v) -
1)) 5 Y ada P > e T 2 @7)
24P & (i) (a+p)1—p+pv]
> ip — |z|1‘p z ax The result 24) follows from (26) and @7). Thus, the proof
Fd K=l of Theorem 5.2 is completed.

21 _ Bp(l-y)(1+v)
C 2P () @+ p)a-pia-p+ By

The result £9) follows from (22) and @3). This complete
the proof of Theorem 5.1 .

The distortion estimates for the functions in the class
%g:;(y,ﬁ) is given in the following theorem.

IZYP. (23)

6 Neighborhoods and Partial Sums

Goodman9], Ruscheweyh11] and more recently Altinas
and Owa P](also, see 3,4]) have investigated the familiar
concept of neighborhoods of analytic functions. Here we
Theorem 5.2.1f f ¢ ﬂs,;(y’m’ then for 0< |7 < 1, we begin by introducing thé-neighborhood of a functioh €
have ' Jp of the form Q).
Definition 6.1. Let0<fB<1 0<v<1l 0<y<]1,
P Bp(l-y)(1+v) 2P < |F(2)| p € N andd > 0. We definad-neighborhood of a function
+1 m =
|z|P (|+|_A) (@ +p)l—p+Bv] f € p of the form @) and denoted biXs(f) as

p Bp(l—y)(1+V) |Z|—p'

< + P
= 1 m _ —
2" (|+|_A) (a+p)[1—p+Bv] Ns(f)=g€ Zp:9(2 =2 P+ $ b2 P and
(24) L \™(a+p) "
The results is sharp for the functidiiz) given by 0) - (rm) <1>kk(k_p)[k_p+pv]|ak b < &
e results is sharp for the functidiiz) given . — by <
oo auenty 2 Bea-piry) ‘
Proof. Since (28)
f(2) = 1 + z aZ P (a>0), Making use of the Definition 6.1 we now prove the
G following result.
we have Theorem 6.2. Let the functionf given by @) be in the
class#)" " (y.B). If f satisfies the following condition:
P
"(7) = — _ -p-1
f@9= i kzl(k pad P (f(2)+ez P)(1+e) e 255 (v.B) (e€C,le|<8,6>0),
- ' (29)
Hence then
o N5(f) C 250 (v.B). (30)
1@ < e+ Y (k= pjadzt Pt |
k=1 Proof It is clearly seen from §) that a function
Y a.v . .
< E+1 P z (1 p)ay (25) f .e %’A;p(y,ﬁ) if and only if for any complex numbes
4 =1 with |o| =1,
. a.,v .
Sincef € @A7p(y,ﬁ), it follows from Theorem 2.1 and P20 (AN @)+ P A @) — P D,
(25) that BV (7T, (AT (@) +y(1+Vv)p—p]
p Bp(l—y)(1+v _ which is equivalent to
@) < et 7 pA-yaA+v) q
(|+—,\) (a+p)[1—p-+BY] (fxh)(2)
(26) — 70 (D) (32)
(@© 2016 NSP
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where, for convenience which impliesg € 5" "(y, B). SoNs(f) c &y "(y,B)
(i) " 2 (k= p)lk— p— 0BV Nextwe prove | |
h(z) =z P+ Z Pl Theorem 6.3. Let f € .7, be given by 2) and define the
oBp(1—y)(1+v) :
partial sumss; (z) andsy(z) as
— 7P+ ¥ gZP. (33)
kzl si(z) =z P
Itis easy to find from&3) that
and
') (k= p)lk—p—aBv] ko
e = ('+"k) Dk s@=zP+3 aZ P (q>1).
aBp(L—y)(1+v) &
Suppose that
(i) ™ 52k~ p) [k~ p+ V] PP .
= Bp(l—y)(L+V) 2 st
(k>1,peN). h
Since(f(2) + ez P)(1+£) L € Y (y. ), where
. m
by virtue of 32), we get (ﬁ) 1 (k p)[k—p+BY] 5
1 (f@+ez? = BP(L—y)(1+V) |
e <T * h(z)) #0. (34)
Then
Assume that foh
‘% <. (i fesi(y.p),  (37)
. f(2) 1
Then by B4 t ii D{—}>1——, 38
en by @4) we ge (i) ) & (38)
1 (fxh)(2 € le] 1 |(fxh)(2)
Tre zP ' 1te|~Jire [ite z*P and
&l —
> >0, %(2) G
\1+s| (iii ) Re{ f(z)}>1 1o (zeU,g>1). (39)
This is a contradiction ag| < &. Therefore
(f+h)(2) Proof. It follows from (32) that
= = (35) a,v
z z P e By, (y.B).

Now, let
Thus, from Theorem 6.2 and hypothes3§)(of Theorem
P . 6.3 we have
92 =2+ b PeNs(f),
kZl Ni(zP) € 250 (v. B),

so that which shows thaf € 3"/ (v, B).

- ® (ii) Under the hypotheS|s in part (ii) of Theorem 6.3, we
‘ [f(@ g_(i)] h@)| _ > (a— bi) et can see from36) that
K=1
o0 Ckr1>c>1 (k=1,23,---).

< 2 13 o2
Therefore, we have

L2 (rbe) " %525 (k— p)lk— p+BV] - o
B kZl Bp(l-y)(1+v) kzlak+ chz ag < kzlckak <1 (40)
= = =
lag—by| <& (zeU,8>0).
By setting
Therefore, for any complex numbersuch thato| = 1,
we have ¢ 1 5L B
@ Gi(2) — [ﬂ_(l__)]: ca¥
o e l5e ) T e

(@© 2016 NSP
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and applying 40) we find that

‘Gl(z) - 1‘ _ Cq Ticq &2
Gi@)+1l |24 258 A+ cq 3 qad
qui"_qak

<1
T 2-25) jac- G SR g

which impliesd{G1(2)} > 0. Thus, we obtain

f(2) } 1
04 =—=% 1-—,
{sq<z> TG
which proof (ii)
Similarly, to prove 89), set

Ga(2) =(1+¢y) (?LZZ; - %)
%(2)

=(1+Cq)m —Cq

(1+cq) Tie_qau?
I+3al

By virtue of (40), we can deduce that

Ga(z) -1 (L+Cq) T7_q a2
Ga(2)+1 T 225 ad (g Siqgad
< (1+Cq) zk:qak
= 2-25 g a—(1+Cq) Ti_qa
<1,

which gives the assertioi39) of Theorem 6.3 . Thus, the
proof of Theorem 6.3 is completed.

7 Arithmetic Mean

Theorem 7.1. Let f1(2), f2(2),--- fi(2) defined by
1 2 _ :
fi(z):5+k;ak7izk P (>0, i=123..1 k>1)
(41)
be in the clas% (y,B). Then the arithmetic mean of
fi(z) (i=1,23,.. )defined by
1!
02 =7 3 (@ (42)
is also in the clas@;’j;(y,ﬁ).
Proof. Using @1 in (42, we have
— p
0@ =7 zi Zp+zak|zk ]
1 21
==+ =Y a | 2P (43)
s 2iz)

Sincefi(z) € %y (v, B) for everyi = 1,2,3,...
using Theorem 2.1, we prove that

,I, so by

ke 1(I+Ak) a+p (k—p)k— p"‘ﬁv](lZ!:laki)

=.—1zi=1[z§°:1(|+Ak) (&2B (k— p)[k— p-+ BV]a]
<%z!=1ﬁp<1—v><1+v>
=Bp(l-y)(1+v).

This ends the proof of Theorem 71.

8 Weighted Mean

Definition 8.1 Let f(2),
hj(z) of f(z

9(2) € Jp. The weighted mean
z) andg(z) is given by

hj(2 = 5[1- )@+ (1+])9(2)]
In the following theorem, we will show the weighted

mean for the class;” (v, B).

Theorem 8.2.1f f(z) andg(z) are in the classzy’ (v, B),
then the weighted mean(z) of f(z) andg(z) defined as
(44) is also in#}" "(y,B)

Proof. By Definition 8. 1, we have

. 1 i - . 1 il -
(1-1§) (—p +k;akzk ") +(1+]) (E +k;bkzk P)}

[(1-j)a+ (1+ )b 2P

(0<j<1). (44)

NI = ~

hj(2) = %

1.1
22

— (45)

Ma

To showhj(2) € #;, (v.B), by virtue of Theorem 2.1, it
is sufficient to show

ad I \" (a+p) .
5. () SRtk pk-pepvl [ 3 iack 30+ ]
<Bp(L-y)(1+V).
(46)
Now

5 () e mk-pepvl 3= hac 50+ b
-30-05 () St Pk pepvia
5005 () S b plkp+ Buiby

<2 DBPI- YA+ V) + 3 (14 DBPL-Y)(L+V)
=Bp(l-y)(1+v),

which establish46).
This ends the proof of Theorem 8.2 .

9 Closure theorem

Theorem 9.1. Let the functionsf; defined by

1

i(@=2+Y a P (ai>01=123..I k>1)
k=1

(@© 2016 NSP
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be in the class%’j”;(y,ﬁ) for everyi =1,2,3,...,1. Then  Proof (i) Itis sufficient to show that
the functiony defined by

!
1 ® fo((z? + p‘ <p-9 (49)
W) =5+ 5 ad P (>0
bd
k=1 for |z <ry.
‘ Replacing f(z) and zf'(z) with their equivalent series
also belong to the claﬁ,‘\’;;(y,ﬁ), where expression in left hand side o49), we obtain
1] 2f'@) . p’ _ | F 3Rk pjad?
STy e 3 siaad ?
. : a.,v _ Zf:lkakzk
Proof. Sincefi(z) € %," (y,B), so by Theorem 2.1, we = Tise,af
have o K
L \"(a+p) Y1 ka|Z (50)
- a+ Pk _ T 1-Se g adzk
(k=p)[k—p+Bvla, k=1
k; (' +)\k> (D ! Hence B0) holds true if
<Bp(1-y)(1+v) - 5 @
"< (p—9)(1— z
foreveryi=1,23,...,]. Hence k; adz" < (p=o) k;aﬂ )
(a+pk or
Tkot (|+Ak) o, - (k=p)[k—p+Bv]ec i k+p_5ak|z|k . -
=5 () R (k- )k pBY] (F5-a k) & p-0 T T
With the aid of @), (51) is true if
—15l, bkl(wm) (818 (k— p) k— p-+ BV]a] -
k+p L ()" S (k= p)k— p+ BV
<131aBp(L-y)(1+v) p5 4= Bp(1l—y)(1+v) (kz1). 62

=pp(l-y)(1+v).

Solving 62) for |z|, we obtain
Hence by Theorem 2.1, it follows thte %} "(y, B).

1

lz<[(.+&k) (&8 (k— p) k-~ p+BV](p 6)}

(k>1),

Bp(1-y)(1+v)(k+p—9)
10 Radii of starlikeness and convexity
which proves the assertiod ().
In this section, we determine the radii of meromorphically (i) In order to prove the second assertion of Theorem
p-valent starlikeness of orded (0 < & < p) and  10.1,itis sufficient to show that
meromorphically convexity of orded (0 < é < p) for

1
the function in the clas®g)" (v, B). ‘1+fo/—((z?+p‘ <p-& (0<d<p) (53
Theorem 10.1. Let the functionf (z) defined by 2) be in
the class@;’:;(y,ﬁ). Then for |z < r».
(i) f is meromorphicallyp-valent starlike of order Replacingf’(z) and zf”(z) with their equivalent series
d (0< 9 < p)inthe disk|z < r; where expression in the left hand side &3), we get
r1=r1(1.A.k.p.5,0.B.v.y) \uf&§+%:
l
| a+p
i () (k= Pk~ p+BVI(p—0) ’p(p+1)+z°k°=1(k— p)(k—p-Lja
= Bp(l yY)(1+v)(k+p—9) ' —p+ 2l (k— pla

(47) (p+ 1)| — ’ ztllek(k_ p)akzk

—p+ Y1 (k— p)agZ
(i)  f is meromorphicallyp-valent convex of order poo zll:_kl( p)akk
5 (0< 3 < p)inthe disk|z| < rp, where < Zk:lm (k—plalZ . (54)
: = p—Sia(k—pladzX

r2 - r2(|7A7k7 p757a7B7v7y
1 Hence b4) holds true if
m 3
(p—3) () FL(k—p+pBv]
[ (I+)\k) Dk . @9)

= inf
k>1

BL T vkip 9 5 i plad < (p-0)(p- 3 (k- plaz)

k=1
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or [8] R. M. El-Ashwah,A note on certain meromorphic p-valent
® (k—p)(k+ p—d)ayz" <1 (55) functions Appl. Math. Lett, 22,1756-1759 (2009).
kZl p(p—9) = [9] A. W. GoodmanUnivalent functions and nonanalytic curves

Proc. Amer. Math. Soc8, 598-601 (1957).
Hence by application of Theorem 2.55 is true if [10] J.-L. Liu and S. OwaQOn certain meromorphic p-valent
functions, Taiwanese J. Math2(1), 107-110 (1998).
(ﬁ)m%(k— p)[k—p-+pBv] [11]S. RuscheweyhNeighborhoods of univalent functians
. Proc. Amer. Math. Soc81, 521-527 (1981).
Bp(l-y)(1+v) 56 [12] H. M. Srivastava and J. Paté\pplications of differential
(56) subordination to certain classes of meromorphically

(k=p)(k+p—29)
p(p—9)

Solving 66) for |z|, we obtain

74<

multivalent functionsJ. Ineq. Pure Appl. Math6(3), 1-15
1 (2005).
(p— )(l_)m(“+P>k(k_ p-+Bv) k [13] B. A. Uralegaddi and C. Somanathdlew criteria for
|z < Ak Dk (k>1). meromorphic starlike univalent functigndBull. Austral.
- [(k+p=29]B(1—y)(1+V) - Math. Soc, 43, 137-140 (1991).
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